- Gorecki, C., Bargiel, S., MEMS Scanning Mirrors for Optical Coherence Tomography, Photonics, 8(1), 2021, 6.
- El-Hassani, N.E.A., Baraket, A., Boudjaoui, S., et al. Development and application of a novel electrochemical immune sensor for tetracycline screening in honey using a fully integrated electrochemical BioMEM, Biosensors and Bioelectronics, 130, 2019, 330-337.
- Ghanbari, M., Rezazadeh, G., A MEMS-based methodology for measurement of effective density and viscosity of nanofluids, European Journal of Mechanics - B/Fluids, 86, 2021, 67-77.
- Kaczynski, J., Ranacher, C., Fleury, C., Computationally efficient model for viscous damping in perforated MEMS structures, Sensors and Actuators A: Physical, 314, 2020, 112201.
- Luo, S., Lewis, F.L., Song, Y., Ouakad, H.M., Accelerated adaptive fuzzy optimal control of three coupled fractional-order chaotic electromechanical transducers, IEEE Transactions on Fuzzy Systems, 29(7), 2020, 1701-1714.
- Preeti, M., Guha, K., Baishnab, K.L., Sastry, A.S., Design and Analysis of a Capacitive MEMS Accelerometer as a Wearable Sensor in Identifying Low-Frequency Vibration Profiles. In: Dutta G, Biswas A, Chakrabarti A, (eds) Modern Techniques in Biosensors. Studies in Systems, Decision and Control, Springer, Singapore, 327, 2021.
- Nuñez, D., Perdomo, O., Rivera, A., On the stability of periodic solutions with defined sign in MEMS via lower and upper solutions, Nonlinear Analysis: Real World Applications, 46, 2019, 195–218
- He, J.H., Nurakhmetov, D., Skrzypacz, P., Wei, D., Dynamic Pull-in for Micro-Electro-Mechanical Device with a Current-Carrying Conductor, Journal of Low Frequency Noise Vibration and Active Control, 2019, DOI: 10.1177/1461348419847298.
- Faedo, N., Dores Piuma, F.J., Giorgi, G. et al.Nonlinear model reduction for wave energy systems: a moment-matching-based approach, Nonlinear Dynamics, 102, 2020, 1215–1237.
- Younis, M.I., MEMS Linear and Nonlinear Statics and Dynamics, Springer, 2011.
- Lobontiu, N., Dynamics of Microelectromechanical Systems, Springer, 2007.
- Esmailzadeh, E., Younesian, D., Askari, H., Analytical Methods in Nonlinear Oscillations: Approaches and Applications, Springer, 2019.
- Koochi, A., Abadyan, M., Nonlinear Differential Equations in Micro/Nano Mechanics: Application in Micro/Nano Structures and Electromechanical Systems, Elsevier, 2020.
- Zhang, W.M., Yan, H., Peng, Z.K., Meng, G., Electrostatic pull-in instability in mems/nems: a review, Sensors and Actuators A-Physical, 214, 2014, 187–218.
- Zang, X., Zhou, Q., Chang, J., Liu, Y., Lin, L., Graphene and carbon nanotube (CNT) in MEMS/NEMS applications, Microelectronics Engineering, 132, 2015, 192-206.
- Shariati, A., Sedighi, H.M., Żur, K.K., Habibi, M., Safa, M., On the vibrations and stability of moving viscoelastic axially functionally graded nanobeams, Materials, 13(7), 2020, 1707.
- Tian, X., Sheng, W., Tian, F., Lu, Y., Wang, L., Simulation study on squeeze film air damping, Micro & Nano Letters, 15(9), 2020, 576-581.
- Ouakad, H.M., Nayfeh, A.H., Choura, S., Najar, F., Nonlinear feedback controller of a microbeam resonator, Journal of Vibration and Control, 21(9), 2015, 1680-1697.
- Ouakad, H.M., El-Borgi, S., Mousavi, S.M., Friswell, M.I., Static and dynamic response of CNT nanobeam using nonlocal strain and velocity gradient theory, Applied Mathematical Modelling, 62, 2018, 207-222.
- Sedighi, H.M., Size-dependent dynamic pull-in instability of vibrating electrically actuated microbeams based on the strain gradient elasticity theory, Acta Astronautica, 95, 2014, 111-23.
- Skrzypacz, P., He, J.H., Ellis, G., Kuanyshbay, M., A simple approximation of periodic solutions to microelectromechanical system model of oscillating parallel plate capacitor, Mathematical Methods in the Applied Sciences, 2020, https://doi.org/10.1002/mma.6898.
- Far, M.F., Martin, F., Belahcen, A., Rasilo, P., Awan, H.A.A., Real-time control of an IPMSM using model order reduction, IEEE Transactions on Industrial Electronics, 68(3), 2020, 2005-2014.
- Zamanzadeh, M., Ouakad, H.M., Azizi, S., Theoretical and experimental investigations of the primary and parametric resonances in repulsive force based MEMS actuators, Sensors and Actuators A: Physical, 303, 2020, 111635.
- Moory-Shirbani, M., Sedighi, H.M., Ouakad, H.M., Najar, F., Experimental and mathematical analysis of a piezoelectrically actuated multilayered imperfect microbeam subjected to applied electric potential, Composite Structures, 184, 2018, 950-960.
- Zhou, S.A., On forces in microelectromechanical systems, International Journal of Engineering Science, 41, 2003, 313–335
- Zamanzadeh, M., Jafarsadeghi-Pournaki, I., Ouakad, H.M., A resonant pressure MEMS sensor based on levitation force excitation detection, Nonlinear Dynamics, 100(2), 2020, 1105-1123.
- Sedighi, H.M., Ouakad, H.M., Dimitri, R., Tornabene R., Stress-driven nonlocal elasticity for the instability analysis of fluid-conveying C-BN hybrid-nanotube in a magneto-thermal environment, Physica Scripta, 95(6), 2020, 065204.
- Sedighi, H.M., Divergence and flutter instability of magneto-thermo-elastic C-BN hetero-nanotubes conveying fluid, Acta Mechanica Sinica, 36(2), 2020, 381-396.
- He, J.H., Variational iteration method–a kind of non-linear analytical technique: some examples, International Journal of Nonlinear Mechanics, 34, 1999, 699–708.
- Koochi, A., Farrokhabadi, A., Abadyan, M., Modeling the size dependent instability of NEMS sensor/actuator made of nano-wire with circular cross-section, Microsystem Technologies, 21, 2015, 355–364.
- Mohammadiana, M., Application of the variational iteration method to nonlinear vibrations of nanobeams induced by the van der Waals force under different boundary conditions, European Physics Journal Plus, 132, 2017, 169-181.
- Farrokhabadi, A., Mokhtari, J., Koochi, A. et al.,A theoretical model for investigating the effect of vacuum fluctuations on the electromechanical stability of nanotweezers, Indian Journal of Physics,89, 2015, 599-609.
- Anjum, N., He, J.H., Laplace transform: making the variational iteration method easier, Applied Mathematics Letters, 92, 2019, 134–138.
- Rastegar, S., et al., Application of He’s variational iteration method to the estimation of diaphragm deflection in MEMS capacitive microphone, Measurement, 44, 2011, 113-120.
- Anjum, N., Suleman, M., Lu, D., He, J.H., Ramzan M., Numerical iteration for nonlinear oscillators by Elzaki transform, Journal of Low Frequency Noise Vibration and Active Control, 39(4), 2019, 879-884.
- Zhang, Y., Pang, J., Laplace-based variational iteration method for nonlinear oscillators in microelectromechanical system, Mathematical Methods in Applied Sciences, 2020, DOI: 10.1002/mma.6883.
- He, J.H., Latifizadeh, H., A general numerical algorithm for nonlinear differential equations by the variational iteration method, International Journal of Numerical Methods for Heat & Fluid Flow, 30(11), 2020, 4797-4810.
- Khuri, S.A., Sayfy, A., Generalizing the variational iteration method for BVPs: Proper setting of the correction functional, Applied Mathematics Letters, 68, 2017, 68-75.
- Anjum, N., He, J.H., Analysis of nonlinear vibration of nano/microelectromechanical system switch induced by electromagnetic force under zero initial conditions, Alexandria Engineering Journal, 2020. https://doi.org/10.1016/j.aej.2020.07.039.
- He, J.H., New interpretation of homotopy perturbation method, International Journal of Modern Physics, 20, 2006, 2561–2568.
- Sedighi, H.M., Changizian, M., Noghrehabadi, A., Dynamic pull-in instability of geometrically nonlinear actuated micro-beams based on the modified couple stress theory, Latin American Journal of Solids and Structures,11, 2014, 810-825.
- He, J.H., Some asymptotic methods for strongly nonlinear equations, International Journal of Modern Physics B, 20, 2006, 1141-1199.
- Qian, Y. H., et al., The spreading residue harmonic balance method for studying the doubly clamped beam-type N/MEMS subjected to the van der Waals attraction, Journal of Low Frequency Noise Vibration and Active Control, 38(3–4), 2019, 1261–1271.
- Anjum, N., He, J.H., Nonlinear dynamic analysis of vibratory behavior of a graphene nano/microelectromechanical system, Mathematical Methods in the Applied Sciences, 2020, DOI: 10.1002/mma.6699.
- He, J.H., Homotopy Perturbation Technique, Computer Methods in Applied Mechanics and Engineering, 178, 1999, 257-262.
- Sedighi, H.M., Reza, A., Zare, J., Using Parameter Expansion Method and Min-Max Approach for the Analytical Investigation of Vibrating Micro-Beams Pre-Deformed by an Electric Field, Advances in Structural Engineering, 16(4), 2013, 693-699.
- He, J.H., A Coupling Method of a Homotopy Technique and a Perturbation Technique for Non-Linear Problems, International Journal of Nonlinear Mechanics, 35(1), 2000, 37-43.
- Keivani, M., Koochi, A., Sedighi, H.M., Abadyan, M., Farrokhabadi, A., Shahedin, A.M., Effect of surface layer on electromechanical stability of tweezers and cantilevers fabricated from conductive cylindrical nanowires, Surface Review and Letters, 23(02), 2016, 1550101.
- Ain, Q.T., He, J.H., Anjum, N., Ali, M., The Fractional complex transform: A novel approach to the time-fractional Schrodinger equation, Fractals, 28(7), 2020, 2050141.
- El-Dib, Y., Stability analysis of a strongly displacement time-delayed duffing oscillator using multiple scales homotopy perturbation method, Journal of Applied and Computational Mechanics, 4, 2018, 260–274.
- Ali, M., Anjum N., Ain, Q.T., He, J.H., Homotopy Perturbation Method for the Attachment Oscillator Arising in Nanotechnology, Fibers and Polymers, 2020, https://doi.org/10.1007/s12221-021-0844-x.
- Manimegalai, K., Zephania, C.F.S., Bera, P.K., et al., Study of strongly nonlinear oscillators using the Aboodh transform and the homotopy perturbation method, European Physics Journal Plus, 134, 2019, 462-469.
- Anjum, N., He, J.H., Two modifications of the homotopy perturbation method for nonlinear oscillators, Journal of Applied and Computational Mechanics, 6, 2020, 1420-1425.
- Koochi, A., Goharimanesh, M., Gharib, M.R., Nonlocal electromagnetic instability of carbon nanotube-based nano-sensor, Mathematical Methods in Applied Sciences, 2021, 1–18, DOI: 10.1002/mma.7216.
- Anjum, N., Ain, Q.T., Application of He’s fractional derivative and fractional complex transform for time fractional Camassa-Holm equation, Thermal Science, 24(5A), 2019, 3023-3030.
- Gondal, M.A., Khan, M., Homotopy Perturbation Method for Nonlinear Exponential Boundary Layer Equation using Laplace Transformation, He's Polynomials and Pade Technology, International Journal of Nonlinear Science and Numerical Simulation, 12, 2010, 1145-1153.
- Anjum, N., He, J.H., Homotopy perturbation method for N/MEMS oscillators, Mathematical Methods in the Applied Sciences, 2020, DOI: 10.1002/mma.6583.
- Nadeem, M., Li, F.Q., He-Laplace method for nonlinear vibration systems and nonlinear wave equations, Journal of Low Frequency Noise Vibration and Active Control, 38(3-4), 2019, 1060-1074.
- He, K., Nadeem, M., Habib, S., Sedighi, H.M., Huang, D., Analytical approach for the temperature distribution in the casting-mould heterogeneous system, International Journal of Numerical Methods for Heat & Fluid Flow, 2021, DOI: 1108/HFF-03-2021-0180.
- Suleman, M., Lu, D., Yue, C., Rahman J-Ul., Anjum, N., He–Laplace method for general nonlinear periodic solitary solution of vibration equations, Journal of Low Frequency Noise Vibration and Active Control, 38(3-4), 2018, 1297-1304.
- Ghorbani, A., Beyond Adomian polynomials: He polynomials, Chaos Solitons and Fractals, 39, 2009, 1486-1492.
- Filobello-Nino, U., Vazquez-Leal, H., Jimenez-Fernandez, V.M., et al., Enhanced classical perturbation method, Nonlinear Science Letters A, 9, 2018, 172–185.
- Anjum, N., He, J.H., Higher-order homotopy perturbation method for conservative nonlinear oscillators generally and microelectromechanical systems’ oscillators particularly, International Journal of Modern Physics B, 34(32), 2020, 2050313.
- Ji, Q.-P., et al., Li–He’s modified homotopy perturbation method coupled with the energy method for the dropping shock response of a tangent nonlinear packaging system, Journal of Low Frequency Noise Vibration and Active Control, 2020, DOI: 10.1177/1461348420914457.
- Anjum, N., He, J.H., Ain, Q.T., Tian, D., Li-He’s modified homotopy perturbation method for doubly-clamped electrically actuated microbeams-based microelectromechanical system, Facta Universitatis, Series: Mechanical Engineering, 2021, DOI: 10.22190/FUME210112025A.
- Koochi, A., Goharimanesh, M., Nonlinear oscillations of CNT nano-resonator based on nonlocal elasticity: The energy balance method, Reports in Mechanical Engineering, 2(1), 2021, 41-50.
- Fu, Y., Zhang, J., Wan, L., Application of the energy balance method to a nonlinear oscillator arising in the microelectromechanical system (MEMS), Current Applied Physics, 11, 2011, 1482-1485.
- He, J.H., Hamiltonian approach to nonlinear oscillators, Physics Letters A, 374 (23), 2010, 2312–2314.
- Shokravi, M., Dynamic pull-in and pull-out analysis of viscoelastic nanoplates under electrostatic and Casimir forces via sinusoidal shear deformation theory, Microelectronics Reliability, 71, 2017, 21–28.
- Sedighi, H.M., Koochi, A., Abadyan, M., Nonlinear Dynamic Instability of a Double-Sided Nano-Bridge Considering Centrifugal force and Rarefied Gas Flow, International Journal of Non-Linear Mechanics, 77, 2015, 96-106.
- Adomian, G., Solving Frontier Problems of Physics: The Decomposition Method, Kluwer, Boston, 1994.
- Duan, J.S., et al., Solution of the model of beam-type micro- and nano-scale electrostatic actuators by a new modified Adomian decomposition method for nonlinear boundary value problems, International Journal of Non-Linear Mechanics, 49, 2013, 159-169.
- Khader, M.M., Sweilam, N.H., Singularly perturbed BVP to estimation of diaphragm deflection in MEMS capacitive microphone: An application of ADM, Applied Mathematics and Computation, 281, 2016, 214-222.
- Noghrehabadi, A., et al., A new approach to the electrostatic pull-in instability of nanocantilever actuators using the ADM–Padé technique, Computers and Mathematics with Applications, 64, 2012, 2806-2815.
- Moradweysi, P., et al., Application of modified Adomian decomposition method to pull-in instability of nano-switches using nonlocal Timoshenko beam theory, Applied Mathematical Modelling, 54, 2018, 594-604,
- Farrokhabadi, A., Koochi, A., Abadyan, M., Modeling the instability of CNT tweezers using a continuum model, Microsystem Technologies,20, 2014, 291–302.
- Koochi, A., Fazli, N., Rach, R., Modeling the pull-in instability of the CNT-based probe/actuator under the Coulomb force and the van der Waals attraction, Latin American Journal of Solids and Structures, 11, 2014, 1315-1328.
- Tadi-Beni, Y., Karimipour, I., Abadyan, M., Modeling the instability of electrostatic nano-bridges and nano-cantilevers using modified strain gradient theory, Applied Mathematical Modeling, 39(9), 2015, 2633–2648.
- Rafieipour, H., et al., Analytical approximate solution for nonlinear vibration of microelectromechanical system using he's frequency amplitude formulation, Iranian Journal of Science and Technology Transaction B- Engineering, 37, 2013, 83-90.
- Nikkar, A., et al., Periodic solution to a nonlinear oscillator arising in micro electro mechanical system, Journal of Vibroengineering, 17, 2015, 2710-2717.
- He, J.H., Anjum, N., Skrzypacz, P., A Variational Principle for a Nonlinear Oscillator Arising in the Microelectromechanical System, Journal of Applied and Computational Mechanics, 7(1), 2021, 78-83.
- Ain, Q.T., He, J.H., On two-scale dimension and its applications, Thermal Science, 23, 2019, 1707-1712.
- He, J.H., Na, Q., He, C.H., Solitary waves travelling along an unsmooth boundary, Results in Physics, 24, 2021, 104104.
- Anjum, N., Ain, Q.T., Li, X.X., Two-scale mathematical model for tsunami wave, GEM-International Journal on Geomathematics, 12(1), 2021, DOI: 10.1007/s13137-021-00177-z.
- Liu, X.Y., Liu, Y.P., Wu, Z.W., Optimization of a fractal electrode-level charge transport model, Thermal Science, 25 2021, 2213-2220.
- Tian, D., Ain, Q.T., Anjum, N., Fractal N/MEMS: From pull-in instability to pull-in stability, Fractals, 29(2), 2020, 2150030.
- Tian, D., He, C.H., A fractal micro-electromechanical system and its pull-in stability, Journal of Low Frequency Noise Vibration and Active Control, 2021, DOI: 10.1177/1461348420984041.
- Ain, Q.T., Anjum, N., He, C.H., An analysis of time-fractional heat transfer problem using two-scale approach, GEM-International Journal on Geomathematics, 202, 2021, DOI: 10.1007/s13137-021-00187-x.
- He, J.H., On the height of Taylor cone in electrospinning, Results in Physics, 17, 2020, 103096.
- He, J.H., He, C.H., Sedighi, H.M., Evans model for dynamic economics revised, AIMS Mathematics, 6(9), 2021, 9194–9206.
- Wang, K.J., A new fractional nonlinear singular heat conduction model for the human head considering the effect of febrifuge, European Physical Journal Plus, 135, 2020, DOI: 10.1140/epjp/s13360-020-00891-x.
- Anjum, N., He, C.H., He, J.H., Two-scale fractal theory for the population dynamics, Fractals, 2021, DOI: 10.1142/S0218348X21501826.
- Ain, Q.T., Anjum, N., Din, A., Zeb, A., Djilali, S., Khan, Z.A., On the analysis of Caputo fractional order dynamics of Middle East Lungs Coronavirus (MERS-CoV) model, Alexandria Engineering Journal, 61(7), 2022, 5123-5131.
- Tian, D., He, C.H., He, J.H., Fractal Pull-in Stability Theory for Microelectromechanical Systems, Frontier in Physics, 9, 2021, 145.
|