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Abstract. Microelectromechanical systems (MEMS) is a very vast field and has been identified as lots of potential in tiny 
instruments. Because of their unique and exciting properties such as small sizes, low power consumption, reliability, and their 
capability of batch fabrications, their role in the production of microstructures has gained much importance for researchers and 
industries. The following study includes an overview of current asymptotic approaches and novel innovations which are 
applicable not only to weakly nonlinear equations but also to highly nonlinear equations derived from MEMS models. Moreover, 
the approximate analytical solutions obtained by these asymptotic approaches are valid across the whole solution domain. 
Various limitations of traditional perturbation method and variational iteration method are discussed and different modified 
versions of perturbation approaches and variational theory are provided to overcome these existing flaws. Two-scale idea for 
MEMS technology is also described. Some examples are given to elucidate the effectiveness and convenience of these 
methodologies. 

Keywords: Asymptotic methods, Nonlinear oscillators, Microelectromechanical systems, Amplitude-frequency relationship, 
Periodic solutions, Two-scale vibration. 

1. Introduction 

Microelectromechanical systems (MEMS) is a very vast field and has been identified as lots of potential in tiny instruments [1-
4]. Because of their unique and exciting properties such as small sizes, low power consumption, reliability, and their capability of 
batch fabrications, their role in the production of microstructures has gained much importance for researchers and industries [5-
6]. Pull-in instability and periodic behaviour are two key phenomenon in MEMS dynamics and differential equations can be well 
described these nonlinear aspects. Therefore, it is vital to have a keen familiarity with recently developed methods for exploring 
the solutions of the differential equations. 

Principally, MEMS models are nonlinear, and solving such mathematical models analytically is challenging in most scenarios. 
There are numerous nonlinear equations in the study of MEMS research that do not have analytical solutions [7-10]. Many 
analytical and numerical techniques have been studied due to the limitations of current precise solutions. As a result, these 
nonlinear equations must be solved using different approaches. Over the last few decades, many academics have been working 
on various analytical approaches for addressing nonlinear oscillation of MEMS. The classical approaches for oscillatory theory 
have several flaws for the case of these microstructures [10]. They are ineffective for solving highly nonlinear equations, so 
numerous new approaches have emerged in the open literature to compensate. Moreover, there are several books have appeared 
on the subject of mathematical methods in MEMS problems during the past decade [10-13]. 

The purpose of this article is to provide an overview of recent researches on approximate analytical techniques for nonlinear 
vibrations of MEMS. In the last few years, applications of these approaches have surfaced in open literature. There are too many 
published articles to include them all, but refs [14, 15] may be useful in filling in the gaps in the current overview. Some 
comparisons have been made between the results produced by those techniques and numerical methods to demonstrate the 
efficiency and accuracy of the methods, and they are valid for the entire domain. Some of the ideas were originally presented in 
this review paper, and the majority of the listed references were published within the previous three years, highlighting the most 
recent research frontiers. The basic notion of each technique is provided in this review, followed by some examples that are 
shown and discussed to demonstrate the use of these methods.  
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2. MEMS Models 

MEMS are fascinating new technologies with astonishing mechanical, electrical and optical properties. They consist of fixed 
and movable parts. Upon supplying an actuation force, the moveable part is bent toward the fixed part and a periodic motion is 
produced in the system. Therefore, we can say that MEMS come with spring or spring-like structures, for example, beams. Two 
widely used structures for MEMS technology are clamped-clamped microbeam model [16-20] and lumped-parameter model [7-8, 
21-22].  

2.1 Clamped-clamped microbeam based MEMS 

Suppose a clamped-clamped MEMS with dimensions L , b , h  and ρ  depict length, width, thickness and density of the 

microbeam, respectively,  shown in Figure 1. The deflection of microbeam is based on Newton’s Law and can be modelled 
mathematically by employing Euler-Bernoulli beam theory [23-24] as 

2
4 2 2

4 2 2

0

( , ) 0
2

L
W W ES W W

EI S N dz F z
z L z z

ρ τ
τ

  ∂ ∂ ∂ ∂ + − + − =  ∂ ∂ ∂ ∂  
∫ɶ  (1) 

where z denotes the location at time τ  and ( , )W z τ  symbolizes the deflection of microbeam. Additionally, E  indicates the 
Young’s modulus, S bh=  and 3 12I bh=  are the cross-sectional area and moment of inertia about Y  axis respectively. Nɶ  and 

( , )F z τ  correspondingly shown the axial load and actuating force between microbeam and its substrate. If we suppose the van der 
Waals force for sensing purpose between the nanobeam and substrate [25]: 

3
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where kG  indicates the Hamaker constant [25]. The boundary conditions will be 
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For simplicity, the nondimensional variables can be chosen as 
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where 
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Eq. (1) will get the form as: 
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where nondimensional parameters N , α  and λ  represent axial load, aspect ratio and van der Waals force and can be defined 
as: 
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Also the nondimensional form of boundary conditions can be expresses as 

(0, ) (1, )

(0, ) (1, ) 0, 0
w w

w t w t
τ τ

η η

∂ ∂
= = = =

∂ ∂
 (8) 

The governing equation developed here represents a general form for the oscillatory behaviour of the nanobeam. To find out 
the nonlinear ordinary differential equation of the system, we apply the Galerkin method. Hence it is possible to write the 
deflection function ( , )w tη  as the combination of two functions 

( , ) ( ) ( )w t z tη ξ η=  (9) 

where ( )z t  is the function of time and ( )ξ η  is the trail function as 

2 2( ) 16 (1 )ξ η η η= −  (10) 

For the governing equation, we substitute Eq. (9) in Eq. (6), multiplied by 3( )(1 )wξ η −  and then integrate over dimensionless 
domain results 
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(a) Model of clamped-clamped microbeam induced by van der Waals forces 
 

 

(b) Change of deflection in microbeam 
 

Fig. 1. Clamped-clamped microbeam based MEMS 

 

where prime ( )′•  represents the partial differentiation w.r.t coordinate variable η  and over dot ( )•ɺ  represents the differentiation 
w.r.t time variable t . Eq. (11) can be rewritten as 

( )2 3 2 3 4 5 6
0 1 2 3 4 5 6 7 8 9 10 0h h z h z h z z h h z h z h z h z h z h z+ + + + + + + + + + =ɺɺ  (12) 

where the coefficients ( 0,1, ,10)jh j = … can be found in Appendix A. Eq. (12) is a nonlinear ordinary differential equation of 
second order under the following initial conditions 

(0) , (0) 0z G z′= =  (13) 

If actuation is based on electrostatic force [25] given by 

2
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 (14) 

where ν  denotes the applied voltage, νε  is dielectric constant with value usually 18.85PFm−  and d  is the initial gap between 
substrate and beam. Then by applying the similar procedure as applied for the case of van der Waals force, we have the equation 
for MEMS oscillator actuated electrically expressed by 

( )2 4 3 5 7
0 1 2 3 4 5 6 0c c z c z z c z c z c z c z+ + + + + + =ɺɺ  (15) 

where the coefficients ( 0,1, ,10)jh j = …  can be found in Appendix B. 

2.2 Lumped-parameter MEMS 

Our system is based on the magnetic actuation [26-28] and the force F  between two straight wires can be expressed by 
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2

I I
F

R

µ

π
=  (16) 

where 7 2
0 4 10 NAµ π − −= ×  is the constant, 1I  and 2I  are the currents through the wires separated by distance R . We suppose 

the deflection of a current-carrying wire of length L  and mass m  shown in Figure 2. The motion of the moveable part is 
restrained by linear elastic springs. The dynamic differential equation describing the motion of the wire as a point mass can be 
derived using Eq. (1) and theory of modelling of elastic Euler beam as 
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where 0 1 2 / 2F I I Rµ π=  is the restoring force of spring and 0 1 2 / 2F I I Rµ π=  is the force of attraction between the conductors due to 
the magnetic fields produced by 1I  and 2I . The model in dimensionless form is 
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We propose the initial conditions zero 

(0) 0, (0) 0z z= =ɺ  (19) 
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Fig. 2. MEMS with a current carrying wire 

We also prescribe the current in both wires are unidirectional i.e., 0κ ≥ . We can describe Eq. (18) as a system of first order 
differential equations 

1

z v

v z
z

κ

=

= −
−

ɺ

ɺ
 (20) 

and the conditions will become 

(0) 0, (0) 0z v= =  (21) 

3. Variational Iteration Method  

Nonlinear phenomena are important in applied mechanics and physics. We can help writers understand the given process 
better by solving nonlinear equations. However, it is not easy for us to find an exact or at least an analytic solution to these 
problems. There has been significant progress in the numerical analysis and obtaining exact solutions of nonlinear equations in 
recent decades. There are spectrum of methods for solving nonlinear differential equations. The variational iteration method 
(VIM) was first proposed by He [29] and is used to obtain approximate analytical solutions for nonlinear problems. In most 
situations, just one iteration is required in VIM to achieve high accuracy of the answer, and no linearization, discretization, or 
substantial computing labor is required. The VIM can be used to solve linear and nonlinear differential equations, both exactly 
and approximately [30-35]. We looked at three instances to demonstrate how the VIM may be used. 

3.1 Basic idea of VIM 

The goal of VIM is to create the appropriate correction functional with a Lagrange multiplier that is optimally predicted by 
theory of variations. Consider the following differential equation in a broad sense to grasp the basic idea of VIM 

( )Lz Nz h t+ =  (22) 

where L  and N  are respectively the linear and the nonlinear operators, and ( )h t  is inhomogeneous term. According to 
standard VIM, the correction iteration for Eq. (22) can be depicted as 

[ ]1

0

( ) ( ) ( ) ( ) ( ) ( ) , 0, 1, 2,
t

m m m mz t z t Lz Nz h d mλ ψ ψ ψ ψ ψ+ = + + + =∫ ……  (23) 

where λ  is the Lagrange multiplier could be a fixed or variable parameter of t  identified optimally via variational theory and 
by using the restricted variation mz  which means 0mzδ = . mz  represents the kth approximate function, whereas any selective 
function can be objected as zeroth-approximation mz  for VIM, and based on this initial guess, the solution is structured as 

( ) lim ( )m
m

z t z t
→∞

=  (24) 

3.2 Laplace transform based VIM 

Laplace transformation is the well-known integral transform accessible to all students and can solve linear ordinary, partial, 
and integral equations in the time domain. To solve nonlinear problems quickly, many researchers paired this transformation 
with the VIM [36-39]. Now we'll look at a different method for determining the Lagrange multiplier. The coupling of the VIM with 
the Laplace transform has two primary goals in this section. Find the amplitude-frequency relationship of a nonlinear oscillatory 
system by first identifying the Lagrange multiplier. 

3.2.1 Analysis of the Laplace-based VIM 

Let a general oscillatory system can be represented as: 

( ) ( ) 0z t h z+ =ɺɺ  (25) 
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(0) , (0) 0z G z= =ɺ  (26) 

We can express Eq. (25) as 

2 ( ) 0z z g z+Ω + =ɺɺ  (27) 

where 2( ) ( )g z h z z= −Ω . According to standard VIM [29], we can construct the correction functional for Eq. (27) as 

2
1

0

( ) ( ) ( ) ( ) ( ) ( ) , 0, 1, 2,
t

m m m m mz t z t z z g d mλ ψ ψ ψ ψ ψ+
 = + +Ω + =  ∫ ɺɺ ɶ ……  (28) 

where λ  is the Lagrange multiplier, mz  represents the kth approximate solution, and mgɶ  is a restricted variation, i.e., 0mgδ =ɶ . 

Here we discussed an alternative way to identify the Lagrange multiplier which is the backbone of the VIM. Generally we choose 
the multiplier as 

( )tλ λ ψ= −   

The integral of Eq. (28) is basically the convolution; thus we can employ Laplace transformation easily. Utilizing the properties 
of the Laplace transform, the correction function will be changed in the following way 

[ ] [ ] 2
1

0

( ) ( ) ( ) ( ) ( ) ) , 0, 1, 2,
t

m m m m mL z t L z t L t z z g z d mλ ψ ψ ψ ψ+

 
  = + − +Ω + =   
  
∫ ɺɺ ɶ ……  (29) 
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(30) 

To find λ  optimally, we firstly take variation with respect to nz  and then by employing the stationary condition as 
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or 

1
( ) sint tλ =− Ω

Ω
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Using Eq. (29), the formula gets the form 
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or 
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 = − Ω +Ω +  Ω
ɺɺ ɶ  (34) 

By applying the properties of Laplace transformation, we can achieve the higher-order solution by using the formula in Eq. (34). 

3.2.2 Example 

Now we apply LVIM to find the approximate solution of Eq. (12). For this we can depict Eq. (12) in the following manner 

( )2 3 2 3 4 5 6
1 2 3 4 5 6 7 8 9 101 0d z d z d z z d d z d z d z d z d z d z+ + + + + + + + + + =ɺɺ  (35) 

where 0/j jd h h=  for 1,2, ,10j = ⋯ . Let us rewrite Eq. (35) as 

2 ( ) 0z z g z+Ω + =ɺɺ  (36) 

where ( ) ( )2 3 2 2 3 4 5 6
1 2 3 4 5 6 7 8 9 10( )g z d z d z d z z d d z d z d z d z d z d z= + + + + −Ω + + + + +ɺɺ . The iterative formula for Eq. (36) using LVIM can 

be written as 
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1
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Assuming the initial solution 

0( ) cosz t G t= Ω  (38) 

After simple calculations, we have 

[ ] [ ] [ ] [ ]1 0 1 2 3 4 5 6
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( ) cos sin cos cos2 cos3 cos4 cos5 cos6L z t L G t L t L t t t t t t= Ω − Ω Θ +Θ Ω +Θ Ω +Θ Ω +Θ Ω +Θ Ω +Θ Ω

Ω
 (39) 

where the expression of coefficients 0 1 7, , ,Θ Θ Θ…  can be depicted in Appendix B.  

The following formula helps us to solve Eq. (39) 
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No secular-term [40-42] in the next step requires that coefficient of sint tΩ  equal to zero, thus 
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and thus the approximate analytic solution of the Eq. (12) is 
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The validity of the proposed method is discussed through a comparison of the results obtained by LVIM with those got 
numerically using RK4 and a comparison of the results achieved by LVIM with those gained using SRHBM [43]. Figure 3 illustrates 
the effectiveness of the proposed method. It represents the deflection obtained analytically from numerical solution for the 
motion of nanobeams induced by van der Waals attraction. We have also shown the variation of error for the above-mentioned 
system in the corresponding bottom panels. 

3.3 LVIM for zero initial conditions 

Several MEMS like Eq. (18) come with zero initial conditions. Therefore, it is necessary to be familiar with the strategy to solve 
MEMS models with zero initial conditions. LVIM has the tendency to do this and equally applicable for the said case. The following 
subsection focuses on using LVIM, which was explained in Section 3.2.1, to examine the dynamic behaviour of the nonlinear 
MEMS models with zero initial conditions [44]. 

3.3.1 Basic Methodology 

Consider the oscillatory system as 

2

2

( )
( ) 0

d z t
f z

dt
+ =  (46) 

0

(0) 0, 0
t

dz
z

dt =

= =  (47) 

We can rewrite the iterative formula from Eq. (34) 
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∫ ɶ  (48) 
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Fig. 3. Comparison of deflection and error in deflection between LVIM and SRHBM with RK4 

 

Consider the following integration by parts 
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The following integral can be obtained using Eq. (49), as follows: 

2
2

2
00

( ) ( )
sin ( ) ( ) sin ( ) (0)cos

t

m m
m m m

t

d z dz t
t z d t z t z t

d dt

ψ
ψ ψ ψ

ψ =

 
 Ω − +Ω =− Ω +Ω −Ω Ω  

∫  (50) 

Eq. (48), after employing Eq. (50), has the form 

[ ] [ ]1

0 0

( )1
( ) sin (0)cos sin ( ) ( )

t

m
m m m

t

dz t
L u t L t z t t g z d

dt
ψ ψ+

=

 
 =− − Ω −Ω Ω + Ω − Ω   

∫ ɶ  (51) 

After employing zero initial conditions, the correction functional reduced further as 

[ ] [ ]1

0

1
( ) sin ( ) ( )

t

m mL z t L t g z dψ ψ+

 
 = − Ω − Ω   
∫ ɶ  (52a) 

or, we have 

[ ] [ ] [ ]1

1
( ) sin ( ( ))m mL z t L t L g z t+ =− Ω

Ω
 (52b) 

3.3.2 Example 

Now we employ LVIM for the nonlinear Eq. (18) subject to the zero initial conditions. From the truncated Taylor series we can 
discretize the rational term as 

1 2 3 4(1 ) 1 ..... 1 1z z z z z z−+ = − + − + − − < <  (53) 
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Thus Eq. (18) will achieve the following form 

2
2 3

2
(1 ) 0

d z
z z z z

dt
κ+ − + + + =  (54) 

Eq. (54) can also be rewrite in the following way 

2
2

2
( ) 0

d z
z g z

dt
+Ω + =  (55) 

where  

2 2 3( ) (1 ) (1 )g z z z zκ κ= − −Ω − + +  (56) 

The iteration formula for Eq. (54) can be attained by using Eq. (52) 

[ ] [ ] 2 2 3
1

1
( ) sin (1 ) (1 )m m m mL z t L t L z z zκ κ+

 = − Ω − −Ω − + +  Ω
 (57) 

Due to the zero initial conditions, let 0( ) 0z t = . Thus, Eq. (57) will become 

[ ] [ ] [ ]1

1
( ) sinL z t L t L κ= Ω

Ω
  

 After utilizing the properties of Laplace transformation, we have 

1 2
( ) (1 cos )z t t

κ
= − Ω

Ω
 (58) 

For higher-order solution, substitute Eq. (58) into Eq. (57) 

[ ] [ ]
2 3

2
2 2 2 2

1
( ) sin (1 cos )(1 ) 1 (1 cos ) (1 cos )L z t L t L t t t

κ κ κ
κ κ

         = − Ω − Ω − −Ω − + − Ω + − Ω           Ω Ω Ω Ω   
  

Simple calculations yield 

[ ] [ ]
2 3 4 4

3
2 2 2 4 6 6

3 4 2 3 4
2

4 6 2 2 4 6

1
( ) sin 2 cos

3 2 15
cos cos

4

L z t L t L t

t t

κ κ κ κ κ
κ

κ κ κ κ κ κ
κ

  =− Ω − − − − + Ω  Ω Ω Ω Ω Ω Ω 
       − + Ω + − + + + + Ω      Ω Ω Ω Ω Ω Ω    

 

[ ] [ ]
2 3 4 4

2 2 2 4 6 6

3 4 2 3 4

4 6 2 2 4 6

1 3 5
( ) sin 2 cos3

2 2 4

3 2 15
cos2 cos

2 2 4

L z t L t L t

t t

κ κ κ κ κ
κ

κ κ κ κ κ κ
κ

  =− Ω − − − − + Ω  Ω Ω Ω Ω Ω Ω 
       − + Ω + − + + + + Ω      Ω Ω Ω Ω Ω Ω    

 

(59) 

Using formula in Eq. (40) helps to solve above Eq. (59) and we obtain the following result 

2 3 4 4

2 2 2 4 6 6

3 4 2 3 4

4 6 2 2 4 6

1 3 5 1 1
( ) 2 (1 cos ) (cos cos3 )

2 2 4 8

3 1 2 15 1
(cos cos2 ) sin

2 2 3 4 2

z t t t t

t t t t

κ κ κ κ κ
κ

κ κ κ κ κ κ
κ

  =− − − − − − Ω + Ω − Ω  Ω Ω Ω Ω Ω Ω Ω Ω 
       − + Ω − Ω + − + + + + Ω      Ω Ω Ω Ω Ω Ω Ω    

 (60) 

For periodic solution, secular term must be zero. i.e., 

6 4 2 2 34 (4 4) 8 15 0κ κ κΩ + − Ω + Ω + =  (61) 

The approximate second-order solution is found as 

2 3 4

2 2 2 4 6

4 3 4

6 4 6

1 3 5 1
( ) 2 (1 cos )

2 2

1 3 1
(cos cos3 ) (cos cos2 )

4 8 2 2 3

z t t

t t t t

κ κ κ κ
κ

κ κ κ

  =− − − − − − Ω  Ω Ω Ω Ω Ω Ω 
  + Ω − Ω − + Ω − Ω  Ω Ω Ω Ω Ω  

 

( )

( ) ( )

4
4 3 2 4 2 4 6

2 8 8

4 3 2 4 3 2 4 2 4 6
8 8

1
( ) 195 128 96 96 192 cos cos3

96 32
1 1

3 cos2 5 3 2 2 4
6 2

z t t t

t

κ
κ κ κ κ κ

κ κ κ κ κ κ κ

= − − Ω + Ω − Ω − Ω Ω + Ω
Ω Ω

− + Ω Ω + + Ω − Ω + Ω + Ω
Ω Ω

 

(62) 

Eq. (62) depicts the second-order approximate solution of MEMS switch model. The beauty of this approach is not only provide 
approximate analytic solution but also gives the threshold value of dynamic pull-in. When we solve Eq. (61) for angular frequency 
by any method for solving cubic equation, we have 
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( ) ( )
1 3 1 3

2 3 2 3 1

3
Q Q P Q Q P

κ−
Ω= + + + − + −  (63) 

where  

2 2 31 2 5 1 2 341
,

9 9 9 27 9 9 216
P Q

κ κ κ κ κ
=− + + = − − −   

The discriminant of Eq. (61) yields the pull-in threshold value that is 0.20498371...κ =  with the percentage error is less than 
1%. This threshold value can differentiate between the periodic solution and the pull-in solution. 

4. Homotopy Perturbation Method 

Scientists and engineers have been committed to the use of the homotopy perturbation approach in nonlinear issues until 
recently, because this method continually deforms a simple problem that is easy to solve into the complex problem under 
investigation. The homotopy perturbation method (HPM) was proposed by He in 1999 [45]. The following papers [46-48] provide a 
basic overview and interpretation of the approach. HPM is capable of solving a wide range of nonlinear problems [49-55], with 
approximations quickly convergent to correct solutions. For the both weakly and highly nonlinear problems, this approach is the 
most efficient and convenient. 

4.1 Basic idea of HPM 

The homotopy perturbation technique (HPM) [51] is a combination of the perturbation method and the homotopy method 
that eliminates the shortcomings of classic perturbation methods. Considering a nonlinear differential equation to show the 
basic concept of HPM [52] as: 

( ) ( ) 0,D z g v v− = ∈ Ψ  (64) 

with boundary condition 

, 0,
z

G z v
η

 ∂  = ∈ Λ   ∂ 
 (65) 

where D  is a general differential operator, G  is a boundary operator, ( )g v  is a known analytical function and Λ  is the 
boundary of the domain Ψ . The differential operator D  can be split into two parts: linear L  and nonlinear N . Therefore, Eq. 
(64) can be written as: 

( ) ( ) ( ) 0L z N z g v+ − =  (66) 

We generate the following homotopy using the HPM 

0( , ) (1 )[ ( ) ( )] [ ( ) ( )] 0, [0,1]H q q L L q D g v qξ ξ ξ ξ= − − + − = ∈  (67) 

where q  is the perturbation parameter and 0ξ  is a starting guess of Eq. (64) which fulfills the given conditions generally. Clearly, 

from Eq. (67) 

0( ,0) ( ) ( ) 0H L Lξ ξ ξ= − =  (68) 

( ,1) ( ) ( ) 0H A g vξ ξ= − =  (69) 

The embedding parameter q  is used as an expanding parameter in HPM [51] and the key hypothesis is that Eq. (67)'s solution 

may be expressed as a power series in q : 

2 3 4
0 1 2 3 4q q q qξ ξ ξ ξ ξ ξ= + + + + +⋯  (70) 

Setting 1q=  gives the approximate analytic solution of Eq. (67) as 

0 1 2 3 4
1

lim
q

u ξ ξ ξ ξ ξ ξ
→

= = + + + + +⋯  (71) 

The series in Eq. (70) may converge in the whole solution domain as q  tends to unit. 

4.2 Laplace transform based HPM 

All students are familiar with the Laplace transform, although it is only useful for linear problems. The HPM and the Laplace 
transform were initially combined by Gondal and Khan [56], and the technique is now known as the He-Laplace method [57-60]. 
The most notable aspect of this method is that it just takes one iteration to get great precision in the solution. The small number 
of perturbation terms is enough for obtaining a reasonably accurate solution to a problem. We combine this approach with the 
Laplace transformation to obtain the solution to the oscillation problem using only couple of perturbation terms [58]. Another 
superiority of this approach over the traditional HPM [45] is that we discretize the nonlinear term with the help of He’s 
polynomials [61], and the solution process becomes easy. 

4.2.1 Analysis of the method 

Consider the following equation for a general nonlinear oscillator: 

( ) ( ) ( )z t f z h t+ =ɺɺ  (72) 
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with initial conditions expressed in Eq. (26). We can depict Eq. (72) as 

2 ( ) ( )z z g z h tω+ + =ɺɺ  (73) 

where 2( ) ( )g z f z z= −Ω . One can rewrite Eq. (73) as 

2 ( ) ( ) ( )z z Rg z Ng z h t+Ω + + =ɺɺ  (74) 

where ( )Rg z  and ( )Ng z are respectively the linear and the nonlinear part of ( )g z . Ω  is the frequency of the oscillation and ( )h t  
is an inhomogeneous term. Apply the Laplace transformation to each side of the Eq. (74), we have 

[ ] [ ]2 2( ) ( ) ( ) ( ) ( )s z s Gs z s L Rg z Ng z L h t− +Ω + + =  

[ ]2 2 2 2

1
( ) ( ) ( )

Gs
z s L Rg z Ng z

s s
= − +

+Ω +Ω
 

(75) 

 Inverse Laplace transform of Eq. (75) yields 

[ ] [ ]1 1
2 2 2 2

1 1
( ) cos ( ) ( ) ( )z t G t L L Rg z Ng z L L h t

s s
− −   

   = Ω − + +
   +Ω +Ω   

 (76) 

According to standard HPM [45] the solution z  can be expanded 

0

( ) m
m

m

z t p z
∞

=

=∑  (77a) 

and Eq. (76) has the form 

[ ] [ ]1 1

2 2 2 2
0

1 1
cos ( ) ( ) ( )m

m
m

p z G t p L L Rg z Ng z L L h t
s s

∞
− −

=

        = Ω − + −      +Ω +Ω    
∑  (77b) 

where [0,1]p∈  is an embedding parameter. Also, the nonlinear term ( )Ng z can be written as 

0

( ) ( )m
m

m

Ng z p H z
∞

=

=∑  (78) 

where ( )mH z  are the He’s polynomials [61] and can be generated by the recursive formula 

0 1
0 0

1
( , , , ) ( ) , 0,1,2,

!

m
i

m m im
i p

H z z z Ng p z t m
m p

∞

= =

  ∂  = =  ∂   
∑… …  (79) 

The solution can be stated as by inserting Eq. (78) for Eq. (77) 

[ ] [ ]{ } [ ]1 1

2 2 2 2
0

1 1
cos ( ) ( )m

m m
m

p z G t p L L Rg z L H L L h t
s s

∞
− −

=

        = Ω − + −      +Ω +Ω    
∑  (80) 

When the coefficients of like powers of p  are compared, we have 

0
0: cosp z G t= Ω  (81) 

[ ] [ ]{ } [ ]1 1 1
1 0 02 2 2 2

1 1
: ( ) ( )p z L L Rg z L H L L h t

s s
− −   

   = − + +
   +Ω +Ω   

 (82) 

[ ] [ ]{ } [ ]2 1 1
2 1 12 2 2 2

1 1
: ( ) ( )p z L L Rg z L H L L h t

s s
− −   

   =− + +
   +Ω +Ω   

 (83) 

⋮  

As 1p → , we can write the solution approximately is 

0 1 2
1

0

( ) lim ( ) ( ) ( ) ( )n
n

p
n

z t p z t z t z t z t
∞

→
=

= = + + +∑ ⋯  (84) 

Although we can use 0 1 2, , ,z z z …  to find the approximate solution of the oscillatory system but for simplicity, we use only Eq. 

(101) and Eq. (102). In this scenario, Eq. (102) will express in its simple form as 

[ ] [ ]1 1
1 02 2 2 2

1 1
( ) ( )z L L g z L L h t

s s
− −   

   = − +
   +Ω +Ω   

 (85) 

From the above Eq. (85), we can obtain a relationship between Ω  and G  by means of secular term and then use this relation 
in Eq. (84) to get a fairly accurate solution of Eq. (72). From Eq. (84), it can be observed that the approximate solution ( )z t  is not 
depending on p  (expanding parameter) or some other perturbative factor. 
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4.2.2 Example 

To apply HPM on the objective model Eq. (12), consider Eq. (14) 

2 ( ) 0z z g z+Ω + =ɺɺ  (86) 

where   

( ) ( )2 3 2 2 3 4 5 6
1 2 3 4 5 6 7 8 9 10( ) z+g z d z d z d z z d d d z d z d z d z d z= + + + + −Ω + + + +ɺɺ  (87) 

Employing the Laplace transformation to both side of Eq. (86), we yield 

( ) ( )2 2 2 3 2 2 3 4 5 6
1 2 3 4 5 6 7 8 9 10( ) ( ) 0s z s Gs z s L d z d z d z z d d z d z d z d z d z d z − +Ω + + + + + −Ω + + + + + =  

ɺɺ  

( ) ( )2 3 2 2 3 4 5 6
1 2 3 4 5 6 7 8 9 102 2 2 2

1
( )

Gs
z s L d z d z d z z d d z d z d z d z d z d z

s s
 = − + + + + −Ω + + + + +  +Ω +Ω

ɺɺ  

 

Using the inverse Laplace transformation on both side of the above equation, we have 

( ) ( )1 2 3 2 2 3 4 5 6
1 2 3 4 5 6 7 8 9 102 2

1
( ) cosz t G t L L d z d z d z z d d z d z d z d z d z d z

s
−    = Ω − + + + + −Ω + + + + +   +Ω 

ɺɺ  (88) 

According to the HPM [45], the solution can be expressed 

0

( ) m
m

m

z t p z
∞

=

=∑   

and Eq. (88) has the form 

1 2
52 2

0 0 0

1
cos ( )m m m

m m m
m m m

p z G t p L L d p z p H
s

∞ ∞ ∞
−

= = =

       = Ω − −Ω +     +Ω   
∑ ∑ ∑  (89) 

where mH  denotes the He’s polynomials [61] to discretize the nonlinear terms. When the coefficients of like powers of p  are 

compared, we yield 

0
0: cosp z G t= Ω  (90) 

[ ]

[ ]

1 1 2
1 5 0 02 2

1
02 2

1
0 1 2 3 4 5 62 2

1
: ( )

1
( )

1
cos cos2 cos3 cos4 cos5 cos6

p z L L d z H
s

L L g z
s

L L t t t t t t
s

−

−

−

   = − −Ω +   +Ω 
 
 =−
 +Ω 
 
 =− Θ +Θ Ω +Θ Ω +Θ Ω +Θ Ω +Θ Ω +Θ Ω
 +Ω 

 (91) 

where the coefficients ( 0,1, ,6)i iΘ = ⋯  are the same as that expressed in equations A1-A7. Upon solving Eq. (91) with Laplace and 
inverse Laplace operators, we have 

( ) ( ) ( ) ( )

( ) ( )

1 0 31 2 4
1 2 2 2 2

5 6
2 2

: cos 1 sin cos cos2 cos cos3 cos cos4
2 3 8 15

cos cos5 cos cos6
24 35

p z t t t t t t t t t

t t t t

Θ ΘΘ Θ Θ
= Ω − − Ω − Ω − Ω − Ω − Ω − Ω − Ω

Ω Ω Ω Ω Ω
Θ Θ

− Ω − Ω − Ω − Ω
Ω Ω

 (92) 

No secular-term [40-42] demands that coefficient of sint tΩ  must equals to zero, thus 

1 0
2

Θ
=

Ω
 

52 3
2 92 7

5

53 3
1 0

4 4 8

d Gd G d G
G Gd

  − Ω + + + + =   
 

 

As a result, the following is the outcome 

2 4
5 7 9

2
2

8 6 5

8 6

d d G d G

d G

+ +
Ω=

+
 (93) 

and thus 

1
1 0 1 2 3 4 5 6: cos cos2 cos3 cos4 cos5 cos6p z a a t a t a t a t a t a t= + Ω + Ω + Ω + Ω + Ω + Ω  (94) 

where  

0 3 5 6 3 5 62 4 2 4
0 1 0 2 3 4 5 62 2 2 2 2 2 2

1
, , , , , ,

3 8 15 24 35 3 8 15 24 35
a a a a a a a

 Θ Θ Θ Θ Θ Θ ΘΘ Θ Θ Θ=− = Θ − − − − − = = = = =  Ω Ω Ω Ω Ω Ω Ω
  

 



A Brief Review on the Asymptotic Methods for the Periodic Behaviour of Microelectromechanical Systems 1131 
 

Journal of Applied and Computational Mechanics, Vol. 8, No. 3, (2022), 1120-1140 

As a result, the approximate first-order analytic solution of Eq. (12) can be written as 

( )0 1 2 3 4 5 6cos cos2 cos3 cos4 cos5 cos6HPLTMz a a G t a t a t a t a t a t= + + Ω + Ω + Ω + Ω + Ω + Ω  (95) 

4.3 Higher-order HPM 

Analytic approaches have become a helpful tool for discovering hidden phenomena in diverse nonlinear issues as a result of 
the rapid development of nonlinear sciences. The HPM is the most widely utilized technology, having been proposed in the late 
1990s [45-48] and having progressed to a mature state. However, due to the advancement of other analytical techniques, the 
procedure still has room for improvement. This section will describe the enhanced perturbation approach, which was proposed in 
2018[62]], as the most recent advancement in the conventional perturbation method. This improvement is particularly well suited 
to oscillatory situations involving forced terms. This latest modifications in HPM used in various applications including packing 
system technology [63-65]. 

4.3.1 Analysis of the method 

To understand the basic idea of the recent modification, consider the forced linear oscillator 

2 cosz z t′′ +Ω = Ω  (96) 

In operator form, Eq. (96) can be written as 

( )2 2 cosD z t+Ω = Ω  (97) 

where D = d/dt is an operator. The annihilator operator 2 2D +Ω  is used in the enhanced perturbation method. Therefore, Eq. (97) 
will get the form: 

( )( )2 2 2 2 2 42 0D D z z z z′′′′ ′′+Ω +Ω = + Ω +Ω =  (98) 

This method can be used to tackle a wide range of nonlinear systems. It works best in nonlinear models with a forced term, 
although it can also be used in applications without forced term. Eq. (98) becomes a higher-order equation after some acceptable 
substitutions, and it may be expressed in linear and nonlinear operator form as: 

0Lz Nz+ =  (99) 

where L  and N  are supposed to be linear and nonlinear operators, respectively. We employ the enhanced perturbation method 
with parameter expansion technology to solve the oscillatory equation. Therefore, the solution and the coefficient of linear term 

(say clt ) can be depicted as: 

2
0 1 2z z pz p z= + + +⋯⋯  (100) 

4 2
1 2clt a p a p=Ω + + +⋯⋯  (101) 

where constants 4Ω  and ia  can be identified by means of no secular term and p  is an embedding parameter with value [0,1] . 
Finally, the approximate analytic solution of Eq. (99) can be obtained in series form 

0 1 2z z z z= + + +⋯⋯  (102) 

  The series in Eq. (102) may converge in the whole solution domain as p  tends to unit. 

4.3.2 Example 

To apply higher-order HPM on Eq. (15), we can represent it in the following way 

( )2 4 3 5 7
1 2 3 4 5 61 0b z b z z b z b z b z b z+ + + + + + =ɺɺ  (103) 

where 0/j jb c c=  for 0,1,2,...,6j = . We express Eq. (103) in an operator form as 

( )2 3 2 4 6
1 2 3 4 5 61 0D b z b z b b z b z b z z + + + + + + =    (104) 

According to the technique described in above section, we apply the operator 2 1D +  to Eq. (104) 

( ) ( )2 2 3 2 4 6
1 2 3 4 5 61 1 0D D b z b z b b z b z b z z + + + + + + + =    (105) 

The higher-order differential equation of Eq. (104) can be expressed as 

( ) ( ) ( )
( ) ( )

2 3 5 7 2 4 2 2 3 2 4 5 2 6
3 3 4 3 5 3 6 1 3 2 3 4 5 6

2 2 2 2 2 3 2 3 4
1 2

6 3 20 5 42 7

2 2 4 12 4 8 0

z b z b b z b b z b b z b b z z b b z z b zz z z b z z z z b z z z z

b z z zz zz z z z b z z z z z z z z z z

λ λ λ′′′′ ′′ ′′ ′ ′′ ′ ′′ ′ ′′− − − − − − + + + + + +

′ ′′ ′′ ′ ′′′ ′′′′ ′ ′′ ′′ ′ ′′′ ′′′′+ + + + + + + + =
 (106) 

The linear part becomes now 

2
3 0z b z′′′′ − =  (107) 

which denotes a linear oscillator. For Eq. (106), the homotopy equation can express as 
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( ) ( )
( ) ( ) ( )

2 3 5 7 2 4 2 2 3 2 4
3 3 4 3 5 3 6 1 3 2 3 4 5

5 2 6 2 2 2 2 2 3 2 3 4
6 1 2

6 3 20 5

42 7 2 2 4 12 4 8 0

z b z p b b z b b z b b z b b z z b b z z b zz z z b z z z z

b z z z z b z z zz zz z z z b z z z z z z z z z z

λ λ λ′′′′ ′′ ′′ ′ ′′ ′ ′′− + − − − − − + + + +
′ ′′ ′ ′′ ′′ ′ ′′′ ′′′′ ′ ′′ ′′ ′ ′′′ ′′′′+ + + + + + + + + + =

 (108) 

where the solution and the linear term coefficient can be expanded as 

2
0 1 2z z pz p z= + + +⋯⋯  (109) 

2 4 2
3 1 2b p p=Ω + Ω + Ω +⋯⋯  (110) 

where 4Ω  and iΩ  are constants  and can be found with the help of no secular term. Applying Eqs. (109) and (110) into Eq. (108) 

and continuing as that by the standard perturbation method, we have 

4
0 0 0z z′′′′−Ω =  0 0(0) , (0) 0z A z′= =  (111) 

( ) ( )
( ) ( )

4 3 5 7 2 4 2 2 3 2 4
1 1 1 0 3 4 0 3 5 0 3 6 0 1 3 0 0 2 3 0 0 4 0 0 0 0 5 0 0 0 0

5 2 6 2 2 2 2 2 3 2 3
6 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0

6 3 20 5

42 7 2 4 2 12 4 8

z z z b b z b b z b b z b b z z b b z z b z z z z b z z z z

b z z z z b z z z z z z z z z b z z z z z z

′′′′ ′′ ′′ ′ ′′ ′ ′′−Ω −Ω − − − − − + + + +

′ ′′ ′ ′′ ′ ′′′ ′′′′ ′′ ′ ′′ ′′ ′+ + + + + + + + +( )4
0 0 0 0 0z z z z′′′ ′′′′+ =

 (112) 

We can use Eq. (13) to get a rough estimate of the initial solution 

0 cosz A t= Ω  (113) 

 After using the initial solution, Eq. (102) will have the form 

4 3 3 5 5 7 7 3 2 3 5 2 5
1 1 1 3 4 3 5 3 6 1 3 2 3

3 2 3 2 3 5 2 3 5 2 5 7 2 5
4 5 6

cos cos cos cos cos cos

6 cos 9 cos 20 cos 25 cos 42 cos

z z G t b b G t b b G t b b G t b b G t b b G t

b G t G t b G t G t b G

         ′′′′ −Ω − Ω Ω − Ω − Ω − Ω − − Ω Ω − − Ω Ω                  
   + Ω Ω − Ω Ω + Ω Ω − Ω Ω + Ω Ω      

7 2 7

3 4 3 4 3 5 4 3 5 4 5
1 2

49 cos

6 cos 9 cos 20 cos 25 cos 0

t G t

b G t G t b G t G t

 − Ω Ω  
   + − Ω Ω + Ω Ω + − Ω Ω + Ω Ω =      

 (114) 

After simple calculation, Eq. (114) can be written 

4
1 1 1 2 3 4cos cos3 cos5 cos7 0z z t t t t′′′′ −Ω +Θ Ω +Θ Ω +Θ Ω +Θ Ω =  (115) 

where 

3 5 7 3 2 5 2 7 2 3 2 5 2 3 4 5 43 4 3 5 3 6 5 64 1 2 1 2
1 1

3 5 35 5 353 3 5 3 5

4 8 64 4 8 64 4 8 4 8

b b b b b b b bb b b b b
G G G G G G G G G G Gλ λΘ =− Ω − − − − Ω − Ω − Ω + Ω + Ω + Ω + Ω  (116) 

3 5 7 3 2 5 2 7 2 3 2 5 2 3 4 5 43 4 3 5 3 6 5 64 1 2 1 2
2

5 21 45 1899 5 9 45

4 16 64 4 16 64 4 16 4 16

b b b b b b b bb b b b b
G G G G G G G G G Gλ λΘ =− − − − Ω − Ω − Ω + Ω + Ω + Ω + Ω  (117) 

5 7 5 2 7 2 5 2 5 43 5 3 6 5 6 2 2
3

7 25 175 25

16 64 16 64 16 16

b b b b b b b b
G G G G G GλΘ =− − − Ω − Ω + Ω + Ω  (118) 

7 7 23 6 6
4

49

64 64

b b b
G GΘ =− − Ω  (119) 

Requirement of no secular term needs 

3 5 7 3 2 5 2 7 2 3 2 5 2 3 4 5 43 4 3 5 3 6 5 64 1 2 1 2
1

3 5 35 5 353 3 5 3 5
0

4 8 64 4 8 64 4 8 4 8

b b b b b b b bb b b b b
G G G G G G G G G G Gλ λ− Ω − − − − Ω − Ω − Ω + Ω + Ω + Ω + Ω =  (120) 

If obtaining the first-order solution is sufficient, then Eq. (110) yields 

2 4
1 λΩ = −Ω  (121) 

Solving Ω  from Eqs. (120) and (121) we have 

2 4 6
3 4 5 6

2 4
1 2

3 5 35

4 8 64
3 5

1
4 8

b b G b G b G

b G b G

+ + +
Ω=

+ +
 (122) 

and the corresponding approximate analytic solution is 

2 4 6
3 4 5 6

2 4
0 1 2

64 48 40 35
( ) cos

64 48 40

c c G c G c G
z t G t

c c G c G

 + + + =   + +  
 (123) 



A Brief Review on the Asymptotic Methods for the Periodic Behaviour of Microelectromechanical Systems 1133 
 

Journal of Applied and Computational Mechanics, Vol. 8, No. 3, (2022), 1120-1140 

5. Energy Balance Method 

The energy balance method (EBM) [66] is another variational based method depend on the fact that at one point, the whole 
energy is in the form of kinetic energy while at another point, the whole energy is in the form of potential energy, and there is a 
balance between both forms of energies so we can take advantage from this argument. The frequency of nonlinear oscillatory 
problems can readily be obtained by constructing Hamiltonian and applying the collocation method. Consider the equation of 
nonlinear oscillator in its general form 

( ( )) 0z f z t′′ + =  (124) 

The associated variational principle can be constructed as 

{ }2

0

1
( ) ( )

2

t

V z z F z dt′= − +∫  (125) 

where ( ) ( )F z f z dz= ∫ . The corresponding Hamiltonian is therefore can be expressed as 

21
( ) ( )

2
H z F z F B′= + =  (126) 

followed by the consequent residual of  

21
( ) ( ) ( )

2
R t z F z F B′= + −  (127) 

If we assume initial conditions as 

(0)z G=    and  (0) 0z′ =   

Then the initial guess can be chosen as a simple harmonic motion 

( ) cosz t G t= Ω   

Thus corresponding residual from Eq. (15) can be developed as 

2 2 21
( ) sin ( cos ) ( )

2
R t G t F G t F G= Ω Ω + Ω −  (128) 

If the initial guess is taken as the exact solution, then mathematically, we can set the value of R  be zero. But the initial guess 
is only an approximate solution, thus R  depends on t  and can be set to zero. i.e, 

2 2 21
sin ( cos ) ( ) 0

2
G t F G t F GΩ Ω + Ω − =   

From [53], the residual vanishes at the specific collocation point. Therefore, collocate 4t πΩ =  gives 

2 24

2 ( ) ( cos )
lim

sint

F G F G t

G tπΩ →

− Ω
Ω=

Ω
 (129) 

Fu et. al., [67] applied aforementioned variational based method on Eq. (15). The governing fourth-order partial differential 
equation is transmuted into a second-order nonlinear ordinary differential equation by employing the Galerkin method and then 
EBM is practiced to find the approximate analytic frequency-amplitude relationship of the nonlinear ordinary differential 
equation for the deflection of microbeam. The whole study is performed for doubly clamped supported boundary conditions. 

6. Hamiltonian Approach 

Hamiltonian approach proposed by He [68] to overcome the shortcomings of the EBM. This approach is a kind of energy 
method discussed previously with a vast application in conservative oscillatory systems. The terms 2 2z′  and ( )F z  in Eq. (125) 
are the respective kinetic and potential energies of the oscillatory system expressed in Eq. (124). The corresponding Hamiltonian 
function can be stated as 

2
0

1
( ) tan

2
H z F z cons t H′= + = =  (130) 

or 

2
0

1
( ) 0

2
z F z H′ + − =  (131) 

 
From Eq. (130), it is cleared that the total energy of the system remains constant during the motion (oscillation). Thus from 

EBM, the residual can be written by employing Eq. (127) in Eq. (131) as 

2 2 2
0

1
( ) sin ( cos )

2
R t G t F G t H= Ω Ω + Ω −  (132) 
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According to Eq. (130) 

0 0
H

G

∂
=

∂
 (133) 

A new function ( )H zɶ  is introduced as 

{ }
4

2
0

0

1 1
( ) ( )

2 4

T

H z z F z dt TH′= + =∫ɶ  (134) 

It is cleared that  

0

1

4

H
H

T

∂
=

∂

ɶ
 (135) 

Then we have 

0
H

G T

 ∂ ∂   =  ∂ ∂ 

ɶ
 (136) 

or 

( )
0

1

H

G

 ∂ ∂   = ∂ ∂ Ω 

ɶ
 (137) 

Consequently, the approximate frequency can be found from Eq. (137). 
Nonlinear dynamic pull-in and pull-out analysis of viscoelastic nanoplate were studied by Shokravi [69].  Electrostatic and 

Casimir forces were used for actuation, and Galerkin’s method was used to solve the governing equation of motion derived by 
Hamilton’s approach. The influence of different parameters, namely, surface layer, small scale effect, coefficient of viscoelastic 
damping, pull-in voltage, pull-in deflection, pull-in time, and pull-out voltage, was investigated in detail. 

Sedighi et al. [70] investigated the pull-in instability of nano-bridges. Hamilton's theorem and Euler's beam theory were used 
to finding the nanodevice's governing equation. The effect of centrifugal force, damping, Casimir, and van der Waals attractions 
are examined by plotting phase diagrams and time history. 

7. Adomian Decomposition Method 

The Adomian decomposition method (ADM) is due to George Adomian [71] and is well address in the literature. Consider the 
equation of motion represented with Eq. (22). The solution in this approach is illustrated with an infinite series as 

0

( ) ( )n
n

z t z t
∞

=

=∑  (138) 

According to the basic idea of ADM, the linear operator L  can be expressed as 

L L R= +ɶ  (139) 

where Lɶ  is the derivative of the highest order, which is invertible, R  is a linear operator of the order less than one of the order 
of Lɶ . By allowing ADM, one can write as 

1 1z k L Rz L Nz− −= − −ɶ ɶ  (140) 

in which k  denotes the terms obtained from the integration of h  and then applying initial conditions. The nonlinear term and 
the solution can be stated as 

0

,n
n

Nz A
∞

=

=∑  and 
0

n
n

z z
∞

=

=∑  (141) 

where nA  are called Adomian polynomial and can be formulated using the relation 

0 0

1
; 0,1,2,....

!

n n
i

n in
i

d
A H z n

n d
λ

λ
λ = =

   = =    
∑  (142) 

Some of Adomian polynomial can be expressed as 

1 1 0( )A z H z′=  (143) 

2
2 2 0 1 0

1
( ) ( )

2
A z H z z H z′ ′′= +  (144) 

3
3 3 0 1 2 0 1 0

1
( ) ( ) ( )

3
A z H z z z H z z H z′ ′′ ′′′= + +  (145) 

( )2 2 4
4 4 0 1 3 2 0 1 2 0 1 0

1 1 1
( ) ( ) ( ) ( )

2 2 24
ivA z H z z z z H z z z H z z H z

 ′ ′′ ′′′= + + + +  
 (146) 
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Now comparing the like powers of x  we have 

0

1 1
1

,

, 0n n n

z k

z L Rz L A n− −
+

=

=− − >ɶ ɶ
 (147) 

The vibration of a cantilever microbeam by a modified version of the Adomian decomposition method (ADM) was scrutinized 
by Duan et al. [72]. It was demonstrated that the nonlinear vdW and Casimir forces have little influence on the vibrations 
governed by BVP. Moreover, BVP was transformed into a nonlinear Fredholm–Volterra integral equation, and vibrational behavior 
was examined using modified ADM. Vibration and convergence analysis of a MEMS capacitive microphone were fully investigated 
by Khader and Sweilam [73]. The ADM was exerted to approximate the vibrational behavior of the model, whereas semi-group 
theory was utilized to prove the existence and the uniqueness of the approximate solution. 

Nonlinear vibration and pull-in instability of nano-cantilever switch was thoroughly investigated by Noghrehabadi et al. [74]. 
Hybridization of ADM and Pade approximation was employed to solve the governing equation under intermolecular forces such 
as Casimir forces. It was shown that this coupling of ADM and Pade approximation gave better results than those obtained by 
ADM alone. The effect of different parameters on the nonlinear solution was also considered. The Timoshenko beam theory was 
utilized to investigate the pull-in instability and vibrations of clamped-clamped nano-switches induced by electrostatic and 
intermolecular forces by Moradweysi et al. [75]. Modified ADM solved the nonlinear differential equation of the objected model, 
and the effect of different parameters on the nonlinear behavior was also examined. The pull-in instability of carbon nanotubes-
based microstructures are examined with ADM in the Refs. [76-77]. 

8. Miscellaneous Methods for Pull-in Instability and Periodic Behaviour of MEMS 

The nonlinear dynamic behavior of nano-cantilever and clamped-clamped micro-bridge was investigated by Beni et al. [78]. 
Van der Waals intermolecular attractions actuated both microstructures.  Euler-Bernoulli's theory of beams with the modified 
strain gradient theory was scrutinized for the mathematical model. The differential transform method is engaged in solving the 
lumped parameter model governed by nonlinear equations. The pull-in parameters of the nanosystems have been calculated as 
well. 

The dynamic behavior of microbeam-based MEMS was examined by Rafieipour et al. [79] Euler-Bernoulli's theory was applied 
to find the governing equation of their objective system. The electrostatic force between microbeams was considered, and then 
the Galerkin procedure was utilized to obtain the differential equations of the motion of their objective system. Frequency 
amplitude formulation was employed to solve the equation, and the solution was expressed in closed form. The effect of various 
parameters on beam deflection was examined as well. The nonlinear oscillation of a MEMS oscillator was studied by Nikkar et al. 
[80]. Frequency amplitude formulation and Max-Min approach were utilized for finding the natural frequency of the vibration of 
the oscillator. It was shown that the results obtained from these two approaches are better than the results gained by EBM. A 
simple formula to obtain the frequency of electrically actuated microbeam is due to He et al. [81]. It was observed that only few 
simple calculations are needed to have highly accurate results. 

9. Two-scale Mathematics 

The two-scale theory is proposed by He [82] based on the fact that an absolute scale is nothing but absolute fiction. After the 
emergence of Einstein’s theory of relativity, scientists believe in the relative observation. Implementing the relativity of scale in 
the same manner, one may conclude the importance of scale dependence in every scientific law. Two-scale theory proposes that 
the scale of observation is key factor in measurement of any object. A continuous surface may behave as discontinuous when 
viewed from a different perspective. Therefore, it is suggested that the scale of observation at which an object is examined or an 
experiment is done is the main characteristic of reference. This theory has many applications in solitary wave theory [83-84], 
thermoelectricity [85], microstructures [86-87], thermal science [88], nanotechnology [89] and many more [90-94]. 

9.1 Two-Scale MEMS 

As we know, sophisticated electronic devices not only operate in the air, but can also function in various media. And if the 
medium is air filled with nano/micro particles, or sponges, or other porous medium, what impact will it have on their work? To 
solve the role of electronic devices in a porous medium, we propose a fractal MEMS model for the case of electromagnetic 
actuation [26-28]. At the same time, we analyze the impact on the moment of pull-in occurrence of the fractal order 
transformation, and get a stable pull-in condition. 

Using two-scale fractal space, we can write the following relations 

( )L z α∝ ∆  (148) 

( )z z α′ ∝ ∆  (149) 

( )z z α′′ ∝ ∆  (150) 

Because  

t z∆ ∝∆  (151) 

Consequently 

( ) ( )t zα α∆ ∝ ∆  (152) 

So we have 

( )z t α′′ ∝ ∆  (153) 
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Fig. 4. Pull-in curve for various fractal dimensions 

 

Fig. 5. Steady state of the pull-in instability 

According to Eq. (153), a fractal modification of Eq. (18) is obtained 

2

2
0

1

d z
z

dt zα

κ
+ − =

−
 (154) 

We know that when κ  does not reach the critical value, it may take the form of periodic solutions, and a pull-in 
phenomenon may occur when κ  exceeds the critical value. As shown in Figure 4, when the value of κ  is 0.20372, this figure is 
the pull-in curve which corresponds to different fractal dimensions. Figure 4 demonstrates that this has a huge effect on the 
moment when the pull-in takes place. For the two-scale dimension is greater than one, the pull-in occurs very rapidly. Later and 
later, the pull-in occurs with the decrease of two-scale dimension. As seen in Figure 6, the pull-in instability becomes stable for 
two-scale dimension is 0.1. 

10. Final Remarks 

The investigation of the periodic behaviour of the oscillators from microelectromechanical systems (MEMS) is the topic of this 
review article. Throughout numerous examples, it has examined modified asymptotic methods, for example, Laplace based 
variational iteration method (LVIM) and He-Laplace method. The analytical solutions provide a thorough and in-depth 
understanding of how system’s parameters and initial conditions affect the solution process. Analytical solutions also provide a 
framework for verifying and validating alternative numerical techniques. 

The most notable aspect of these techniques is their high accuracy. These may also be used to solve other complex nonlinear 
conservative oscillatory problems. The solutions converge quickly, and their components are easy to calculate. In addition, in 
comparison to other analytical methods, the results need less computing work, and only one or maximum couple of iterations 
yield accurate results. In the last, two-scale theory and its application in MEMS in any porous medium is described briefly. 
Consequently, this review focused on the effective implementation of the aforementioned methods for the complex nonlinear 
oscillatory behaviour of MEMS problems. All of the approaches discussed in this review may be used to solve a variety of weak 
and strong nonlinear issues, and the worked examples used in this study can be used as paradigms for oscillatory systems. 
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Appendix A 

The defined parameters in Eq. (12) are as follows 
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Appendix B 

The defined parameters in Eq. (12) are as follows 
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where the parameters σ , β  and µ  are nondimensional and are as follows 
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Appendix C 

The coefficient of Eq. (24) are as follows 
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