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Abstract. This innovative study investigates the flow of ternary hybrid nanofluid containing gyrotactic microorganisms in 
microchannel. The magnetic field, thermophoresis, and Brownian motion effects are analyzed. The transformation of the PDEs 
system into ODEs is carried out by using the group transformation method. The innovative findings examine the Newtonian and 
non-Newtonian models derived from the system of ODEs. Several graphs illustrate how different parameters affect the velocity 
profile, temperature, concentration, and microorganisms. The power-law index value increases the fluid flow velocity by about 9% 
at n = 3, 36% at n = 4 relative to the case of n = 2.5 at the center of the boundary layer. Moreover, the ternary hybrid nanofluid exhibits 
a greater temperature compared to the nanofluid. The current results are compared to the researchers' findings to confirm the 
validity of the obtained results. When the Prandtl number is between 6 and 10, the Nusselt number reaches 45.49%. 

Keywords: Microchannel; Bioconvection; Inclined configuration; Power- law index; Solar radiation; Ternary hybrid nanofluid. 

1. Introduction 

Solar energy is a natural resource which produces energy without burning any fuel, so it can be considered  as the best choice 
because it is clean  [1]. A renewable energy source is solar energy which accomplishes the demands of energy in industrial and 
technical applications. Solar energy is the result of chemical processes that convert solar radiation into heat or electricity [2].The 
heat transfer property of a fluid within the geometry is essential in thermal systems like heat exchangers, micro technological 
apparatus and solar panels. The heat and mass transfer inside microchannel have requisite interest owing to its applicability in 
engineering field like turbo machinery, mixing of samples, refrigeration process, solar panels, solar absorption and solar cells [3, 4]. 
Fakour et al. [5] examined the nanofluid flow in a vertical channel with existence of  buoyancy force. The results indicated that the 
nanoparticle volume fraction profiles were strongly related against the Grashof number (Gr). Acharya et al. [6] scrutinized the 
influence of aggregation kinetics of nanofluid through the microchannel. He stated that the thermal conductivity of the composite 
enhances with higher values of the concentration of nanoparticles. Heat transport decreases with the radius of gyration factor in 
the lower segment but increases in the upper region. 

The ternary hybrid nanofluid (THNF) consists of nanoparticles with various physical and chemical properties to the base fluid. 
The author showed that the temperature profile was raised as the Prandtl number grew. Increasing the thermal relaxation value 
decreases the thermal distribution profile [7]. Ternary hybrid nanofluid has high thermal conductivity which  enhances heat 
transmission and efficiency of solar system [8]. Bilal et al. [9] studied the thermal enhancement of (TiO2-CoFe2O4-MgO/H2O) 
nanofluid through cone, wedge and sheet. Cone surfaces have higher velocity and energy propagation rates than wedges and plates, 
regardless of heat source or porosity effect. However, a wedge surface has a higher mass transfer ratio when impacted by activation 
energy compared to a plate. Alqawasmi  et al. [10] investigated the thermal radiation of THNF around disk with influence of  normal 
magnetic field. The scientists found that decreasing magnetic parameter values leads to decreased fluid velocity and increased 
fluid temperature across the disk. For higher values, the temperature and radiant heat components enhances. The ternary 
composite nanofluid has the highest influence on the surface. Mohanty et al. [11] studied the heat transmission of THNF through a 
vertical cylinder with the effect of heat source. The study found that improving the Brinkman and radiation parameters leads to a 
nonlinear decrease in entropy production, whereas improving the Bejan number results in an opposite procedure. 

Bioconvection is described as the swimming of a microorganism in a specified direction which is weightier than water as a 
result of this a gradient of density will appear contributing the forming of convective motion [12]. Researchers discovered that 
increasing the temperature ratio parameter leads to an augment in temperature field, whereas rising the Prandtl number causes a 
diminish in temperature field. Furthermore, temperature-dependent heat source parameters raise fluid temperatures. The 
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nanoparticles concentration diminishes with enhancing Lewis number. The microorganism profile decays due to an increase in the 
Peclet number. Jawad et al. [13] analyzed the induced magnetic field over a horizontal sheet with hybrid nanofluid (HNF) containing 
gyrotactic microorganisms. Shah et al. [14] described bioconvection flow with activation energy using the mathematical model. The 
study found that raising the magnetic field parameter resulted in decreased porosity factor velocity profiles. As the couple-stress 
parameter increases, the velocity profile follows suit. 

Rashed et al. [15, 16] introduced a mathematical model to study the behavior of nanofluid around vertical plate and cylindrical 
solid pipes, respectively. Mabrouk et al. [17] examined the power index and its effects on the hybrid nanofluid inside solar collector. 
They concluded that the velocity is improved with the boosting of power – law index. The same authors in [18] introduced entropy 
and thermal behavior of solar energy in water solar collector. They stated that raising the inclination angle results in raising the 
temperature but lowering the fluid velocity. 

Abdollahi et al. [19] presented the performance of heat transmission of hybrid nanofluids in a parallel surface. The study found 
that increasing the Reynolds number reduces heat transfer and decreases heat fluxes from surfaces, resulting in lower nanofluid 
flow rates. On the other hand, the nanoparticles concentration rises with the Reynolds number. Chu et al. [20] stated that the 
microorganisms distribution was diminished with the incrementation of Peclet number  Pe. The authors stated that improved 
velocity profile leads to better wedge angle parameters for static and moving wedges. Falkner-Skan nanofluid velocity decreased 
with increasing infinite shear rate viscosity, bioconvection Rayleigh number, and buoyancy ratio. The singular manifolds method 
and Lie infinitesimals were employed to solve some fluid dynamic applications [21-23] and evolution equations [24, 25], respectively. 
Sarma and Paul [26] studied bioconvection in a cylindrical Ag-CuO/H2O Ellis hybrid nanofluid with bacteria around stretched 
cylindrical tube. The observations showed that the Ellis fluid parameter increases velocity while decreasing temperature and 
concentration profiles. In contrast, thermophoresis and Brownian motion increase the rates of mass transfer, whereas slip has the 
reverse effect. Peclet number and bioconvective constants show interesting but opposing tendencies with gyrotactic microbe 
profiles, providing valuable insights. Paul et al. [27] studied the mixed convection due to the presence of HNF through across a 
radiative cone. The study found that Casson nanofluid significantly improved tangential skin friction by 52%. The thermal 
performance of MHD flow of Al2O3-Cu-TiO2/HO2 has been examined by Rafique et al. [28]. The researchers discovered that increasing 
magnetic parameters points to a decrease in temperature and an increase in velocity. Moreover, Paul et al. [29] analyzed the 
unsteady Casson-Maxwell hybrid nanofluids in case of variable thermal conductivity. The results indicated that merging the Casson 
and Maxwell HNF resulted in significant improvements in skin friction: heat transmission increased by percentage of 11% relative 
compared to the Casson-Maxwell nanofluid. Mahmood et al. [30] presented a numerical analysis for a tri-hybrid nanofluid around 
sheet. Islam et al. [31] examined the electroosmotic flow incorporating ternary hybrid nanoparticles. The thermo-migration factor 
shows a decline in mass transport rate. The Peclet number reduces the density of motile microbes. Also, Islam et al. [32] analyzed 
the dynamics of Carreau nanomaterial flow in case of chemical reaction. The studies revealed that the changed Hartmann number 
improves the mobility of nanomaterials. The radiation variable produces the opposite outcomes in terms of heat transport rate and 
entropy. Rana et al. [33, 34] examined the entropy optimized nano‐bioconvective flow and microbes in blood flow. The results 
showed that the blood velocity decreases as the Williamson factor increases and increases with the viscosity ratio. Islam et al. [35] 
presented a numerical analysis to study MHD flow. A greater Rayleigh number and concentration of nanoparticles improved the 
thermal enactment of hybrid nanofluid. Reverse behaviors should be noticed when the magnetic impact increases. The nanofluids 
could be used as mono, hybrid, and Ternary hybrid nanofluids. The concept behind these types is to have the benefits of different 
nanoparticles instead of mono type. Samrity and Yin [36] investigated the performance of pulsating heat pipe. The results revealed 
that the Al2O3-Cu HNF reached to 30-54% lower thermal resistance than water at the same filling ratio and heat input, indicating 
improved heat transfer. From the literature, there are not any previously attempts have been made to investigate the three-
dimensional bio-convection flow of ternary hybrid nanofluid inside the inclined microchannel. Therefore, the motivation of these 
investigations deals with the three-dimensional flow during the influence of solar radiation as well as magnetic field. 

The novel work includes: 
a. Obtaining the flow and thermal characteristics of Newtonian (n = 2) and non-Newtonian (n  2) models from the resulting 

system of ODEs, to handle various cases of operation. 
b. Increasing the power-law index resulting in improving in the velocity and temperature of ternary hybrid nanofluid which 

signifies that the overall thermal system efficiency has been enhanced. 
In the applied method, the system of ODEs is achieved at cases of power-law index (n = 2 and n  2). Moreover, the optimal value 

of power-law index at which the higher value of velocity and temperature of ternary hybrid nanofluid happens, has been chosen 
prominently by various graph, unlike the conventional method used by other researchers as in [2, 37]. As a result, the applied 
method GTM has no limitations and represents a novel form of the related mathematical methods mentioned in [15, 38, 39]. 

2. Mathematical Formulation 

In the present work, three-dimensional flow has been considered incorporating incompressible ternary hybrid nanofluid 
containing microorganisms, non-Newtonian and unsteady state fluid dynamics. In a microchannel, the ternary hybrid nanofluid 
flow between two revolving parallel surfaces with angular velocity (0, ,0).Ω= Ω  The plates are placed at y = 0 and y = h. This study 
considers the upper plate moves with ,wv  while lower plate moves with stretching speed .wu  Moreover, the temperature of the 
lower segment is Tw and the upper portion is at T0. For efficient flow control, the magnetic field is applied in y-direction. Figure 1 
shows the structure of the present model. Based on above conditions, the model equations can be expressed as [2, 4, 6, 40]: 
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where * *( ), ,u v w  are the flow speed along coordinate axes (x, y, z), respectively, Ω  denotes  the angular velocity, *p  denotes the fluid 
pressure, *T   represents the temperature, *C   is the concentration of nanoparticles, t  is the time, χ   denotes the chemotaxis 
constant, cW   refers to swimming speed, ,T BD D  and nD   are the coefficients of thermophoresis, Brownian diffusion and 
microorganisms diffusion, respectively. Also, the subscripts f and thnf referred to the base fluid and ternary hybrid nanofluid. The 
boundary conditions are [4, 19]: 
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The dependent variables are introduced in the normalized form as [41, 42]: 
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Consequently, Eqs. (1) to (6) become as follows: 
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Fig. 1. Schematic configuration of the considered system. 
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The associated boundary conditions are defined as: 

1, 0, 0, 1, 1, 1, 1 0

0, 1, 0, 0, 0, 0, 0

u v w p C y

u v w p C y H

θ ψ

θ ψ

= = = = = = = → =

= = = = = = = → =
 (17) 

3. Group Transformation Method (GTM) 

The GTM is employed to the system's equations (10) to (16). The PDEs will be converted to ODEs by applying the GTM. 
 

3.1. Group systematic formulation of the system 
 

The GTM is defined as follows: 

( ) ( )1 2 3 1 2 3   , , , , .s sS Q a a a S K a a a= +  (18) 

where, S refers to the system variables,  sQ and sK  indicate the function to be differentiable in each of three parameters; 1 2,a a  and 

3a . The partial derivatives of the system are stated as: 
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Extending the same procedures described in details as in Morgan's theorem [43] leads to achieve the transformations of the 
following variables   ,   ,   ,   ;   ,   ,   , , , ,   , , , ,w w wx y z t u v w u v p p Cθ ψ  now we can get: 
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Using these transformations reduces the system of equations (10) to (16) to the new system: 
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The functions of ( ) ( ) ( ) ( ) ( ) ( ), ,   ,   ,   ,   , ,   ,   , ,   ,   ,   ,   ,   ,   ,   ,   , , ,w w wu v p U x z t W x z t x z t x z t x z t x z tζ ξ π̻   and ( ),   ,   ,  x y z tη   will be accurately 
calculated such that the equations (10) to (16) can now be reduced to ODEs. The two cases of power-law index will be taken into 
consideration. 
 
Case-1; (n = 2) for a case of Newtonian model 

As a result, the functions take the form: 
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From the previous results in Eq. (29), the system (22) to (28) will be shown as: 
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Case-2; (n ≠ 2) for a case of non-Newtonian model 

The functions in the new forms will be:  
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Based on the previous results in Eq. (36), the system (22) to (28) will be stated as: 
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with the corresponding boundary conditions as follows: 

1, 0, 0, 1, 1, 1, 1 0
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f g h E y

f g h E y H

= = = = Θ= Φ = Ψ = → =
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 (43) 

where the non-dimensional parameters in the above equations are 2 / fR bH ν=  (Reynold's number), 2 / fHλ ν=Ω   (rotation 
parameter), 2

0 /f fM B bσ ρ=   (magnetic parameter), n (power-law index), Γ   (inclination angle), /f fPr ν α=   (Prandtl number), 
* 3 *16 3/ ( )pd f fR T k c∞σ ν ρ=   (radiation parameter), /c BfSc Dν=   (Schmidt number), /T ft D TN Tτ ν ∞= △  (thermophoresis parameter),
ΔC/Bb fN Dτ ν=  (Brownian motion parameter), /N nfSc Dν=   (bioconvection Schmidt number), /c nPe W Dχ=   (bioconvection Peclet 

number) and  1 / ( )wN N Nα ∞ ∞= −   (microorganism difference parameter). The  correlations of ternary hybrid nanofluid are 
presented as follow [9, 10]: 
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The dimensionless forms of interest physical quantities are skin friction, Nusselt number, Sherwood number and 
microorganisms density number as shown in [2, 4, 44]: 
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where   /w fRe H u ν=   is the Reynold number.  

 

4. Results and Discussion 
 

The model of THNF with gyrotactic microorganisms inside a microchannel is solved by using GTM technique. The effect of 
physical parameters on the characteristic of ternary hybrid nanofluid in the existence of solar radiation has been delineated in 
diagrams. The influence of nonhomogeneous distribution of nanoparticles and motile microorganisms has been considered in this 
study. The ternary hybrid nanofluid contains the (Cu, Fe3O4 and Al2O3) nanoparticles with water base fluid. Recently, using magnetic 
nanoparticles (Fe3O4) and non-magnetic nanoparticles (Cu and Al2O3) has mechanical features and physicochemical properties in 
nanotechnology and solar collectors [45, 18]. Thus, magnetic nanoparticles have high magnetic susceptibility and high saturation 
magnetization [17]. To enhance the performance of heat and mass transfer of the fluid, these nanoparticles are used as an effective 
nanomaterial in studies [4, 18, 45, 46]. In the present figures, the used parameters are 6.9Pr =  referring water base fluid [4, 17, 18], 

1R=   [4, 19],  0.1Nd CR Sc Sc= = =   [18, 47, 48], 0.01λ =   [49, 50] , Γ /  2π=   [18, 47], 0.5t bN N= =   [48, 51], and 1Pe=   [2]. The 
characteristics of (H2O) base fluid, (Cu, Fe3O4 and Al2O3) nanoparticles are shown in Table 1 [7, 10, 45]. 

Table 1. Thermophysical properties of H2O, Cu, Fe3O4 and Al2O3. 

Material 3( / )kg mρ  ( / . )pC J kg K  ( / . )k W m K  ( / )S mσ  

Water (H2O) 997.1 4179 0.613 0.05 

Copper (Cu) 8933 385 401 5.96107
 

Ferro (Fe3O4) 5180 670 9.7 0.74106 

Alumina (Al2O3) 3970 765 0.613 3.5107
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Fig. 2. Verification of temperature with Ref. [4] at 10 Pr = when 1, 0.5,
t b

M R Pe N N= = = = = Γ0.1, 0.1, 0.01, / 2.
N d

Sc Sc R λ π= = = = =  

  

(a) Horizontal velocity against inclination angle when 

Γ

6.9, 2, 1, 0.5,

, / 2, 0.010.1

t b

c N d

Pr n R Pe N N

Sc Sc R π λ=

= = = = = =

= = = =
 

(b) Horizontal velocity against magnetic field when 

6.9, 2, 1, 0.5,

0.1,M 5, 0.01

t b

c N d

Pr n R Pe N N

Sc Sc R λ

= = = = = =

= = = = =
 

  

(c) Horizontal velocity against rotation parameter when 
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6.9, 2, 1, 0.5,

0.1, 5, / 2
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Sc Sc R M π

= = = = = =
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(d) Horizontal velocity against Reynold number when      
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0.1, / 2, 0.01

t b

c N d

Pr n Pe N N M
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(e) Horizontal velocity against power law index when 

Γ

6.9, 1, 0.5,

0.1, / 2, 0.01
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c N d

Pr R Pe N N

Sc Sc R π λ

= = = = =
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Fig. 3. Flow characteristics for different values of influential parameters. 
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Table 2. Comparing values of Nusselt number with variant in R and .λ  

R  λ  Acharya [4] Present work 

2  1.6766 1.6767 

3  1.7982 1.7964 

4  1.9289 1.9285 

 0 1.9605 1.9698 

 0.5 1.9058 1.6061 

 1 1.8463 1.8468 

The verification of the numerical method is presented in Fig. 2. Therefore, the results reported by Acharya [4] are compared with 
the resulting data to validate the used methodology. As well as, according to Table 2, the Comparing values of the Nusselt number 
Nu with changing of  Reynold number R and rotation parameter  λ   are performed in limiting case as in [4]. 

The results of Fig. 2 and Table 2 indicate that there is good agreement between the current analysis and the published results. 
 
4.1. Velocity profiles 

 

Variation in velocity profiles against the dominant parameters is examined in Fig. 3(a-e). Physically, arise in the values of 
magnetic field M resists the motion of ternary hybrid nanofluid due to generated Lorenz force. Therefore, the velocity of fluid 
diminishes with magnetic field as shown in Fig. 3(a). It is evident from Fig. 3(b) that higher values of inclination angle Γ  and Reynold 
number R  lead to decrement in the velocity because the gravity effect is diminished. The transverse velocity of the fluid increases 
by increasing values of rotation parameter λ  as plotted in Fig. 3(c). In Fig. 3(d), from the definition of Reynold number, greater values 
of Reynold number correspond to increase in inertial force compared to the viscous force leading to decrement in the fluid velocity. 
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(b) Temperature profile against inclination angle when 
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(c)  Temperature profile against Reynold number when 
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(d) Temperature profile against radiation parameter when 

6.9, 1, 0.5,

2, 0.1, 0.01

t b

c N d

Pr R Pe N N

n Sc Sc R λ

= = = = =

= = = = =
 

 
 

(e) Temperature profile against power-law index when 
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6.9, 1, 0.5,

0.1, / 2, 0.01
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(f) Variation of temperature characteristics with tri-hybrid, hybrid 
nanofluid, nanofluid and base fluid when 

Γ

6.9, 2, 1, 0.5,

0.1, / 2, 0.01
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Fig. 4. Thermal characteristics for different values of influential parameters. 
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4.2. Temperature profiles 
 

The behavior of thermal field against the influential parameters is depicted in Fig. 4(a-e). Raising the values of Prandtl number 
leads to decrease the fluid temperature as displayed in Fig. 4(a). The system gained a high amount of heat with augment the 
radiation parameter .dR   So, the fluid temperature enhances with larger values of dR  as shown in Fig. 4(b). As well as, the 
temperature increases as inclination angle Γ  and power-law index increase as shown in Fig. 4(d, e), respectively. The opposite 
observation is found in the case of Reynold number as depicted in Fig. 4(c). The thermal performance of ternary hybrid nanofluid, 
hybrid nanofluid, nanofluid and base fluid is observed in Fig. 4(f). The thermal performance is reached to more production in case 
of THNF. 

 
4.3. Concentration profiles 

 

The influence of the concentration field is graphically presented in Fig. 5. The concentration field slightly decreases by increasing 
of the Reynold number as shown in Fig. 5(a). Physically, increasing values of Schmidt number causes kinematic viscosity of the fluid 
which resists the Brownian diffusion. Therefore, raising the Schmidt number leads to reduce the concentration as displayed in Fig. 
5(b). 

4.4. Motile microorganism profiles 
 

The impact of Peclet number ,Pe   Reynold number R   and bioconvection Schmidt number NSc   on motile microorganism is 
shown in Fig. 6(a-c). It was noticed that density of motile microorganism decreases for higher values of ,Pe R  and .NSc  

4.5. Pressure profiles 
 

The influence of magnetic field and inclination angle on fluid pressure is demonstrated in Fig. 7(a, b). In general, the maximum 
value of the pressure is attained at the lower surface and decays reaching to constant value at the upper surface with increasing 
the height of microchannel. At the surface of the channel, the fluid pressure raises with greater values of magnetic field and 
inclination angle. 

In Tables 3 and 4, the effect of obtained parameters on , , ,fC Nu Sh Nn  are displayed. 
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(b) Concentration profile against Schmidt number when 
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Fig. 5. Concentration characteristics for different values of influential parameters. 

 

  

(a) Microorganism profile against Peclet number when 

 
Γ

6.9, 2, 0.5, 0.01,

0.1, / 2,

t b

c dN

Pr n N N

Sc Sc R

λ

π

= = = = =

= == =
  

(b) Microorganism profile against Schmidt number when 
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Fig. 6. Motile microorganism characteristics for different values of influential parameters. 
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(a) Pressure profile against magnetic field when 6.9, 2, 1, 0.5,

t b
Pr n R Pe N N= = = = = = Γ0.1, / 2, 0.01

c N d
Sc Sc R π λ= = = = =  

 
(b) Pressure profile against inclination angle when 6.9, 2, 1,Pr n R Pe= = = = 0.5, 0.1, 0.01

t b c N d
N N Sc Sc R λ= = = = = =  

Fig. 7. Fluid pressure for different values of influential parameters. 

Table 3. Numerical values of skin friction, Nusselt number and Sherwood number. 

R  λ  M  Pr  dR  
t

N  
b

N  f
C  Nu  Sh  

1       0.11444 1.18097 1.67587 

3       0.13622 3.40398 2.37233 

5       0.15634 6.30193 4.89617 

 0      0.05994 2.23308 1.75159 

 0.5      0.11445 0.71013 0.62550 

 1      0.15374 0.59171 0.58822 

  5     0.11717 2.24899 1.18880 

  10     0.12528 2.07956 1.19639 

  15     0.13305 1.93647 1.20705 

   6    0.02468 2.45030 0.29412 

   8    0.02468 3.03135 0.16038 

   10    0.02468 3.56594 0.03653 

    0.1   0.11717 0.59770 0.04358 

    0.3   0.11717 4.01505 0.07461 

    0.5   0.11717 8.13339 0.08595 

     0.2  0.13591 2.74740 0.12744 

     0.4  0.13591 2.74740 0.06943 

     0.6  0.13591 2.74740 0.01142 

      0.1 0.14578 3.03135 0.12557 

      0.3 0.14578 3.03135 0.14440 

      0.5 0.14578 3.03135 0.14816 

Table 4. Tabulation of the microorganism density number with variants of , NR Sc and .Pe  

R  N
Sc  Pe  Nn  

1   0.41484 

3   0.56021 

5   1.19947 

 0.5  2.12456 

  1  3.62209 

 1.5  4.82152 

  0.2 0.76983 

  0.6 0.95937 

  1 1.16508 
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Table 3 indicates that the skin friction coefficient is influenced by the Reynold number, rotation parameter, and magnetic field, 
as they impact the inertial and viscous forces in the hybrid nanofluid layers. The Nusselt number was influenced positively by the 
radiation parameter, Prandtl number, and Reynold number due to the thermal behavior of nanoparticles, whereas the rotation 
parameter and magnetic field have a negative effect on it. The parameters ,   ,   ,dR M R  and bN   influence the mass transfer rate, 
leading to an increase in the Sherwood number. Conversely, the variables ,   ,Prλ   and tN   have the opposite effect on this 
phenomenon. The microorganism density increases with higher values of , ,NR Sc  and ,Pe  as seen in Table 4. The rise in parameter 
values is linked to the increase in diffusivity coefficient of the microorganisms, thus impacting the microorganism's density in the 
fluid.  

5. Conclusion 
 

The three-dimensional flow of THNF with microorganisms inside a micro-channel has been investigated in this study. The lower 
surface is stretchable, and the upper surface is revolving. The PDEs were nondimensionalized using GTM. A summary of the core 
finding is presented in the following points: 

 Improving the value of rotation parameter and power-law index leads to increase in the velocity profile, but it decreases 
with magnetic parameter, inclination angle and Reynold number. The peak value of fluid velocity reduces by 33.33 % when 
the magnetic parameter is at range of (3 )5 .M≤ ≤   

 The temperature field improves by raising the values of radiation parameter, power-law index and inclination angle. 
Furthermore, the temperature decays with augmentation values of Prandtl number and Reynold number. 

 Concentration profile reduces with augmentation in Reynold number and Schmidt number, while it enhances by rising the 
Prandtl number. 

 The microorganism minimizes with greater values of Peclet number, Reynold number and Schmidt number. The skin friction 
coefficient improves via Reynold number, rotation parameter and magnetic parameter. A percentage of 36.61 % for increasing 
in skin friction coefficient is predicted for a range (1 Re 5)≤ ≤  of Reynold number. 

 An increase in Pr, R  and dR  gives magnification in Nusselt number, while the reverse phenomenon is noted with λ  and 
.M   The Sherwood number improves with the increment in ,  , dR M R   and ,bN   while it diminishes with augmentation of 

, Prλ  and .tN The motile microorganism number gets reduced with higher values of , NR Sc  and .Pe  
The future work will concentrate on a novel ternary hybrid nanofluid combinations through new geometries with different flow 

conditions. Furthermore, the mathematical modeling may be solved using the Crank Nicholson Method (CNM) [52] or Adomian 
decomposition method (ADM) [53]. 
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Nomenclature 

Latin symbols Greek symbols 

1 2 3, ,a a a  Group parameters. 
1α  Microorganism difference parameter. 

0B  Uniform magnetic field (T). Γ  Inclination angle (°). 

pcρ  Heat capacity (J kg-3 K-1). T  Temperature difference parameter. 

pc  Specific heat (J kg-1 K). η  Similarity variable. 

TD  Coefficient of thermophoresis diffusion (m2 s-1). µ  Dynamic viscosity (m2 s-1). 

BD  Coefficient of Brownian diffusion (m2 s-1). υ  Kinematic viscosity (m2 s-1). 

nD  Coefficient of microorganism's diffusion (m2 s-1). ρ  Density (kg m-3). 

M  Magnetic parameter. σ  Electric conductivity (S m-1). 

nN  Microorganism density number. *σ  Stefan -Boltzmann Constant (5.67×10-8 W m-2 K-4). 

tN  Thermophoresis parameter. φ  Dimensionless concentration. 

bN  Brownian motion parameter. χ  Chemotaxis constant. 
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Nu  Nusselt number. Ψ  Dimensionless gyrotactic microorganisms. 

Pr  Prandtl number. Ω  Rotation velocity. 

dR  Radiation parameter. Subscript 

R  Reynolds number. f  Base fluid. 

Sc  Schmidt number. hnf  Hybrid nanofluid. 

Sh  Sherwood number. thnf  Ternary hybrid nanofluid. 

* * *,  , u v w  Velocity components (m s-1). Superscript 

cW  Swimming speed (m s-1). ()′  Differentiation with respect to η. 

,  , x y z  Cartesian coordinates (m).   
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