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Abstract. In recent years, Double Window Principal Component Analysis (DWPCA) has been proposed. The spatial windows exclude 
damage-insensitive data from the analysis, while the temporal window improves the discrimination between healthy and damaged 
states. As a result, the DWPCA method exhibits higher sensitivity and resolution in damage identification compared to traditional 
PCA methods, as well as other traditional signal processing methods such as wavelet analysis. However, existing research on DWPCA 
has mainly focused on using the first-order eigenvector for damage identification, while the potential of higher order DWPCA 
eigenvectors remains unexplored. Therefore, the objective of this paper is to investigate the damage identification capabilities of 
higher-order DWPCA eigenvectors. Furthermore, we propose three types of damage-sensitive features based on DWPCA 
eigenvectors and use them as inputs to artificial intelligence (AI) algorithms for damage localization and quantification. The AI 
algorithms considered include AutoGluon and Transformer, which are powerful machine learning (ML) and deep learning (DL) 
algorithms proposed in recent years, respectively. In addition, classical ML algorithms such as Decision Tree (DT), Random Forest 
(RF) and Extreme Gradient Boost (XGBoost) are considered for comparison. Extensive benchmark experiments are performed and 
the numerical results obtained show that the combination of AutoGluon with DWPCA features achieves remarkable performance 
in terms of damage localization and quantification. This performance exceeds that of DT, RF, XGBoost and Transformer algorithms. 
Specifically, the prediction accuracies for damage localization and quantification exceed 90%. These results highlight the great 
potential of integrating AutoGluon with DWPCA features, particularly by combining AutoGluon with the first and second DWPCA 
eigenvectors, for real-world applications in structural health monitoring. 

Keywords: Structural health monitoring; damage detection; machine learning algorithm; principal component analysis. 

1. Introduction 

Structural Health Monitoring (SHM) technology aims to collect real-time structural responses by installing sensors on structures 
and to evaluate the condition of the bridge by analyzing these responses using data-driven methods [1-3]. However, despite the 
installation of SHM systems on most long-span bridges and the collection of numerous structural responses, practical bridges still 
face challenges in damage detection. A major factor is that the structural responses may not show significant changes after damage 
has occurred, or the damage information may be masked by environmental noise. As a result, structural responses become 
insensitive to damage, making damage detection difficult. Therefore, it is crucial to extract damage-sensitive features from the 
original responses and apply appropriate artificial intelligence algorithms to establish the relationship between inputs and 
structural states. 

PCA is a versatile and powerful technique that plays a crucial role in exploratory data analysis and feature engineering, enabling 
efficient data representation and interpretation [4-7]. The primary goal of PCA is to identify a set of orthogonal vectors, known as 
principal components, that best represent the data by maximizing the variance along each component. However, traditional PCA 
analysis considers the entire historical data set, including responses from both healthy and damaged states, making it difficult to 
observe structural changes in the time domain promptly after damage occurrence [4, 5, 8]. To address this issue, Smith et al. 
introduced the Moving Principal Component Analysis (MPCA) method by incorporating a moving time window into PCA [9-13]. In 
each step, responses within a fixed-size window are subjected to PCA analysis, yielding corresponding eigenvectors. As the window 
moves forward, a time series of eigenvectors is generated. Different structural states can be effectively distinguished by following 
the evolution of the eigenvector series. MPCA eigenvectors have been successfully applied in practical engineering for structural 
health monitoring and damage detection, as in the case of the Ricciolo Viaduct Bridge in Switzerland [10, 12, 14]. Previous studies 



532 Ge Zhang et al., Vol. 10, No. 3, 2024 
 

Journal of Applied and Computational Mechanics, Vol. 10, No. 3, (2024), 531–546 

have also shown that MPCA outperforms other methods, including autoregressive integrated moving average, continuous wavelet 
transform, robust regression analysis and instance-based methods, in terms of damage localization [10, 12, 14]. However, in the case 
of localized damage, such as cracks, only a few sensors in the vicinity may show changes in their responses. Both PCA and MPCA 
methods consider the responses of all sensors, including a large number of damage-insensitive responses in the calculation. 
Therefore, the simultaneous application of spatial windows in MPCA can potentially improve the effectiveness of damage 
identification. 

To address this problem, our previous study proposed the DWPCA method, which includes both spatial and temporal windows 
[15, 16]. The spatial windows exclude damage-insensitive data from the analysis, while the temporal window improves the 
discrimination between healthy and damaged states. As a result, the DWPCA method exhibits higher sensitivity and resolution in 
damage identification compared to previous methods. Numerical results from previous research have shown that DWPCA can 
detect damage 31 to 59 days earlier than MPCA for a concrete beam [15]. However, the DWPCA method still has some limitations. 
Previous research on DWPCA has mainly focused on using the first-order eigenvector for damage identification, and the damage 
identification capability of higher order eigenvectors has yet to be investigated. 

The relationship between sensor responses and structural state is complex, especially for practical bridges. In recent decades, 
ML algorithms have proven to be effective and efficient in dealing with complex nonlinear problems and high-dimensional data 
[17-19]. In recent years, they have shown potential in structural damage detection [20-23]. Previous studies have shown that ML 
algorithms perform better when given damage-sensitive features as inputs [11, 24-28]. Consequently, derivative features such as 
curvature modes, autoregressive (AR) parameters and MPCA eigenvectors have been used as inputs to ML algorithms for damage 
detection, resulting in improved performance in damage localization and quantification. In addition, it has been shown that using 
damage-sensitive features as inputs to ML algorithms can reduce the time required for model optimization and computation. In 
our recent study, DWPCA eigenvectors were found to be more sensitive to damage than MPCA eigenvectors [10, 12, 14, 16]. However, 
the performance of ML algorithms using DWPCA eigenvectors as inputs remains unknown. In addition, ensemble learning methods 
using different types of techniques and classifiers have been applied to damage identification [29-31]. By using multiple ML 
algorithms, ensemble learning methods can achieve better predictions than single learning methods. Four tree-based ensemble 
classifiers, namely random forest (RF), extremely randomized tree (ERT), gradient boosting decision trees (GBDT) and extreme 
gradient boosting decision trees (XGBoost), have been used for structural damage detection and other signal anomaly detection [31-
33]. Additionally, AutoGluon, an automated machine learning (AutoML) framework, has been utilized in signal anomaly detection 
scenarios, such as landslide hazard analysis, demonstrating exceptional predictive capability with highly accurate results [34]. 
AutoGluon offers a Tabular module that excels in handling structured data for predictive modeling tasks. It employs a multi-layered 
approach to ensemble multiple models through stacking/bagging techniques [35]. However, AutoGluon has not yet been applied to 
structural damage identification. Currently, there is no relevant research comparing the damage detectability of AutoGluon with 
other ensemble machine learning algorithms and newly proposed deep learning methods. Considering that DWPCA features exhibit 
higher damage sensitivity compared to the original signals and other traditional damage-sensitive features, this study aims to 
combine AutoGluon and DWPCA features for damage localization and quantification. Furthermore, this study will conduct a 
comparative analysis of the damage identification capabilities among the AutoGluon algorithm, ensemble algorithms, and the 
Transformer, which serves as a representative deep learning algorithm. 

 

Fig. 1. The flowchart of the proposed method for damage identification. 
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This paper investigates the damage identification performance of the method that combines DWPCA with ML algorithms, as 
illustrated in Fig. 1. Firstly, we investigate the damage sensitivity and robustness of the first-order and second-order DWPCA 
eigenvectors after damage occurs. Then, three types of damage-sensitive features based on DWPCA eigenvectors are proposed and 
applied as inputs to ML algorithms. The damage performance of a representative ML algorithm with DWPCA features is then 
evaluated in terms of damage localization and quantification. In addition, AutoGluon is introduced and combined with the three 
types of DWPCA features for damage identification. Finally, a comparative study is performed between AutoGluon and several 
representative ML algorithms and novel DL algorithms for damage identification. 

2. Methods 

2.1. Feature extraction  

Both MPCA and DWPCA have been shown to be effective techniques for extracting damage-sensitive features from structural 
responses. Previous studies [15, 16] have shown that DWPCA outperforms MPCA in terms of sensitivity and resolution. Previous 
research has suggested that the first-order and second-order eigenvectors capture most of the structural information[5, 8, 28]. 
However, the exploration of eigenvectors beyond the first-order eigenvector remains incomplete in DWPCA. Therefore, it is crucial 
to investigate the damage identification capability of higher order eigenvectors in DWPCA. In this section, the principles of MPCA 
and DWPCA are described sequentially as follows. 

2.1.1. MPCA 

The MPCA method introduces a moving time window to the PCA method. At each step, the structural responses within a fixed-
sized time window are analyzed, and eigenvectors are obtained. As the time window moves forward, a time series of eigenvectors 
is generated. Instead of directly analyzing the structural responses, damage alarms are triggered based on the evolution of the 
eigenvector series. The detailed steps of the MPCA method are presented below. 

As the time window moves forward, the response matrix � at the �th time step can be represented as: 

�(��) =
⎣⎢
⎡ �1(��) ⋯ ��(��)⋮ ⋱ ⋮
�1(��+��−1) ⋯ ��(��+��−1)⎦⎥

⎤ (1) 

where � = 1,2, . . . , !" − #$ + 1, � represents the total number of sensors, and � represents time. �%(��) denotes the response of the &th 
sensor at the �th time step. #$ represents the size of the time window, which is equal to the duration of the observations within the 
time window. !' represents the total number of sensor measurements. If the response time series have periodic characteristics, 
the time window size should be set to the length of the longest period. 

Next, the time series responses for each column are normalized by subtracting the mean value calculated using Eq. (2): 

(%(�) = 1�� ∑ (%�+��−1
*=� (�*) (2) 

Then, the normalized matrix can be expressed by Eq. (3): 

�′(��) =
⎣⎢
⎡ �1(��) − �1̅̅̅̅̅̅(��) ⋯ ��(��) − ��̅̅̅̅̅ ̅̅ ̅(��)⋮ ⋱ ⋮

�1(��+��−1) − �1̅̅̅̅̅̅(��+��−1) ⋯ ��(��+��−1) − ��̅̅̅̅̅ ̅̅ ̅(��+��−1)⎦⎥
⎤ (3) 

Subsequently, the covariance matrix is obtained as: 

/(��) = 1
0 �′(��)� �′(��) (4) 

Finally, the eigenvalues and eigenvectors of the covariance matrix at �th time step satisfy: 

[/(��) − 2*3 (��)43 ]6*(��) = 7 (5) 

where /(��) is the covariance matrix at the �th time step, 43  is the 0 × 0 identity matrix, 6*(��) is the 9th eigenvector at the �th time 
step corresponding to the eigenvalue 2*3 (��), and 6*(��) = [:*1(��), . . . , :*2(��), . . . , :*=(��)]�  is the component corresponding to the &th 
sensor. 

2.1.2. DWPCA 

To overcome the limitations of PCA and MPCA, the DWPCA method integrates spatial and temporal windows into PCA. The 
spatial window is used to exclude sensors that are insensitive to damage prior to analysis, while the temporal window is used to 
distinguish between different structural states. The combined use of spatial and temporal windows aims to improve the ability to 
identify damage. 

The first step is to determine the spatial windows. These windows should include a set of sensors that show significant changes 
after the occurrence of damage. If the finite element (FE) model of the structure is available, damage-sensitive sensors can be 
identified by simulating different damage scenarios. In cases where FE models are not available, empirical experience can be used 
to determine the spatial windows. For example, grouping neighbouring sensors to form each spatial window is a feasible approach, 
with all sensors distributed in a total of w spatial windows. In this paper, the spatial window is defined as >? = {01,02, . . . , 0"} 
where �  represents the size of the spatial window and 01,02, . . . , 0"  denotes the sensor serial numbers. For example, {2,4,6} 
denotes that Sensors 2, 4 and 6 are grouped within the spatial window and is equal to 3. 

Once the spatial window has been determined, the matrix � representing the structural responses of the sensors within the 
spatial and temporal windows can be expressed as follows: 

�(��) =
⎣⎢
⎡ ��1(��) ⋯ ��E(��)

⋮ ⋱ ⋮
��1(��+��−1) ⋯ ��E(��+��−1)⎦⎥

⎤ (6) 
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Fig. 2. Architecture of the Decision Tree. 

 

Fig. 3. Architecture of the Random Forest. 

 
Subsequently, by repeating the steps of MPCA, we can obtain the time-variant eigenvectors 6*(��) =

[:*=1 (��), . . . , :*=2 (��), . . . , :*=E (��)]� . Previous research has shown that the first-order and second-order eigenvectors of PCA capture 

more than 90% of the structural information. Therefore, this study investigates damage detection using the first-order and second-
order eigenvectors by DWPCA. In addition, several damage-sensitive features based on DWPCA eigenvectors are proposed and 
applied as inputs to ML and DL algorithms for damage localization and quantification. 

2.2. Machine learning algorithms 

As mentioned in the previous section, the detection of damage located far from sensors or of minimal severity remains a 
challenge for both the MPCA and DWPCA methods. If novel machine learning (ML) algorithms can be applied to establish the 
relationship between DWPCA eigenvectors and structural state, it is expected to further improve the detectability of damage. In this 
paper, several novel and representative AI algorithms are incorporated and combined with DWPCA features for damage 
identification. These algorithms include Decision Tree (DT), Random Forest (RF), Extreme Gradient Boosting (XGBoost), AutoGluon 
and Transformer. The detailed principles of these algorithms are presented below. 

2.2.1. Decision tree  

The Decision Tree (DT) algorithm is a supervised ML technique commonly used for classification and regression tasks [36]. It 
constructs a hierarchical structure in the form of a tree, where internal nodes represent features or attributes, and leaf nodes 
correspond to class labels or predicted values, as shown in Fig. 2. The decision tree algorithm recursively partitions the data set 
based on feature values, aiming to optimize information gain or minimize impurity at each partition. At each internal node, a 
specific feature is selected as the splitting criterion. Several measures, including information gain, entropy and Gini impurity, are 
used to assess the quality of a split. Information gain measures the reduction in entropy or impurity achieved by splitting the data 
based on a particular feature. Entropy quantifies the disorder or uncertainty within a set of class labels, while Gini impurity 
measures the probability of misclassifying a randomly selected element from the data set. The decision tree algorithm continues 
to partition the data until a pre-defined stopping criterion is met, such as reaching a maximum depth limit, having a minimum 
number of samples at a node, or encountering diminishing improvements from further partitioning. To combat overfitting, pruning 
techniques can be used to remove or merge parts of the tree to improve the generalization performance of the model. However, 
decision trees are susceptible to overfitting, particularly if they become too deep and complex. Ensemble methods, such as random 
forests and boosting algorithms, are often used to mitigate this problem and improve the predictive accuracy of decision trees. 
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Fig. 4. Architecture of XGBoost. 

2.2.2. Random forest  

Random forest is an ensemble machine learning method that constructs numerous decision trees during training and outputs 
the class that is averaged or voted by each individual tree [37]. It was proposed by Breiman in 2001 as an improvement over the 
bagging method, with an additional layer of randomness. RF can be applied in regression and classification. A schematic diagram 
of RF is presented in Fig. 3. 

Bagging, short for bootstrap aggregating, is an ensemble algorithm designed to enhance the stability and accuracy of individual 
predictive models such as tree. Bagging helps decision trees to reduce their variance and the influence of overfitting. Given a training 
set F = G1,2,…,J with responses K = L1,2,…,J, bagging repeats M times to randomly select a sample with replacement from the training 
set and fits trees to these samples. In our research problem, F  represents the eigenvectors extracted from the strains of the 
benchmark model, as depicted in Fig. 4. K  represents the labels indicating damage locations or severities of the benchmark model. 
A tree ℎ(G, O�)(� = 1,2, . . . , M) is trained every time, where the O� are independent and identically distributed random vectors. After 
training, the resulting prediction model can be established by averaging the predictions from M regression trees or by taking the 
majority vote from M decision trees. 

2.2.3. Extreme gradient boosting 

Extreme Gradient Boosting (XGBoost) is a scalable machine learning system for tree boosting that was proposed by Chen and 
Guestrin in 2016. The superior performance of XGBoost in supervised machine learning is the reason it was chosen to train the 
structural damages classifier in this study. Gradient boosting serves as the foundation for XGBoost, where weak base learning 
models are combined into a stronger learner in an iterative manner [31]. As illustrated in Fig. 4, during each iteration of gradient 
boosting, the residual is utilized to refine the previous predictor so that the specified loss function can be optimized. In an 
enhancement, regularization is incorporated into the loss function to define the objective function in XGBoost for evaluating model 
performance, which is formulated as: 

�P(O) = Q(O) + R(O) (7) 

The parameters trained with the given data are denoted as O. Here, Q represents the training loss function, such as square loss 
or logistic loss, which evaluates how effectively the model fits the training data. R denotes the regularization term, such as Q1 norm 
or Q2 norm, which assesses the complexity of the model. Simpler models typically exhibit improved performance in mitigating 
overfitting issues. Given that the base model is a decision tree, the output of model L*̂ is combined through voting or averaging by 
an ensemble T  of � trees: 

L*̂ = ∑V�
�

*=1
(G*), V� ∈ T  (8) 

The objective function at the � time iteration can be explicitly formulated as: 

P (X) = ∑Q(L*
J

*=1
, L*̂) + ∑ R(V�

X

�=1
) (9) 

where Y represents the number of predictions. Here, L*̂
(X) can be expressed as: 

L*̂
(X) = ∑ V�

X

�=1
(G*) = L*̂

(X−1) + VX(G*) (10) 

In reference [31], the regularization term R(V�) for a decision tree is defined as: 

R(V�) = Z[\]X#X^ + 1
2 2[\]X ∑ _%2

�

%=1
 (11) 

Here, Z[\]X denotes the complexity of each leaf, while #X^ represents the number of leaves in a decision tree. 2[\]X is a scaling 
parameter for the penalty, and _ is the vector of scores assigned to the leaves. To enhance the performance of gradient boosting, 
XGBoost employs a second-order Taylor expansion instead of the first-order approach utilized by typical gradient boosting. For 
instance, if the loss function is mean square error (MSE), the objective function can be derived as follows: 
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P (X) ≈ ∑[a*_b([c) + 1
2 (ℎ*_b([c)2 )]J

*=1
+ Z[\]X#X^ + 1

2 2[\]X ∑ _%2
�de

%=1
 (12) 

with the constants removed. Here, f(⋅) is a function that assigns each data point to its corresponding leaf. a* and ℎ* represent the 
first and second derivatives of the MSE loss function, respectively. In Eq. (12), the loss function is determined by summing the loss 
values for each data sample. As each data sample corresponds to only one leaf node, the loss function can also be expressed as the 
sum of loss values for each leaf node. Therefore, the objective function can be further simplified as: 

P (X) ≈ ∑[(∑ a**∈3h
)_% + 1

2 (∑ ℎ**∈3h
+ 2[\]X)_%2]

�de

%=1
+ Z[\]X#X^ (13) 

According to (13), i% and j% can be defined as: 

i% = ∑ a**∈3h
,j% = ∑ ℎ**∈3h

 (14) 

where k%  represents all the data samples in leaf node & . Consequently, the optimization of the objective function can be 
reformulated as a problem of minimizing a quadratic function. In other words, following a split at a specific node in the decision 
tree, the alteration in model performance can be assessed based on the objective function. If the decision tree model performance 
improves after this node split, the change is incorporated; otherwise, the split is halted. Furthermore, due to the regularization 
applied during the optimization of the objective function, a predictive classifier can be trained to mitigate overfitting. 

2.2.4. AutoGluon  

AutoGluon is an advanced AutoML framework that represents a paradigm shift towards AutoML, as opposed to traditional 
approaches of algorithm selection and hyper-parameter optimization [35]. 

AutoGluon employs a groundbreaking multi-layer stacking strategy, as shown in Fig. 5. In this strategy, several layers are 
arranged in a stack. The first layer consists of multiple models whose outputs are concatenated to serve as the basis for subsequent 
layers. AutoGluon uses these layers of model types iteratively, allowing higher layers to access the original data features. The final 
layers of the stack incorporate an innovative ensemble selection mechanism to address overfitting. In addition, AutoGluon employs 
a k-fold bagging method to further improve stacking performance and implements repeated bagging processes to mitigate 
overfitting. In particular, AutoGluon adopts a unique training strategy by immediately saving trained models to disk. This approach 
allows it to meet time constraints and skip potentially unsuccessful models based on their results. In addition, AutoGluon employs 
a unique workflow strategy that trains models sequentially, using multi-task optimization to mitigate potential memory 
management errors. 

AutoGluon's pioneering design demonstrates that AutoML frameworks should focus on more than just the CASH (Classification, 
Accuracy, Speed and Hyperparameters) problem. It offers several features that other frameworks do not. For example, its 
preprocessing model can handle heterogeneous datasets. It also has a powerful multi-layer stacking design integrated with 
advanced neural network structures that outperform conventional Bayesian optimization approaches. Importantly, AutoGluon 
maintains flexibility without introducing unnecessary complexity. Users can import their own models and use a simple API that 
supports training resumption. 

2.2.5. Swin-transformer 

The Swin Transformer block is an essential component in the encoder block, decoder block, or bottleneck [38]. Unlike the 
traditional multi-head self-attention module, the Swin Transformer block is constructed by the multi-head attention module based 
on a fixed window and a shifted window. Figure 6 shows the structure of the Swin Transformer block, which consists of four 
LayerNorm (LN) layers, a window-based multi-head self-attention module (W-MSA), a shifted window-based multi-head self-
attention module (SW-MSA), and two multilayer perceptron (MLP) layers with a nonlinear activation function GeLU. 

The W-MSA divides the feature map into several non-overlapping windows and computes the local self-attention within each 
window. This approach significantly reduces computational complexity while preserving global attention. Meanwhile, SW-MSA is 
proposed to address the lack of cross-window connection in W-MSA and improve the overall performance of the model. Based on 
SW-MSA, cross-window connection is introduced while maintaining computational efficiency. The main difference between SW-
MSA and W-MSA is the inclusion of a window shift operation prior to W-MSA. This minor modification allows the network model 
to better handle global information. In practical implementation, shifting the feature map achieves the same effect. W-MSA and 
SW-MSA are used alternately to form a Swin Transformer block, which can be represented by the following formulas: 

Gl̂ = W-MSA(Q!(Gl−1)) + Gl−1 (15) 

Gl = rQk(Q!(Gl̂)) + Gl̂ (16) 

Gl̂+1 = SW-MSA(Q!(Gl)) + Gl (17) 

Gl+1 = rQk(Q!(Gl̂+1)) + Gl̂+1 (18) 

Q!(G) = G − s[G]
√uvw(G) + x ⋅ ZX^"y� + z (19) 

Here, Gl̂ and Gl denote the feature maps output by the 9th SW-MSA module and MLP module, respectively. s[G] represents the 
mean of G, uvw(G) represents the variance of G, x is typically set to 1×10-5, and ZX^"y� and z are learnable affine transform parameters. 
When computing self-attention, following previous studies, we first use a MLP layer to map the input embedding feature vector 
into three vectors of equal size: query, key and value. We then compute the similarity between the query and the key, obtain an 
attention weight matrix through a softmax layer, and finally multiply the attention weight matrix by the value to obtain the final 
output. The self-attention formula is given by: 

{��|Y�9}Y(~,M, u ) = >}V�rvG(~M�√� + �)u  (20) 
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Fig. 5. AutoGluon’s multi-layer stacking strategy. 

 

Fig. 6. Overview of swin transformer block and the multi-head self-attention (MSA) module. (a) Architecture of swin transformer block; (b) 
Calculation flow of multi-head self-attention (MSA) module. 

where ~,M, u ∈ ��2×�  are the query, key, and value vectors, respectively. r   denotes the window size for calculating local self-
attention, � denotes the dimension size of the query or key, and � ∈ ��2×�2

 denotes the offset matrix. Since storing a r2 × r2 
matrix requires a significant amount of memory, and the relative position of the patch in the window is typically in the range of 
[−r + 1,r − 1], �̂ ∈ �(2�−1)×(2�−1) is commonly used to store the value of �. 

3. Finite Element Model and Simulated SHM Dataset 
Firstly, in order to investigate the damage identification capability of ML algorithms using DWPCA eigenvectors, it is crucial to 

construct a comprehensive and complete dataset that includes sensor responses under different damage scenarios. However, due 
to safety concerns, it is not feasible to induce actual damage to obtain responses in practical engineering applications. Therefore, 
an accurate finite element model has been developed to generate a larger dataset of responses that includes numerous damage 
scenarios. For this study, we used a benchmark model developed by the Structural Health Monitoring (SHM) Task Group of the 
International Association for Structural Control (IASC) and the American Society of Civil Engineers (ASCE). It was constructed in 
the University of British Columbia (UBC) laboratory. It comprises both a physical laboratory model and an open-source finite 
element model. However, the laboratory benchmark model lacks temperature-induced strain data, particularly a dataset of strain 
responses with damage labels under various damage scenarios. Considering that the open-source finite element model has been 
calibrated using measured acceleration data [3, 4] in this paper, we employed the refined benchmark model in this paper to generate 
a comprehensive dataset of strain responses under different damage scenarios, taking temperature loads into account. 

The benchmark model represents a four-story, two-by-two bay steel braced frame as shown in Fig. 7. The plan dimensions of 
the model are 2.5 m × 2.5 m, with a total height of 3.6 m. Detailed properties of the structural members are documented in Table 1. 

In practical engineering applications, strain measurements are commonly used to monitor responses in SHM. Variations in 
strain are mainly due to seasonal and daily temperature variations. Therefore, a temperature load is applied to the benchmark 
model to obtain strain responses. Temperature data collected over four years from the Xijiang Bridge in Zhaoqing, China are used 
for this purpose. The sampling frequency is set at 4 measurements per day. The temperature loading includes both seasonal and 
daily temperature variations as shown in Fig. 8a. In addition, other factors such as traffic and wind are included as noise sources in 
the finite element model. In this paper, within the virtual monitoring system, sensors are placed at the center point of each brace 
in the benchmark model. The sensors are numbered sequentially from the bottom to the top layer. For example, the sensors on the 
bottom layer are labelled as Sensor 1, Sensor 2, ..., Sensor 8, while the sensors on the top layer are labelled as Sensor 25, Sensor 
26, ..., Sensor 32. 
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Table 1. The properties of the structural members in the benchmark model. 

Property Columns Floor Beams Braces 

Section type B100×9 S75×11 L25×25×3 

Cross-sectional area A [m2] 1.133×10–3 1.43×10–3 0.141×10–3 

Moment of inertia Ix [m4] 1.97×10–6 1.22×10–6 0 

Moment of inertia Iy [m4] 0.664×10–6 0.249×10–6 0 

St. Venant torsion constant J [m4] 8.01×10–9 38.2×10–9 0 

Young’s modulus E [Pa] 2×1011 2×1011 2×1011 

Shear modulus G [Pa] E/2.6 E/2.6 E/2.6 

Mass per unit volume ρ [kg/m3] 7800 7800 7800 

To simulate damage, the stiffness of the braces is reduced to replicate real world conditions. The model consists of a total of 32 
braces representing 32 different damage locations. Damage severity is assumed to be a reduction in stiffness from 10% to 90% in 
10% increments, and damage with a 1% reduction in stiffness is also included. Consequently, there are 11 categories of damage 
severity, including 10 types of damage severity and one healthy category. This results in a total of 321 scenarios, comprising 320 
damage scenarios with 32 different damage locations and 10 different damage severities, and one health scenario. Permanent 
damage at a given location is introduced at the beginning of the third year, specifically after the 2920th measurement. Strain 
responses are collected from these sensors over a period of four years, the first two years in the undamaged state and the last two 
years in the damaged state. A total of 5840 measurements are obtained, consisting of four daily measurements over four years. Fig. 
8b shows an example of time-varying strain acquired by Sensor 1 when Brace 1 experiences a 10% stiffness reduction under noise 
with a signal-to-noise ratio (SNR) of 20dB. It can be observed that the strain levels increase after the occurrence of damage. However, 
the strain changes associated with damage can be masked by ambient noise or when the damage is minimal. It is therefore essential 
to derive features that are sensitive to damage while remaining insensitive to environmental changes. 

In this paper, we apply DWPCA and MPCA to extract damage-sensitive features as inputs for AI algorithms to localize and 
quantify damage. During the computation, MPCA uses all sensors to obtain the corresponding eigenvectors. In contrast, DWPCA 
uses only a subset of sensors within spatial windows to derive its eigenvectors. Specifically, for DWPCA, we consider the simulation 
results under different damage scenarios, where each spatial window includes three neighbouring sensors. Thus, there are a total 
of 30 spatial windows in DWPCA. The spatial windows used in DWPCA are listed below: 

Spatial Window 1: [1 2 3]; Spatial Window 2: [2 3 4]; ..., Spatial Window 30: [30 31 32]. 

 

Fig. 7. Benchmark model proposed by the IASC-ASCE Structural Health Monitoring Task Group. 

  

(a) (b) 

Fig. 8. Response evolution of the benchmark model over four years: (a) Temperature variation; (b) Strain responses in a damage scenario with 
10% stiffness reduction in Brace 1 under 20dB noise. 
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4. Results and Discussion 

Section 4.1 investigates the damage detectability of DWPCA eigenvectors, focusing on the sensitivity and robustness of the first 
and second DWPCA eigenvectors. Sections 4.2 and 4.3 propose different types of DWPCA features that are integrated with the widely 
recognized XGBoost algorithm for damage localization and quantification, respectively. The effectiveness of these different DWPCA 
features combined with the XGBoost algorithm is evaluated in terms of damage localization and quantification. 

Furthermore, Section 4.4 highlights the emergence of AutoGluon, which is an excellent exceptional AutoML framework, and 
explores its combination with DWPCA features for damage localization and quantification. In addition, a comprehensive 
comparison is presented between AutoGluon and a number of representative ML algorithms, including DT and RF, as well as novel 
DL algorithms such as Transformer. This comprehensive comparison aims to assess the performance of AutoGluon in damage 
identification using DWPCA features. 

4.1. A comparative study between MPCA and DWPCA 

As shown in Fig. 8b, the strain changes subtly when the damage is minimal. If the original strains are directly used as inputs for 
ML algorithms, our previous studies have demonstrated that ML performs poorly in damage identification [23]. Therefore, it is 
necessary to extract damage-sensitive features from strains using DWPCA, which will serve as the inputs for ML algorithms. In this 
section, we first evaluate the damage sensitivity and robustness of the first-order and second-order eigenvectors obtained through 
DWPCA. For ease of comparison, the eigenvectors derived from MPCA are also included in the discussion. 

Figure 9 shows the first-order eigenvectors of MPCA and DWPCA using Spatial Window 1 under 40dB and 20dB noise, respectively. 
As can be seen from the first-order eigenvectors obtained by MPCA and DWPCA using Spatial Window 1, both show significant 
shifts after the occurrence of damage. This phenomenon is attributed to the unstable phase between the 2920th and the 4380th 
measurement after the occurrence of the damage. During this phase, the time window includes strains from both undamaged and 
damaged states, with an increasing proportion of strains from the damaged state as the time window moves forward. After the 
4380th measurement, the first-order eigenvector stabilizes as strain responses within the time window are exclusively from the 
damaged state. Notably, the first-order eigenvector derived from DWPCA shows more pronounced changes compared to MPCA. This 
difference can be attributed to the exclusion of insensitive sensors and the improved sensitivity of the damage identification 
features achieved by the DWPCA method. 

In contrast to the original strains and the first-order eigenvector, the second-order eigenvector undergoes the most significant 
change under 40dB noise after damage occurrence, as shown in Fig. 10a. Between the 2920th and 4380th measurements, the second-
order eigenvector undergoes a sharp transition, while the first-order eigenvector changes gradually. When the strain responses 
within the analyzed time window originate exclusively from either undamaged or damaged states, the first-order eigenvector 
exhibits stability with minimal variation, while the noise influences the second-order eigenvector, resulting in its random state. 
However, when the time window includes data from both healthy and damaged states, the second-order eigenvector is 
predominantly influenced by the data from the damaged state. Consequently, the second-order eigenvector remains stable within 
the 2920th and 4380th measurements. Despite the higher sensitivity to damage in an ideal environment, the second-order 
eigenvector shows poor robustness to noise, as shown in Fig. 10b. Tracking the evolution of the second-order eigenvector becomes 
difficult under high levels of noise, thereby hindering damage identification. 

  

(a) (b) 

Fig. 9. Evolution of the first-order eigenvectors by MPCA and DWPCA for the damage located in Brace 1 with 10% stiffness reduction at different 
SNRs: (a) 40dB; (b) 20dB. 

  

(a) (b) 

Fig. 10. Evolution of the second-order eigenvectors by MPCA and DWPCA for the damage located in Brace 1 with a 10% stiffness reduction at 
different SNRs: (a) 40dB; (b) 20dB. 
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In summary, both the first-order and second-order eigenvectors show improved sensitivity to small damage. In addition, DWPCA 
consistently shows higher sensitivity to damage than MPCA. This discrepancy is due to DWPCA's use of a spatial window to exclude 
insensitive sensors, thereby enhancing its ability to identify damage. Notably, the second-order eigenvector also shows significant 
sensitivity to damage, albeit with poor robustness. Consequently, the following section focuses on the use of the first-order and 
second-order eigenvectors derived from both MPCA and DWPCA as inputs to ML algorithms, enabling the evaluation and 
demonstration of the damage identification capability of these novel features. 

4.2. Damage localization 

The XGBoost algorithm is considered to be a typical ensemble learning method with excellent performance in classification 
problems. It is a modification of the traditional gradient boosting decision tree (GBDT) algorithm. In this section, we evaluate the 
detectability of MPCA and DWPCA features for damage localization using the XGBoost algorithm. The MPCA and DWPCA methods 
transform the strain responses into corresponding eigenvector time series. Each damage scenario contains 2920 eigenvectors 
ranging from the 2921st to the 5840th sampling step due to the moving time window applied by MPCA or DWPCA. The data set 
consists of 321 scenarios and 937,320 records. Note that 80% of the dataset is used for training and the remaining 20% for testing. 
For the damage localization problem, there are 33 prediction classes, including 32 locations of all braces in the model and one 
healthy scenario, as shown in Fig. 7. The six input types are listed as follows: 

(1) 61MPCA: the first-order eigenvector extracted by MPCA; 

(2) 62MPCA: the second-order eigenvector extracted by MPCA; 

(3) 61,2MPCA: the combination of first-order and second-order eigenvectors extracted by MPCA, as represented by [61MPCA, 62MPCA]; 

(4) 61DWPCA: the first-order eigenvector extracted by DWPCA; 

(5) 62DWPCA: the second-order eigenvector extracted by DWPCA; 

(6) 61,2DWPCA : the combination of first-order and second-order eigenvectors extracted by DWPCA, as represented by [61DWPCA , 

62DWPCA]. 
The accuracy of the ML algorithms is defined as the percentage of correctly classified records over all samples in the test dataset. 

Fig. 11 illustrates the prediction accuracy of the XGBoost algorithm using different inputs for damage localization at different SNRs. 
It can be seen that regardless of the input, the prediction accuracy of the XGBoost algorithm decreases as the noise intensity 
increases. This can be attributed to the increased overlap of the input curves from different damage scenarios as the noise intensity 
increases. 

With respect to the three inputs including 61DWPCA , 62DWPCA  and 61,2DWPCA , extracted by DWPCA, the results shown in Fig. 11a 
indicate that 61,2DWPCA outperforms the other two features. In addition, it shows a better performance in terms of damage localization 
accuracy. The input 61,2DWPCA, which combines first-order and second-order eigenvectors, shows the best performance among the 
three DWPCA features. This is because the two eigenvectors provide complementary information for damage localization. The first-
order eigenvector 61DWPCA  have good robustness, while the second-order eigenvector 62DWPCA  have higher sensitivity to damage. 
Consequently, it achieves a better performance compared to 61DWPCA  and 62DWPCA . Fig. 11b illustrates the damage localization 
accuracy of XGBoost using three MPCA features at different SNRs. The accuracy of 61MPCA is similar to that of 61,2MPCA, with the two 
curves nearly overlapping. However, the prediction accuracy of 62MPCA is the lowest. It is worth noting that, regardless of whether 
using the first-order eigenvector, the second-order eigenvector, or the combination of first-order and second-order eigenvectors, 
DWPCA consistently demonstrates higher prediction accuracy compared to MPCA at different SNRs. It is worth noting that the 
eigenvectors obtained by DWPCA consistently show better performance than those obtained by MPCA over different noise 
intensities. This can be attributed to the effectiveness of DWPCA in excluding damage-insensitive sensors and enhancing the 
damage sensitivity of the inputs. As a result, the XGBoost algorithm shows improved accuracy in discriminating and localizing 
different damage states. In other words, in addition to 61,2DWPCA , extracted by the DWPCA method, which combines 61DWPCA  and 
62DWPCA, the XGBoost algorithm achieves the best performance in damage localization. 

Figure 12 shows the spatial distribution of the prediction accuracy of the XGBoost algorithm using the three DWPCA features 
for the benchmark model under 20dB noise, focusing on damage localization. Similar to the result shown in Fig. 11a, in each 
damaged scenario, 61,2DWPCA as inputs has the most stable performance and high accuracy in damage localization, followed by 62DWPCA 
and 61DWPCA. Furthermore, it can be seen that XGBoost with DWPCA features slightly outperforms the other two features when the 
damage is located at the bottom. The strain responses and DWPCA eigenvectors undergo significant changes when the damage is 
located in the bottom layer or near the fixed supports. For each damage scenario, 61,2DWPCA extracted by DWPCA shows the best 
performance in damage localization. This is because DWPCA effectively excludes the damage-insensitive sensors and improves the 
damage sensitivity of the inputs. 

  

(a) (b) 

Fig. 11. Damage localization prediction accuracy of XGBoost using six types of inputs extracted by DWPCA and 
MPCA at different SNRs: (a) DWPCA; (b) MPCA. 
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Fig. 12. Distribution of prediction accuracy of XGBoost for damage localization with three types of DWPCA features as 
inputs under 20 dB noise. 

  
(a) (b) 

Fig. 13. Damage quantification prediction accuracy of XGBoost using six types of inputs extracted by DWPCA and MPCA 
at different SNRs: (a) DWPCA; (b) MPCA. 

4.3. Damage quantification 

This section evaluates the performance of the XGBoost algorithm using DWPCA and MPCA features for damage quantification. 
The classification system consists of 11 classes representing different levels of damage severity and one healthy scenario. A 
comparative study is conducted to evaluate the effectiveness of six types of DWPCA and MPCA inputs for damage quantification. 

Figure 13 illustrates the accuracy of XGBoost with DWPCA and MPCA features as inputs at different SNRs. Similar to the damage 
localization results discussed in Section 4.2, the use of DWPCA eigenvectors significantly improves the accuracy of damage 
quantification compared to MPCA features. Regardless of the noise level, DWPCA features perform better in damage quantification 
than MPCA features. Specifically, at 20dB noise, the accuracy of 61,2DWPCA improves by 19% compared to 61,2MPCA, the accuracy of 61DWPCA 
improves by 8% compared to 61MPCA, and the accuracy of 62DWPCA improves by 56% compared to 62MPCA. This improvement can be 
attributed to the preservation of damage sensitivity responses in DWPCA while eliminating insensitivity, thereby increasing the 
sensitivity of the DWPCA eigenvectors. Among the three DWPCA features, combining the first-order and second-order eigenvectors 
as inputs yields higher prediction accuracy than using either eigenvector alone, as shown in Fig. 13a. For example, at 20dB noise, 
the corresponding accuracy of 61,2DWPCA is 14% higher than 61DWPCA and 17% higher than 62DWPCA. The first-order eigenvector shows 
robustness, while the second-order eigenvector exhibits greater sensitivity to damage. Therefore, the combination of these features 
61,2DWPCA is better than using 61DWPCA or 62DWPCA individually as inputs. 

Furthermore, we investigate the performance of XGBoost using DWPCA features for damage quantification across various 
damage severities under 20dB noise, as illustrated in Fig. 14. As the damage intensity increases, there is an upward trend in 
accuracy for both 61,2DWPCA and 62DWPCA, whereas the accuracy of 61DWPCA fluctuates. Additionally, when compared to using 61DWPCA or 
62DWPCA independently, 61,2DWPCA achieves superior accuracy in damage quantification. 

Figure 15 shows the improved accuracy of the combined feature 61，2DWPCA compared to the other two types of features for damage 
quantification. Specifically, Fig. 15a illustrates the improved accuracy of 61,2DWPCA for damage quantification in comparison to using 
61DWPCA as input. It is evident that 61,2DWPCA significantly improves the accuracy of predicting damage severities, except for a damage 
severity of 1%. In the range of damage severities from 20% to 80%, 61,2DWPCA outperforms 61DWPCA with an improvement in accuracy 
of more than 10%. Due to the variability of the included damaged information, the combination of 61DWPCA  and 62DWPCA 
synergistically improves the accuracy of damage severity prediction. However, for damages severity below 20% or above 80%, the 
improvement in accuracy is less than 10%. When the damage severity is below 10%, although 62DWPCA  demonstrates higher 
sensitivity to damage, it is also susceptible to noise interference, which renders the contained damage information ineffective. For 
a damage severity of 90%, both 61DWPCA and 62DWPCA show comparable performance in predicting damage severity, suggesting the 
insignificance of the advantage offered by 61,2DWPCA. On the other hand, Fig. 15b shows the improved accuracy of 61,2DWPCA for damage 
quantification in contrast to using 62DWPCA as input. Similar to the results in Fig. 15a, when the damage intensity reaches 90%, both 
61DWPCA and 62DWPCA experience notable changes, resulting in diminished advantages of the combined features. However, unlike the 
results in Fig. 15a, the combined features 61,2DWPCA show their advantages particularly for minor damages, especially for damage 1% 
and 10% damages. This can be attributed to the minimal variations observed in the second-order eigenvector, where the damage 
information it contains might be obscured by noise. By combining the robustness of 61DWPCA , the shortcomings of 62DWPCA  are 
compensated, consequently improving the damage localization capability. In summary, 61,2DWPCA exhibits the best performance and 
highest accuracies in damage quantification. 
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Fig. 14. Prediction accuracy of XGBoost for damage quantification with three types of DWPCA features under 20 dB 
noise at different damage severities. 

  

(a) (b) 

Fig. 15. Improved accuracy of the combined feature 61,2DWPCA compared to the other two types of features for damage 

quantification: (a) 61DWPCA; (b) 62DWPCA. 

4.4. Different machine learning algorithms with DWPCA features 

In the previous sections, we have concluded that the XGBoost algorithm shows excellent damage identification performance 
when using the combined DWPCA features 61,2DWPCA compared to using individual DWPCA features (61DWPCA or 62DWPCA) or the other 
three MPCA features. In this section, we further evaluate the damage detectability of the DWPCA features by combining them with 
representative and novel ML algorithms. The ML algorithms considered are DT and RF, which are representative and classical, and 
AutoGluon, which is a novel and highly regarded ML algorithm that has gained attention in recent years. These algorithms are 
combined with DWPCA features for damage identification. 

Figure 16 shows the accuracy of the four ML algorithms using three types of DWPCA features for damage localization and 
quantification. Similar to the results in Section 4.1, when using DT, RF, and XGBoost algorithms, the combined DWPCA features 
61,2DWPCA  achieve the best performance and highest prediction accuracy for damage identification compared to using individual 
DWPCA features. In addition, for AutoGluon, both 61,2DWPCA and 62DWPCA achieve high prediction accuracies of over 98% for damage 
localization and quantification. Importantly, regardless of the inputs used, AutoGluon consistently achieves the highest prediction 
accuracies in damage localization and quantification compared to the other three ML algorithms. For example, when using 61,2DWPCA 
as inputs, AutoGluon achieves an improved accuracy of 1%, 5% and 10%, compared to XGBoost, RF, and DT, respectively, for damage 
localization. Similarly, for damage quantification using 61,2DWPCA , AutoGluon achieves an improved accuracy of 8%, 8%, and 16%, 
compared to XGBoost, RF, and DT, respectively. This demonstrates that AutoGluon can effectively mitigate the effects of strong noise 
and exploit the structural damage information contained in the second-order eigenvector, resulting in a high level of accuracy in 
damage localization and quantification. Additionally, AutoGluon's combination of multiple models leads to higher accuracy and 
more reliable predictions. 

Furthermore, Fig. 17 also shows the spatial distribution of prediction accuracy for the four ML algorithms using 61,2DWPCA, under 
20dB noise. It is evident that AutoGluon consistently achieves an accuracy above 95% regardless of the damaged braces, followed 
by XGBoost, RF, and DT. Additionally, AutoGluon shows stable performance in predicting damage localization, followed by XGBoost 
and RF, while DT shows the most unstable performance. This indicates that AutoGluon leverages the strengths of different ML 
algorithms to maximize their advantages, achieving the highest prediction accuracy and stable performance. Meanwhile, XGBoost, 
as an ensemble learning method and based on a combination of multiple decision trees, improves the generalization performance 
of classification algorithms by combining multiple learners to vote on the classification results. 

Figure 18 provides a detailed representation of the accuracy of each algorithm for each level of damage severity. Similar to Fig. 
16, AutoGluon achieves the highest accuracy at all levels of damage severity, followed by XGBoost, RF, and DT. When the damage 
severity exceeds 10%, AutoGluon maintains an accuracy above 95%. Additionally, AutoGluon's advantage becomes more pronounced 
as the damage severity decreases. For example, compared to other algorithms, AutoGluon exhibits improvements of 11%, 11%, and 
10% for a damage severity of 1%, compared to XGBoost, RF, and DT, respectively.  



An Effective Damage Identification Method Combining Double-Window Principal Component Analysis with AutoGluon 543 
 

Journal of Applied and Computational Mechanics, Vol. 10, No. 3, (2024), 531–546 

  

(a) (b) 

Fig. 16. The prediction accuracy of the four ML algorithms using three types of DWPCA features as inputs for damage localization under 20dB 
noise: (a) damage localization; (b) damage quantification. 

 

Fig. 17. Distribution of prediction accuracy of the four ML algorithms using 61,2DWPCA for damage localization under 20dB noise. 

 

Fig. 18. Distribution of prediction accuracy of the four ML algorithms using 61,2DWPCA for damage quantification under 20dB noise. 

In conclusion, AutoGluon stands out as the best performer in damage localization and quantification regardless of the types of 
DWPCA features used as inputs. Its advanced techniques and ability to combine multiple models result in higher accuracy and 
more reliable predictions. The automated hyperparameter tuning feature also contributes to its superior model performance. In 
addition, AutoGluon's strength becomes more pronounced when dealing with minor damages. It should be noted, however, that 
apart from AutoGluon, XGBoost and RF demonstrate significant performance in damage identification when used with the 
combined DWPCA features 61,2DWPCA. These methods exploit the construction of multiple learners to vote on classification results, 
improving the overall performance and generalization capabilities of the classification algorithm. This advantage is particularly 
noticeable when dealing with strong noise in the data. 

4.5. A Comparative study between AutoGluon and Transformer 

Based on the previous study, it can be concluded that when using DWPCA features as inputs, AutoGluon achieves an accuracy 
of over 90% in both damage localization and damage quantification. Particularly, when 61,2DWPCA  are used, AutoGluon achieves 
accuracies of 99% and 98% in damage localization and quantification under 20dB noise, respectively. In this section, we introduce 
Transformer, a model known for its excellent performance in various intelligent recognition tasks, to address the problem of 
damage identification. For this purpose, we combine Transformer with DWPCA features. 

Figure 19 shows the accuracy of AutoGluon and Transformer with three types of DWPCA features for damage localization and 
quantification. From the figure, it can be seen that for each type of DWPCA feature, AutoGluon outperforms Transformer in both 
damage localization and quantification tasks. In particular, in the case of damage quantification, AutoGluon improves the 
prediction accuracy by 19%, 66%, and 16% for 61DWPCA, 62DWPCA and 61,2DWPCA as inputs, respectively. 
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(a) (b) 

Fig. 19. Prediction accuracy of AutoGluon and Transformer with three types of DWPCA features as inputs for damage 
identification under 20dB noise: (a) damage localization; (b) damage quantification. 

5. Conclusion 

In this paper, we investigate the characteristics of the first-order and second-order eigenvectors obtained by DWPCA and 
propose three types of DWPCA features. These features are combined with various ML and DL algorithms for damage localization 
and quantification. Based on the observations and discussions in the previous section, the following conclusions can be drawn: 

(1) Regarding MPCA and DWPCA, it is found that the second-order eigenvector also shows considerable sensitivity to damage, 
although it lacks robustness. 

(2) For ML and DL algorithms, the use of DWPCA eigenvectors significantly improves the accuracy of damage quantification 
compared to MPCA features. This improvement can be attributed to the effectiveness of the spatial windows of DWPCA in 
excluding damage-insensitive sensors and enhancing the damage sensitivity of the inputs. Furthermore, the combined 
DWPCA feature 61,2DWPCA  results in the highest prediction accuracy and best performance in damage localization and 
quantification. The first-order eigenvector shows robustness, while the second-order eigenvector shows greater damage 
sensitivity. Therefore, the combination of these features outperforms using either the first-order or second-order eigenvector 
individually as inputs. 

(3) Regardless of the three types of DWPCA features, Autogluon achieves the highest accuracy in damage localization and 
quantification, followed by XGBoost, RF, and DT. It suggests that ensemble learning using multiple ML algorithms, often leads 
to higher accuracy than using a single algorithm. Furthermore, with DWPCA features as input, AutoGluon outperforms 
Transformer in both damage localization and quantification tasks. In particular, in the case of damage quantification, 
compared to Transformer, AutoGluon improves the prediction accuracy by 19%, 66%, and 16% for 61DWPCA, 62DWPCA and 61,2DWPCA 
as inputs, respectively. 

In summary, the method proposed in this paper, which combines AutoGluon with the aforementioned features, exhibits higher 
sensitivity and better resolution in damage identification compared to other traditional methods. This demonstrates its potential 
for practical engineering applications. Validation using experimental data scenarios or real damage scenarios is essential. The next 
step in the research is to apply the proposed methodology to a database of measurements obtained from full-scale structures. 
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Nomenclature 

� The response matrix � The response of one sensor 

�� The time step #$ The size of a time window 

!' The total number of sensor measurements � The covariance matrix 

23  The eigenvalues 6 The eigenvectors 

�3  The identity matrix : The eigenvector component 

0 The total number of sensors 0" The sensor serial number in a spatial window 

>?  Spatial windows � The size of a spatial window 

F The training data set in ML K  The response corresponding to F 

G A component in training data set F L A component in response data set K  
M The total number of trees in RF O The independent and identically distributed 

random vectors 

Q The training loss function R The regularization term 

L*̂ The output of the model P The objective function 

T  An ensemble of trees Y The prediction number 

Z[\]X The complexity of each leaf in XGBoost #X^ The number of leaves in a decision tree 

2[\]X A scaling parameter for the penalty in XGBoost _ The vector of scores assigned to the leaves 

f(⋅) A function that assigns each data point to its 

corresponding leaf 

a* The first derivatives of the MSE loss function 

ℎ* The second derivatives of the MSE loss function k% All the data samples in leaf node & 
Gl̂,Gl The feature maps output by the SW-MSA module and 

MLP module 

s[G] The mean of G in Transformer 

uvw(G) The variance of x in Transformer ZX^"y� The learnable affine transform parameter 

z The learnable affine transform parameter ~ The query vectors 

u  The value vectors M The key vectors 

r The window size for calculating local self-attention � The dimension size of the query or key vectors 

� The offset matrix   
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