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Abstract. The limit load is an important input parameter of analytical flaw assessment procedures. The accuracy of limit load 
solutions affects the accuracy of these procedures. The present paper evaluates the influence of a class of the work functions 
involved in the upper bound theorem on the upper bound limit load of a round highly undermatched tensile bar. It is assumed that 
the weld contains a crack. The boundary value problem is axisymmetric. The work functions considered cover the entire range of 
physically reasonable yield criteria, assuming the material is isotropic and incompressible. The kinematically admissible velocity 
field chosen accounts for some features of the real velocity field. In particular, the kinematically admissible velocity field is singular 
near the interface between the base material and weld. As a result, the new solution predicts a more accurate limit load than 
available solutions for the von Mises and Tresca yield criteria. Moreover, the effect of the generalized yield criterion associated with 
the work functions above on the limit load is shown. 

Keywords: Limit load; upper bound theorem; highly undermatched structure; generalized yield criterion. 

1. Introduction 

The importance of analytical models in fatigue and fracture mechanics has been emphasized in [1]. In particular, analytical flaw 
assessment procedures are widely used in engineering practice for the assessment of the remaining load capacity of structures 
containing a crack [2]. An important class of such structures is welded structures containing cracks and other defects in the weld. 
The welded structures are conveniently divided into two groups. One of these groups includes overmatched structures (i.e., the 
base material is softer than the weld) and the other undermatched structures (i.e., the weld is softer than the base material). 
However, sometimes a portion of the weld is softer than the base material, and the remainder is stronger [3]. Undermatched welded 
joints are important for several industry sectors. Several examples of using such joints have been reported in [4–7]. Limit load 
solutions are required to apply flaw assessment procedures to undermatched welded joints. In some cases, the difference between 
the yield stresses of the weld and base material is so high that the weld becomes fully plastic under loading, whereas the base 
material is elastic [8, 9]. Such welded joints are named highly undermatched welded joints.  

The limit load is an essential input parameter of the analytical flaw assessment procedures [2]. Many limit load solutions for 
highly undermatched welded joints are available in the literature. A review of such solutions has been presented in [8]. Most of 
these solutions are under plane strain conditions. A distinguished feature of plane strain solutions is the independence of the 
dimensionless limit load on the yield criterion. The reason for this feature is two-fold. Firstly, the limit load is independent of the 
elastic properties of materials [10]. Secondly, any plane strain pressure-independent yield criterion for isotropic perfectly plastic 
materials postulates that the difference between the two principal stresses in a generic flow plane is constant [11, 12]. However, in 
the case of other deformation modes, the yield criterion can affect the limit load. It is worthy of note that the effect of anisotropic 
yield criteria on the limit load has been intensively investigated in the literature. Several limit load solutions for anisotropic yield 
criteria have been provided in [13-15]. In particular, it has been shown that this effect can be significant. Therefore, investigating 
the effect of various isotropic yield criteria on the limit load is important. A study on the fracture behavior of welded joints with 
multiple defects has been presented in [16]. The present paper aims to show the effect of generalized isotropic yield criteria on the 
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limit load of an axisymmetric highly undermatched welded rod subject to tension. It is assumed that a circular crack is located in 
the weld.  

Two upper bound solutions for the specimen above have been proposed in [17]. One of these solutions is for the von Mises yield 
criterion, and the other for Tresca’s. In either case, standard formulations of the upper bound theorem presented in textbooks apply. 
Using a generalized yield criterion requires the formulation given in [18]. To the best of the authors’ knowledge, this formulation 
has never been applied in fracture mechanics. One difficulty is that the theorem proven in [18] involves the work function. An 
explicit function representing the yield criterion associated with a given work function cannot readily be expressed except for some 
particular cases, such as the von Mises and Tresca yield criteria. However, the two work functions introduced in [19] can closely 
approximate any isotropic pressure-independent yield criterion. In particular, one of them closely represents a widely used 
generalized yield criterion proposed in [20]. The two work functions above are adopted in the present paper.   

In the case of highly undermatched welded joints, the bi-material interface is usually a velocity discontinuity surface. An 
important mathematical feature of such surfaces is that the real velocity field in the plastic material is singular [21]. In particular, 
some strain rate components approach infinity or negative infinity. This feature has been successfully used for constructing 
kinematically admissible velocity fields in conjunction with the von Mises and Tresca yield criteria [17, 22]. However, the theoretical 
result in [21] applies to any isotropic yield criterion. The present paper combines this result with the work functions [19] for deriving 
a new upper bound limit load. 

The general procedure for calculating the limit load is illustrated with a numerical example. This example shows the effect of 
the isotropic yield criterion on the limit load of a highly undermatched welded rod with a crack subject to uniaxial tension. This 
general solution provides a solution for the von Mises criterion at a specific value of parameters involved in the work functions. 
Another solution for this yield criterion has been provided in [23], where compression of a solid disk has been considered. A 
comparison of the two solutions shows that the new solution predicts a better estimate of the limit load for this particular case. It 
is worthy of note that the difference between tension and compression is immaterial for pressure-independent materials if the 
tensile specimen contains no crack. It is because any kinematically admissible velocity field for the tensile specimen can be 
obtained from a kinematically admissible velocity field for the compressed specimen by changing the sense of the velocity 
components. 

2. Statement of the Problem 

A round welded bar is subject to tension. The bar's radius is 0 ,R  and the half-thickness of the weld is .H  A circular crack is 
located at the middle plane of the weld. Its radius is 0.a  The tensile force is denoted as .F  It is supposed that the weld is much 
softer than the base material such that plastic deformation localizes in the weld. The base material is elastic. It may be regarded as 
rigid for limit analysis [10]. The velocity of each block of rigid material is .V  Its magnitude is immaterial for rate-independent 
models. A schematic diagram of the bar is depicted in Fig. 1.  

The overall objective of this research is to evaluate the tensile force at plastic collapse. 
 

 

Fig. 1. Schematic diagram of the specimen. 
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It is assumed that the weld obeys a generalized isotropic yield criterion. It is known that the Tresca and Schmidt–Ishlinskii yield 
criteria form two extreme bounds for all physically reasonable pressure-independent isotropic yield criteria [20]. However, the upper 
bound theorem presented in [18] requires the work function rather than the yield criterion. In general, the work function associated 
with a given yield criterion cannot be represented by an explicit function. However, it is possible to formulate two work functions 
such that the associated yield criteria cover the entire domain between the two extreme bounds above [19]. Let 0σ  be the yield 
stress in tension. One of these work functions is: 
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Here 1 ,ξ  2ξ  and 3ξ  are the principal strain rates satisfying the inequalities: 

1 2 3.ξ ξ ξ≥ ≥  (3) 

Also, t and m are constitutive parameters. It is possible to check by inspection that the work function 1E  is associated with the 
von Mises yield criterion at 2t =  and the Schmidt–Ishlinskii yield criterion as .t→∞  Similarly, the work function 2E  is associated 
with the von Mises yield criterion at 2m=  and the Tresca yield criterion as .m→∞  Thus, the work functions allow one to cover 
the entire domain between the Tresca and Schmidt–Ishlinskii yield criteria as 2 t≤ <∞  and 2 .m≤ <∞  

The solution in the next sections is in the cylindrical coordinate system ( ), ,r zθ  shown in Fig. 1. It is convenient to use the 
following dimensionless quantities: 

0

,
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ρ =     ,
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ζ =     
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3. Kinematically Admissible Velocity Field 

Because of symmetry, the half-space 0z≥  needs to be considered. The general structure of the kinematically admissible 
velocity field is shown in Fig. 2. The region on the left to line AB  is rigid. This region moves along with the rigid base material with 
velocity .V  The region on the right to line AB  is plastic. AB  and BC  are velocity discontinuity lines. 

Let ru  and zu  be the radial and axial velocities in the cylindrical coordinate system. The velocity boundary conditions are 0zu =  
for 0z=  and zu V=  for .z H=  Then, using (4), it is reasonable to assume that: 

zu Vζ=  (5) 

in the plastic region. In particular, this assumption applies in Prandtl’s solution for the plane strain compression of a plastic layer 
between two plates (see, for example, [11]). An accurate numerical solution [12] has confirmed the high accuracy of this approximate 
solution. 

In the cylindrical coordinate system, the equation of incompressibility is represented as 

0.r r zu u u

r r z

∂ ∂
+ + =

∂ ∂
 (6) 

 

 

Fig. 2. General structure of the kinematically admissible velocity field. 
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Using equations (4) and (5), one can transform Eq. (6) to: 

( )
.ru V

h

ρ
ρ

ρ

∂
=−

∂
 (7) 

This equation can be immediately integrated to give: 
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V h
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ρ
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Here ( )g ζ  is an arbitrary function of .ζ  Using equations (5) and (8), one can represent the velocity vector in the plastic region 
as: 

( ) ( )
,
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where i  and j  are the unit base vectors of the cylindrical coordinate system directed along the r- and z- axes, respectively. The 
rigid region moves along the z-axis (Fig. 2). Therefore, its velocity is: 

( ) .V=ru j  (10) 

For further convenience, equation (9) is rewritten as: 

( ) ( ), ,Vf Vβ ζ ζ= +pu i j  (11) 
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The velocity is discontinuous along line AB  (Fig. 2). However, the normal velocity must be continuous across this line. Let n  be 
the normal vector to line .AB  It follows from the geometry of Fig. 2 that: 

sin cos .γ γ=− +n i j  (13) 

Here γ  is the angle between the radial coordinate and the tangent to line AB  measured from the coordinate anticlockwise. 
The condition that the normal velocity is continuous can be represented as ( ) ( )⋅ = ⋅r pn u n u . It is understood here that ( )ru  and ( )pu  
are calculated at line .AB  Substituting equations (10), (11), and (13) into this equation yields: 
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Using trigonometric identities, one can get from this equation: 
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It has been taken into account here that 0 .γ π< <  It follows from the geometry of Fig. 2, Eqs. (4) and (12) that: 
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Equations (14) and (16) combine to give: 
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Eliminating ( ),f β ζ  here using the second equation in (12) results in the following linear differential equation for :β  
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Its general solution is: 
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Here C  is constant. It is seen from this solution that β  is finite at 1ζ =  only if 0.C=  Putting 0,C=  one transforms Eq. (19) to: 
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The right-hand side of this equation reduces to the expression 0 0  as 1.ζ →  Applying l’Hospital’s rule gives: 

( )2 1 .B hgβ =  (21) 

Here Bβ  is the value of β  at point B  (Fig. 2). The first equation in (12) and equation (20) determine the shape of the velocity 
discontinuity line. Therefore, constructing the kinematically admissible velocity field has been completed. 

4. Limit Load 

The plastic work rate below is calculated assuming the plastic region is in contact with the base material over a finite domain. 
Using Eq. (21), one can express this condition as: 

 

( )2 1 1.hg <  (22) 

This inequality will be verified a posteriori. It is necessary to calculate the plastic work rate in the volume, ,VW  at the velocity 
discontinuity surface ,AB ,ABW  and at the velocity discontinuity surface ,BC .BCW  

The plastic work rate in the volume is: 
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Here ( )ABr r z=  is the equation of the velocity discontinuity line .AB  Using equation (4) and the first equation in (12), one can 
transform equation (23) to: 
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It is seen from equations (1) and (2) that it is necessary to calculate the principal strain rates to determine the integrand. The 
non-zero strain rate components in the cylindrical coordinate system are expressed through the radial and axial velocities as: 
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Substituting equations (5) and (8) into equation (25) and using equations (4) and (12) leads to: 
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It is convenient to rewrite these expressions as: 
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The circumferential strain rate is one of the principal strain rates, 2.θθξ ξ=  The other principal strain rates are determined as: 
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Using equations (27) and (28), one can transform equation (29) to: 
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Equations (1) and (2) can be rewritten as: 
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Here 2 2 .H Vε ξ=  Substituting equation (32) into equation (24) gives: 
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for 1E E=  and 2 ,E E=  respectively. The right-hand sides of these equations can be evaluated numerically for any given function 
( ).g ζ  The plastic work rate at the velocity discontinuity surface AB  is: 
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Here k  is the shear yield stress and [ ]u  is the amount of velocity jump. The latter is determined as: 
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It follows from equations (10), (11), and (36) that: 

[ ] ( )2 21 .u V fζ= − +  (37) 

Utilizing equation (15), one can rewrite this equation as: 
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Utilizing the first equation in (16) and equation (4), one can transform equation (39) to: 
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Eliminating dS  and [ ]u  in equation (35) using equations (38) and (40) leads to: 

( )
( )1

2 2
0 0 0 0

1
2 .

sin
AB

d

W k
h d

VR

ζ
β ζ ζ

π σ σ γ

  − =     ∫  (41) 

Using equations (16), (18), and (19), one can evaluate the right-hand side of this equation numerically for any given function 
( ).g ζ  The plastic work rate at the velocity discontinuity surface BC  is: 
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It is understood here that the radial velocity is calculated at 1.ζ =  Using equations (4), (8) and (21), one can transform equation 
(42) to: 
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The shear yield stress involved in equations (41) and (44) depends on the work function and is given by [19]: 
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for 1E E=  and 2 ,E E=  respectively. 
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According to the theorem [18], an upper bound on the limit load is estimated as .u V AB BCF V W W W= + +  Then, the dimensionless 
upper bound limit load is: 

2 2 2 2
0 0 0 0 0 0 0 0

.u BCV AB
u

F WW W
f

R VR VR VRπ σ π σ π σ π σ
= = + +  (46) 

Equations (34), (41), and (44) allow for the right-hand side of this equation to be calculated for any given function ( ).g ζ  

5. Numerical Example 
5.1. Function ( )g ζ  

Symmetry dictates that ( )g ζ  is an even function of .ζ  Moreover, the general theory [16] requires that ( )1 1dg d Oζ ζ= −  as 
1.ζ →  One of the simplest functions satisfying both conditions is: 

( ) 2
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where 0g  and 1g  are constant. Substituting equation (47) into equation (20) and integrating yields: 
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This velocity discontinuity line should pass through the crack tip for the velocity field to be kinematically admissible. Therefore, 
taking into account the definition for ,β ( ) 20 .d aβ =  Using this condition, one can get from equation (48): 
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Moreover, it follows from equations (21) and (47) that 12 .B hgβ =  Employing this equation and equation (49), one can transform 
equations (47) and (48) to: 
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respectively. 

 

Fig. 3. Verification of the solution. 
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Fig. 4. Effect of the work function on the limit load at a = 0.1. 

 

Fig. 5. Illustration that the inequality in (22) is satisfied at a = 0.1. 

It remains to substitute equations (50) and (51) into equations (34), (41), and (44) and evaluate the integrals numerically. The 
right-hand side of equation (46) so calculated depends on .Bβ  Minimizing with respect to this parameter provides the best upper 
bound based on the kinematically admissible velocity field chosen. 
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5.2. Verification of the solution 

An upper bound solution for the von Mises yield criterion has been presented in [23]. This paper has considered the compression 
of a solid disk. However, it is immaterial for comparison with the solution for the tensile specimen with no crack since the yield 
criterion is pressure-independent. Figure 3 depicts the dependence of the dimensionless upper bound limit load on h found in [23] 
and the new solution for the work functions associated with the von Mises yield criterion (i.e., 2t =  in 1E  and 2m=  in 2 ).E  The 
upper bound theorem states that a more accurate solution supplies a lower limit load. It is seen from Figure 3 that the new solution 
is more accurate than the solution [23]. It is a consequence of a more realistic kinematically admissible velocity field whose behavior 
near the plane of symmetry and contact surface coincides with that of the real velocity field. Another upper bound solution for the 
von Mises yield criterion has been presented in [17]. The dependence of the dimensionless upper bound limit load on h found in 
this work is also shown in Fig. 3. The solution [17] accounts for the behavior of the real velocity field near the plane of symmetry 
and contact surface. Therefore, it predicts a more accurate limit load than the solution [23]. However, the new limit load solution is 
more accurate than the solution [17]. It results from a more realistic shape of the velocity discontinuity surface AB in the new 
solution. The results presented in [17] has also derived a solution for Tresca’s yield criterion. The work function 2E  closely 
approximates Tresca’s yield criterion if m is large enough. The calculation has been carried out at 20.m=  Figure 3 illustrates that 
the new solution is more accurate than the solution [17]. 

 

Fig. 6. Effect of the work function on the limit load at a = 0.3. 

 

Fig. 7. Illustration that the inequality in (22) is satisfied at a = 0.3. 
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Fig. 8. Effect of the work function on the limit load at a = 0.5. 

 

Fig. 9. Illustration that the inequality in (22) is satisfied at a = 0.5. 

5.3. Effect of the yield criterion on the limit load 

The numerical solution is illustrated in Figs. 4 to 9. In particular, Figs. 4, 6, and 8 depict the dependence of the dimensionless 
limit load on h  at 0.1,a=  0.3,a=  and 0.5,a=  respectively. The different curves in these figures illustrate the effect of the work 
function or the yield criterion on the limit load. Figures 5, 7, and 9 together with equation (21) show that the inequality in (22) is 
satisfied. These numerical results are in agreement with physical expectations. In particular, the limit load increases as the yield 
surface moves from Tresca’s hexagon ( )m→∞  to Mises’ circle ( 2m =  and 2)t =  and then to Schmidt–Ishlinskii’s hexagon ( ).t→∞  
Also, the limit load increases as h decreases independently of other parameters. 
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6. Conclusion 

A new upper bound solution for a round highly undermatched welded bar subject to tension has been derived. The weld 
contains a circular crack. A distinguished feature of this solution is that it is valid for quite an arbitrary isotropic yield criterion. The 
version of the upper bound theorem that has never been used in fracture mechanics has been adopted to achieve this result. The 
solution has been compared to available solutions for the von Mises and Tresca yield criteria found using the standard version of 
the theorem. It has been shown that the new solution predicts a more accurate limit load. It results from using the singular 
kinematically admissible velocity field and a realistic shape of one of the velocity discontinuity surfaces. The effect of the work 
function and geometric parameters on the limit load has been comprehensively illustrated. The solution can be readily applied for 
evaluating this effect on the prediction of analytical flaw assessment procedures. 
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