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Abstract. In the present work, a displacement-based high-order shear deformation theory is introduced for the static response of 
functionally graded plates. The present theory is variationally consistent and strongly similar to the classical plate theory in 
many aspects. It does not require the shear correction factor, and gives rise to the transverse shear stress variation so that the 
transverse shear stresses vary parabolically across the thickness to satisfy free surface conditions for the shear stress. By dividing 
the transverse displacement into the bending and shear parts and making further assumptions, the number of unknowns and 
equations of motion of the present theory is reduced a and hence makes them simple to use. The material properties of the plate 
are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of volume fractions of 
material constituents. The equilibrium equations of a functionally graded plate are given based on the higher order shear 
deformation theory. The numerical results presented in the paper are demonstrated by comparing the results with solutions 
derived from other higher-order models found in the literature and the present numerical results of Finite Element Analysis (FEA). 
In the numerical results, the effects of the grading materials, lay-up scheme and aspect ratio on the normal stress, shear stress 
and static deflections of the functionally graded sandwich plates are presented and discussed. It can be concluded that the 
proposed theory is accurate, elegant and simple in solving the problem of the bending behavior of functionally graded plates.  

Keywords: Sandwich Plates, Functionally Graded Materials, Higher-Order Plate Theory, Stress, FEA. 

1. Introduction 

Functionally graded materials (FGM) are a type of composites whose properties vary gradually though directions. These types 
of advanced materials have more strength than classical composites and do not have interface problems, in contrast with layered 
composites. Because of these advantages, the functionally graded materials have been subject of investigation for a few decades. 

Sandwich plates are made up of two face sheets or skins that are bonded together with a core in between them. The face 
sheets transmit in-plane and shear loads, while the core separates the face sheets to withstand transverse normal and shear 
loads. The resulting structure exhibits a high bending stiffness with low specific weight [1], and thus find applications in fields 
such as aerospace and aeronautics, nuclear energy, military, and medicine, among others. A metal-ceramic-based functionally 
graded material has numerous industrial applications because when combined, metals provide high toughness while ceramics 
have high-temperature resistance [2]. Because of the different thermo-mechanical properties of metal and ceramics, an abrupt 
change in the metal and ceramics combination causes high-stress concentration at the face sheet and core interface, which leads 
to delamination [3]. Hence, it is preferred to select either the skins or the core to be made of functionally graded materials. 

Some researchers have investigated the bending of the FG plates by employing the plate theories. The most fundamental 
deformation theory is classical plate theory (CPT) which assumes that the plane normal to the mid plane before bending remains 
plane and normal after bending. This approach neglects the effect of all transverse stresses and it is therefore less accurate. 
Hence, it yields accurate results for the case of thin plates only. Javaheri and Islami [4] have obtained the static response of FGPs 
using CPT. The disadvantage of CPT was overcome by the first-order shear deformation theory (FSDPT) proposed by Reissner [5] 
and Mindlin [6] which considers the effect of transverse shear deformation. This theory does not satisfy the stress-free boundary 
conditions on the surfaces of the plate and requires an arbitrary shear correction factor. To avoid the use of shear correction 
factors, several higher-order shear deformation plate theories (HSDTs) have been proposed, such as the third order shear 
deformation theory (TSDPT) by Reddy [7], Tran et al. [8], Taj et al. [9], and Oktem et al. [10]. Various higher order shear 
deformation theories have been developed using five unknown functions. The theory presented by Houari et al. [11] is a new 
refined plate theory for bending response, buckling and free vibration of simply supported FGM sandwich plate with only four 
unknown functions. This theory is variationally consistent, does not require a shear correction factor, and gives rise to transverse 
shear stress variation such that the transverse shear stresses vary parabolically across the thickness, satisfying the shear stress-
free surface conditions. 
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In recent years, many researchers have focused on studying the behavior of functionally gradient material structures; Shaat 
et al. [12] analysis size-dependent of functionally graded ultra-thin films. Malikan et al. [13] investigated a new hyperbolic-
polynomial higher-order elasticity theory for mechanics of thick FGM beams with imperfection in the material composition. 
Golmakani et al. [14] developed bending analysis of functionally graded nanoplates based on a higher-order shear deformation 
theory using dynamic relaxation method. Tahouneh [15] studied free vibration analysis of bidirectional functionally graded 
annular plates resting on elastic foundations using differential quadrature method. Abdelrahman [16] developed effect of 
material transverse distribution profile on buckling of thick functionally graded material plates according to TSDT. Taj et al. [17] 
used finite element analysis of functionally graded sandwich plates under nonlinear sense for aerospace applications. Recently 
Yoosefian et al. [18] developed nonlinear bending of functionally graded sandwich plates under mechanical and thermal load. 
Thai et al. [19] studied bending of Symmetric Sandwich FGM Beams with Shear Connectors. Van Vinh et al. [20] developed an 
improved first-order mixed plate element for static bending and free vibration analysis of functionally graded sandwich plates. 
Sofiyev [21] developed the vibration and buckling of sandwich cylindrical shells covered by different coatings subjected to the 
hydrostatic pressure. 

To the best of our knowledge, there has been no investigation on the bending of FGM sandwich plates using Finite Element 
Analysis (FEA) and at the same time comparing it with the four variable plate theory (RPT). This work aims to develop a simple 
higher order shear deformation theory (RPT) for the bending analyses of FG sandwich plates. The proposed theory has only four 
unknowns and four governing equations, but it satisfies the stress-free boundary conditions on the top and bottom surfaces of 
the sandwich plate without requiring any shear correction factors. Analytical solutions are obtained for sandwich plate with FG 
face sheets and its accuracy is verified by comparing the obtained results with those reported in the literature and the FEA 
implementation. The effects of several variables, such as thickness aspect ratios, gradient index and sandwich plate type on 
bending of FG sandwich plate are all investigated and discussed. 

2. Problem Formulation 

2.1. Preliminary concepts and definitions 

The geometry and dimensions of the rectangular plate made of FGMs under consideration are represented in Fig. 1. 
Rectangular Cartesian coordinates (x, y, z) are used to describe infinitesimal deformations of a three-layer sandwich elastic plate 
occupying the region [0, a] × [0, b] × [-h/2, h/2] in the unstressed reference configuration, and the axes are parallel to the edges of 
the plate. The plate has length a, width b, and uniform thickness h. The mid-plane of the composite sandwich plate is defined by 
z = 0 and its external bounding planes being defined by z = ±h/2. The vertical positions of the bottom surface, the two interfaces 
between the core and faces layers, and the top surface are denoted, respectively, h1 = -h/2, h2, h3 and h4 = +h/2. 

The face layers of the sandwich plate are made of an isotropic material with material properties varying smoothly in the z 
(thickness) direction only. The core layer is made of an isotropic homogeneous material, as shown in Fig. 2. For brevity, the ratio 
of the thickness of each layer from bottom to top is denoted by the combination of three numbers, i.e., ‘‘1-0-1’’, ‘‘2-1-2’’ and so on. 
The volume fraction of the FGMs is assumed to obey a power-law function along the thickness direction as shown below: 
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where h1, h2 and h3 are the bottom surface coordinates of the bottom face layer, the core layer and the top layer, respectively. 
Likewise, h2, h3 and h4 are the top surface coordinates of the bottom face layer, the core layer and the top layer, respectively. In Eq. 
(1), k indicates the power-law coefficient (volume fraction index). When k = 0, the material of plate becomes homogeneous 
ceramic. 

The effective material properties, such as Young’s modulus E, Poisson’s ratio ,ν  and thermal expansion coefficient α  can 

be then expressed by the rule of mixture, as follows: 

( ) ( )( ) ( )
1 2 2

n nP z P P V P= − +  (2) 

where P(n) is the effective material property of FGM of layer n. Note that P1 and P2 are the properties of the top and bottom faces of 
layer 1, respectively, and vice versa for layer 3 depending on the volume fraction V(n) (n = 1, 2, 3). 

 

 

Fig. 1. Geometry of the functionally graded sandwich plate. 
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Fig. 2. The material variation along the thickness of the FGM sandwich plate. 

 

2.2. Displacement field and strains 

The in-plane displacement u, v is assumed in x and y directions and transverse displacement w in z direction in the multi-
directional FGM sandwich plate. In-plane and transverse displacements with consideration of the refined shear deformation 
theory can be written as [11]: 
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where, 
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in which u0, v0, wb and ws are in-plane and transverse displacements at the middle plane, respectively. The strains associated 
with the displacements in Eq. (3) are: 
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(6) 

The stress-strain relationship for multi-directional FGM sandwich plate can be written as: 
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2.3. Governing equations 

The governing equations of equilibrium can be derived by using the principle of virtual displacements. The principle of virtual 
work in the present case yields: 
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where A is the top surface and q is the applied transverse load. Substituting Eqs. (5) and (7) into Eq. (9) and integrating through 
the thickness of the plate, Eq. (9) can be rewritten as: 
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Substituting Eq. (7) into Eq. (11) and integrating through the thickness of the plate, the stress resultants are given as: 

 

s

b s b

s s s s s

N A B B

M B D D k

M B D H k

ε                  =                      

 (12a) 

44

55

0

0

s s s
yz yz

s s s
xz xz

S A

S A

γ

γ

            =               
 (12b) 

in which, 

{ }, , ,
T

x y xyN N N N=  { }, ,
Tb b b b

x y xyM M M M= , { }, ,
Ts s s s

x y xyM M M M= , (13a) 

{ }0 0 0, ,
T

x y xyε ε ε γ= , { }, ,
Tb b b b

x y xyk k k k= , { }, ,
Ts s s s

x y xyk k k k= , (13b) 

11 12

12 22

66

0

0

0 0

A A

A A A

A

 
 
 =  
 
 

, 
11 12

12 22

66

0

0

0 0

B B

B B B

B

 
 
 =  
 
 

, 
11 12

12 22

66

0

0

0 0

D D

D D D

D

 
 
 =  
 
 

, (13c) 

11 12

12 22

66

0

0

0 0

s s

s s s

s

B B

B B B

B

 
 
 =  
 
  

, 
11 12

12 22

66

0

0

0 0

s s

s s s

s

D D

D D D

D

 
 
 =  
 
  

, 
11 12

12 22

66

0

0

0 0

s s

s s s

s

H H

H H H

H

 
 
 =  
 
  

, (13d) 

{ },
ts s

xz yzS S S= , { }0 0,
t

xz yzγ γ γ= , 44

55

0

0

s
s

s

A
A

A

 
 =  
 

, (13e) 

and the stiffness components are given as: 
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The governing equations of equilibrium can be derived from Eq. (10) by integrating the displacement gradients by parts and 
setting the coefficients 0 ,uδ 0 ,vδ bwδ  and swδ  to zero separately. Thus, one can obtain the equilibrium equations associated 
with the present shear deformation theory: 
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By introducing Eq. (12) into Eq. (15), the equations of motion can be expressed in terms of displacements 0( ,u 0,v ,bw )sw  and 
the appropriate equations take the form: 
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Clearly, when the effect of transverse shear deformation is neglected, Eq. (16) yields the equations of motion of FG plate based 
on the CPT. 

2.4. Navier solution for simply supported rectangular FGM sandwich plate 

The Navier solution method is employed to determine the analytical solutions for which the displacement variables are 
written as product of arbitrary parameters and known trigonometric functions to respect the equations of motion and boundary 
conditions: 
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where ,mnU ,mnV bmnW  and smnW  are arbitrary parameters to be determined, /m aλ π=  and / .n bµ π=  The transverse load q is 
also expanded in the double-Fourier series as: 

( ) ( ) ( )
1 1

, sin sinmn
m n

q x y q x yλ µ
∞ ∞

= =

=∑∑  (18) 

For the case of a sinusoidally distributed load, we have: 

1m n= =  and 11 0q q=  (19) 

and in the case of uniformly distributed load, we have: 

0
2

For odd , 

Fore

12
,

0 ven , ,
mn

q

q
m n

m n
mnπ

= 

 (20) 

where 0q  represents the intensity of the load at the plate center. 

Substituting Eq. (17) and (18) into Eq. (16), the following problem is obtained: 
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 (21) 

where, 
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 + = + + +

 (22) 

3. Numerical Results and Discussions 

Functionally graded sandwich plate based on the present higher order shear deformation model is considered here. Some 
representative results of the Navier solution obtained for a simply supported rectangular sandwich plate are presented in detail.  

Unless mentioned otherwise, a simply supported Al/Al2O3 sandwich plate composed of Aluminum face sheets (as metal) and 
an Alumina core (as ceramic) is studied. The following material properties have been used: 

Metal (Aluminium, Al): 70mE =  GPa; Poisson's ratio 0.3.ν =  
Ceramic (Alumina, Al2O3): 151cE =  GPa; Poisson's ratio 0.3.ν =  
Several kinds of sandwich plates are presented according to the thickness of the core layer which is fully ceramic while the 

bottom and top surface of the plate are metal-rich. 
- The (1-0-1) FGM sandwich plate: The plate is symmetric and made of only two equal-thickness FGM layers, that is, there is 

no core layer. Thus, 1 2 0.h h= =  
- The (1-1-1) FGM sandwich plate: The plate is symmetric and made of three equal thickness layers. In this case, we have, 

1 / 6,h h=− 2 / 6.h h=  
- The (2-1-2) FGM sandwich plate: The plate is symmetric and we have: 1 / 10,h h=− 2 / 10.h h=  
- The (2-2-1) FGM sandwich plate: The plate is non-symmetric and we have: 1 / 10,h h=− 2 3 / 10.h h=  
- The (1-2-1) FGM sandwich plate: The plate is symmetric and we have 1 / 4,h h=− 2 / 4.h h=  
 
For convenience, and mathematical clarity, the following dimensionless of the equations are used: 

Central deflection :W  

0
2

0

10
,

2 2

hE a b
W w

q a

 =   
 (23) 

Axial stress :xσ  

2

2
0

10.
, ,

2 2
x x

h a b
z

q a
σ σ

 =   
 (24) 

Shear stress :xzτ  

0

0, ,
2

xz xz

h b
z

q a
τ τ

 =   
 (25) 

where E0 = 1 GPa. It has to be noted that the deflections are calculated at the X = a/2, Y = b/2, the distribution of axial stress is 
presented at the cross-section X = a/2, Y = b/2 in though Z direction and the distribution of shear stress is presented at the cross-
section X = 0, Y = b/2 in though Z direction. 

In order to prove the validity of the presented higher-order shear deformation plate theory, some comparisons are made 
between the results obtained from this theory and those obtained by Zenkour [22] based on sinusoidal shear deformation theory 
(SSDPT), trigonometric shear deformation theory (TSDPT), the first-order shear deformation theory (FSDPT), the simple higher 
order shear deformation theory developed by Meksi et al. [23] and the present results of FEA as given in Tables 1 to 3. 

From these tables, there is a good agreement between the results of the present theory with other theories and the FEA 
except for the case of transverse shear stress .xzτ  A small difference between the results is seen (see Table 3). This is due to the 
different approaches used to predict the transverse shear stresses. It is clear that the FSDPT violates the stress-free boundary 
conditions on the plate surface, and consequently, a shear correction factor is required. Finally, it is important to note that the 
present theory involves only four unknowns vs five in the case of SSDPT, TSDPT and FSDPT. Besides, it does not require a shear 
correction factor as in the case of FSDPT.  
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Table 1. Comparisons of dimensionless deflection W of simply supported square power-law FGM plates with other theories (a/h = 10). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Table 2. Comparisons of dimensionless axial stress xσ of simply supported square power-law FGM plates with other theories (a/h = 10). 

k Theory xσ  

1-0-1 2-1-2 1-1-1 2-2-1 1-2-1 

0 

Present (FEA) 1.9580 1.9580 1.9580 1.9580 1.9580 

Present (Analytical solution) 1.9943 1.9943 1.9943 1.9943 1.9943 

Meksi et al. [23] 1.9882 1.9882 1.9882 1.9882 1.9882 

SSDPT [22] 2.0545 2.0545 2.0545 2.0545 2.0545 

TSDPT [22] 2.0498 2.0498 2.0498 2.0498 2.0498 

FSDPT [22] 1.9757 1.9757 1.9757 1.9757 1.9757 

1 

Present (FEA) 1.5970 1.5730 1.5580 1.5230 1.5820 

Present (Analytical solution) 1.5441 1.4627 1.3938 1.2882 1.2915 

Meksi et al. [23] 1.5404 1.4591 1.3902 1.2847 1.2879 

SSDPT [22] 1.5820 1.4985 1.4289 1.3234 1.3259 

TSDPT [22] 1.5792 1.4958 1.4261 1.3206 1.3230 

FSDPT [22] 1.5324 1.4516 1.3830 1.2774 1.2809 

2 

Present (FEA) 1.7220 1.6200 1.6020 1.5780 1.6000 

Present (Analytical solution) 1.7835 1.6865 1.5937 1.4367 1.4468 

Meksi et al. [23] 1.7796 1.6829 1.5900 1.4329 1.4431 

SSDPT [22] 1.8245 1.7241 1.6302 1.4738 1.4828 

TSDPT [22] 1.8216 1.7214 1.6274 1.4709 1.4798 

FSDPT [22] 1.7708 1.6749 1.5824 1.4252 1.4358 

5 

Present (FEA) 1.8990 1.8180 1.7210 1.7200 1.7210 

Present (Analytical solution) 1.9500 1.8768 1.7813 1.5759 1.6043 

Meksi et al. [23] 1.9458 1.8733 1.7778 1.5720 1.6006 

SSDPT [22] 1.9956 1.9154 1.8183 1.6147 1.6410 

TSDPT [22] 1.9927 1.9130 1.8158 1.6118 1.6381 

FSDPT [22] 1.9357 1.8647 1.7698 1.5640 1.5930 

10 

Present (FEA) 1.9370 1.8760 1.7860 1.7890 1.6830 

Present (Analytical solution) 1.9834 1.9340 1.8491 1.6281 1.6699 

Meksi et al. [23] 1.9787 1.9305 1.8457 1.6242 1.6663 

SSDPT [22] 2.0336 1.9731 1.8814 1.6197 1.6485 

TSDPT [22] 2.0303 1.9712 1.8837 1.6660 1.7041 

FSDPT [22] 1.9678 1.9216 1.8375 1.6164 1.6584 

 

k Theory W  

1-0-1 2-1-2 1-1-1 2-2-1 1-2-1 

0 

Present (FEA) 0.2131 0.2131 0.2131 0.2131 0.2131 

Present (Analytical solution) 0.1961 0.1961 0.1961 0.1961 0.1961 

Meksi et al. [23] 0.1958 0.1958 0.1958 0.1958 0.1958 

SSDPT [22] 0.1960 0.1960 0.1960 0.1960 0.1960 

TSDPT [22] 0.1960 0.1960 0.1960 0.1960 0.1960 

FSDPT [22] 0.1961 0.1961 0.1961 0.1961 0.1961 

CPT [22] 0.1856 0.1856 0.1856 0.1856 0.1856 

1 

Present (FEA) 0.3468 0.3280 0.3126 0.3012 0.2905 

Present (Analytical solution) 0.3236 0.3063 0.2919 0.2808 0.2709 

Meksi et al. [23] 0.3236 0.3063 0.2919 0.2801 0.2707 

SSDPT [22] 0.3235 0.3062 0.2919 0.2808 0.2709 

TSDPT [22] 0.3235 0.3063 0.2919 0.2808 0.2709 

FSDPT [22] 0.3248 0.3075 0.2930 0.2816 0.2716 

CPT [22] 0.3105 0.2941 0.2802 0.2692 0.2595 

2 

Present (FEA) 0.4002 0.3765 0.3554 0.3382 0.3233 

Present (Analytical solution) 0.3733 0.3523 0.3328 0.3161 0.3026 

Meksi et al. [23] 0.3736 0.3525 0.3330 0.3161 0.3025 

SSDPT [22] 0.3731 0.3521 0.3328 0.3161 0.3026 

TSDPT [22] 0.3733 0.3523 0.3329 0.3162 0.3026 

FSDPT [22] 0.3751 0.3540 0.3344 0.3173 0.3037 

CPT [22] 0.3588 0.3394 0.3206 0.3040 0.2909 

5 

Present (FEA) 0.4408 0.4196 0.3963 0.3744 0.3567 

Present (Analytical solution) 0.4092 0.3918 0.3714 0.3496 0.3348 

Meksi et al. [23] 0.4097 0.3924 0.3718 0.3497 0.3348 

SSDPT [22] 0.4090 0.3916 0.3712 0.3495 0.3347 

TSDPT [22] 0.4092 0.3918 0.3714 0.3496 0.3348 

FSDPT [22] 0.4112 0.3941 0.3735 0.3512 0.3363 

CPT [22] 0.3922 0.3778 0.3586 0.3369 0.3228 

10 

Present (FEA) 0.4514 0.4337 0.4116 0.3892 0.3705 

Present (Analytical solution) 0.4177 0.4040 0.3855 0.3621 0.3482 

Meksi et al. [23] 0.4179 0.4048 0.3861 0.3623 0.3484 

SSDPT [22] 0.4175 0.4037 0.3849 0.3491 0.3411 

TSDPT [22] 0.4177 0.4040 0.3855 0.3621 0.3482 

FSDPT [22] 0.4191 0.4065 0.3878 0.3639 0.3499 

CPT [22] 0.3987 0.3894 0.3723 0.3491 0.3361 



Investigation of the static bending response of FGM sandwich plates   
 

Journal of Applied and Computational Mechanics, Vol. 10, No. 1, (2024), 26-37 

33 

Table 3. Comparisons of dimensionless transverse shear stress xzτ of simply supported square power-law FGM plates with other theories (a/h = 10). 

k Theory xzτ  

1-0-1 2-1-2 1-1-1 2-2-1 1-2-1 

0 

Present (Analytical solution) 0.2385 0.2385 0.2385 0.2385 0.2385 

Meksi et al. [23] 0.2027 0.2027 0.2027 0.2027 0.2027 

SSDPT [22] 0.2461 0.2461 0.2461 0.2461 0.2461 

TSDPT [22] 0.2385 0.2385 0.2385 0.2385 0.2385 

FSDPT [22] 0.1909 0.1909 0.1909 0.1909 0.1909 

1 

Present (Analytical solution) 0.2920 0.2710 0.2611 0.2595 0.2525 

Meksi et al. [23] 0.2577 0.2389 0.2287 0.2254 0.2184 

SSDPT [22] 0.2990 0.2777 0.2680 0.2668 0.2600 

TSDPT [22] 0.2920 0.2710 0.2611 0.2595 0.2525 

FSDPT [22] 0.2609 0.2431 0.2325 0.2276 0.2205 

2 

Present (Analytical solution) 0.3262 0.2883 0.2718 0.2693 0.2583 

Meksi et al. [23] 0.2924 0.2593 0.2424 0.2370 0.2260 

SSDPT [22] 0.3328 0.2942 0.2780 0.2762 0.2654 

TSDPT [22] 0.3262 0.2883 0.2718 0.2693 0.2583 

FSDPT [22] 0.2973 0.2675 0.2507 0.2431 0.2325 

5 

Present (Analytical solution) 0.3863 0.3145 0.2864 0.2826 0.2651 

Meksi et al. [23] 0.3465 0.2882 0.2609 0.2523 0.2358 

SSDPT [22] 0.3937 0.3193 0.2915 0.2889 0.2715 

TSDPT [22] 0.3863 0.3145 0.2864 0.2826 0.2651 

FSDPT [22] 0.3453 0.2973 0.2720 0.2609 0.2459 

10 

Present (Analytical solution) 0.4320 0.3324 0.2956 0.2908 0.2689 

Meksi et al. [23] 0.3818 0.3057 0.2717 0.2609 0.2413 

SSDPT [22] 0.4414 0.3364 0.2952 0.2967 0.2767 

TSDPT [22] 0.4320 0.3324 0.2956 0.2908 0.2689 

FSDPT [22] 0.3727 0.3131 0.2829 0.2699 0.2525 

 
In Fig. 3, it is observed that, among the various power law indices, the variation of the volume fraction (and consequently of 

the modulus of elasticity) is highest at the internal points of the top and bottom Aluminum face sheets, while the material 
properties of the core remain unaffected by definition (see Eq. (1b)). In Fig. 4, the normal stress distributions across the 
dimensionless cross section thickness of the plate, normalized according to Eq. (24) are plotted. Two cases of cross section 
arrangement of the FGM plate are considered: (a) the 1-0-1 section and (b) the 1-2-1 section. It is observed that in the case of k = 0 
(homogeneous ceramic material), the stress distribution is a nearly straight line, as expected for both cases of layer arrangement. 
At the top and bottom regions of the cross section, while the values of the stress distribution for the case k = 1 are lower than 
those in the homogeneous case, it is obvious that the stress distribution increases at these regions for increasing k. This happens 
because of the different properties of the Aluminum face sheets (as metal) and the Alumina core (as ceramic) and is justified by 
the configurations of the corresponding volume fraction distributions, as shown in Figs. 3(a) and 3(b), respectively. It is apparent 
in Fig. 4(a) that in the case of k = 1, the stress at the extreme upper and lower layers becomes minimum. Things get more 
complicated in Fig. 4(b), where the ceramic Alumina core layer is present, yielding indeed linear stress distributions ranging from 
-0.25 to 0.25 of the plate thickness, i.e., the middle half of the plate thickness, in accordance with the pattern 1-2-1. In this latter 
case, while the stress distribution for k = 1 appears to be concave near the top and bottom ends of the plate cross section, the 
stress distributions for k = 2 or larger show a different trend, which, beginning from the middle of the plate cross section, 
increases until a maximum value at the interface between the core and face layers, then decreases until a minimum value at a 
point inside the face layers. After this point it can increase or decrease until the plate extreme surface. 
 

  

Fig. 3. Distributions of volume fraction ratio across the thickness of a FGM plate, for various values of power-law coefficient (volume fraction index). 
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Fig. 4. Distributions of normalized normal stress across the thickness of simply supported square FGM plate, for various values of power-law 

coefficient (volume fraction index). 
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Fig. 5. Distributions of normalized shear stress across the thickness of simply supported square FGM plate, for various values of power-law 

coefficient (volume fraction index). 

Except for different general configuration, similar trends to those described in the previous paragraph hold for the normalized 
shear stresses, as shown in Figs. 5(a) and 5(b) for the two-layer patterns 1-0-1 and 1-2-1, respectively. In this figure, the 
normalized shear stresses, according to Eq. (25), are plotted vs the dimensionless plate thickness height. In Fig. 4(a), the stress 
distributions for the cases k = 0 and k = 10 nearly coincide, as expected due to the volume fraction distributions shown in Fig. 3(a). 
In addition, the minimum and maximum trends observed for the normal stresses in Fig. 4(b) appear also in the shear stress 
distributions of Fig. 5(b).  

A general observation for all stress distributions (both normal and shear) and for both layer patterns (1-0-1 and 1-2-1) shown 
in Figs. 4 and 5 is the fact that the maximum stress value occurs for the case of k = 0 and the minimum stress value at the 
extreme ends of the plate cross section occurs for k = 1, for all the cases considered.  

In Fig. 6 the normal stresses, shear stresses and out of plane displacements are shown for the case of a simply supported 
plate with layer pattern 1-2-1 and power law exponent k = 10. Only half of the plate model is shown, in order to view the 
distributions across the thickness of the plate, for better understanding the stress and displacement fields. It is noted that the 
stress and displacement values are not normalized and reflect an actual case of FGM square plate model, with dimension 10 m, 
thickness 1 m. The intensity of the distributed load at the center of the plate is equal to 10.000 N/m2. Normalizing the maximum 
values that appear in the contours according to Eqs. (23), (24) and (25), results in the normalized values that can be found in 
Tables 1, 2 and 3 of the present study for 1-2-1 and k = 10. The thickness of the plate is discretized into 12 C3D8 elements, while 
the side of the plate is discretized into 60 C3D8 elements. All modeling has been done in Abaqus software. It is observed that the 
deformed geometry of the plate is in accordance with its static loading and boundary conditions, whereas the normal stress 
distribution in Fig. 6(a) follows the trend of the corresponding plot in Fig. 4(b), in both in plane directions, due to the symmetry of 
the geometry, loading and boundary conditions of the plate.  
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(a) (b) 

 

(c) 

Fig. 6. Contours of the normal stress, shear stress and out of plane displacement of the simply supported FGM plate for layer pattern 1-2-1 and 
power law exponent k = 10. 

4. Conclusion 

A four-variable RPT and FEA were developed for the bending analysis of rectangular FG sandwich plate. The theory took into 
account the transverse shear effects and parabolic distribution of the transverse shear strains through the thickness of the FG 
sandwich plate. Hence, it was unnecessary to use shear correction factors. The power-law FGM sandwich plates with the FGM 
facesheet and the homogeneous core was considered.  

Briefly, the following results were obtained: 
- A good agreement between the results of the present theory with other theories and the FEA except for the case of 

transverse shear stress. 
- The FSDPT violated the stress-free boundary conditions on the plate surface, and consequently, a shear correction factor 

was required. 
- A general observation for all stress distributions (both normal and shear) and for both layer patterns (1-0-1 and 1-2-1) 

shown in figures is the fact that the maximum stress value occurs for the case of k = 0 and the minimum stress value at 
the extreme ends of the plate cross section occurs for k = 1, for all the cases considered. 

- All comparison studies demonstrated that the present solution and FEA are highly efficient for the exact analysis of the 
bending of FG rectangular sandwich plates. 

- The FEA is a valuable tool for analyzing the static bending response of FGM sandwich plates. It allows engineers and 
researchers to study complex material distributions and loading conditions, providing insights into the structural 
behavior and helping in the design and optimization of FGM composite structures. 

In conclusion, it can be said that the proposed RPT theory is accurate, elegant and simple in solving the bending behavior of 
FG sandwich plates. However, it has to be noted that an improvement of the present theory may be necessary, especially when it 
is applied to a laminated structure to satisfy interlayer transverse shear stress continuity. The extension of the present theory is 
also envisaged for handling general boundary conditions. 
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