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Abstract. Taylor series method is a simple analytical method, which is accessible to all non-mathematician, has slow convergence. 
This paper develops a new Taylor series based numerical method to overcome the shortcoming of the Taylor series while 
maintaining its simplicity. Some examples are given, showing its reliability and efficiency. The proposed method is also proved to 
be extremely effective for initial value problems and boundary value problems. The method provides a universal approach to various 
highly non-linear problems, and it sheds a bright light on numerical theories for practical engineering applications. 

Keywords: Taylor Series, Singular Boundary Value Problem, KDV equation, Burgers' Equation, System of Burgers Equation. 

1. Introduction 

For many years, the researchers used various real-life examples as test problems like Lane-Emden type equations, Burger 
equations, KDV equation, etc. to verify the numerical methods. In this work, we shall consider the following class of nonlinear 
ODEs and PDEs: 

 �′′(�) + �� �′(�) = 	(�, �(�)), 0 < � < 1, �(0) = �, �′(0) = �, (1) 

 �′′(�) + �� �′(�) = 	(�, �(�)), 0 < � < 1, �′(0) = 0, �1�(1) + �2�′(1) = �, (2) 

 ��′′(�) + �� ��′(�) + ℎ�(�, �1(�), �2(�)) = 0, 0 < � < 1, ��(0) = ��, ��′(0) = ��, � = 1,2 (3) 

 ��′′(�) + �� ��′(�) + ℎ�(�, �1(�), �2(�)) = 0, 0 < � < 1, ��′(0) = 0, �� (1) = ��, � = 1,2 (4) 

 �� + ��� = ����, 0 ≤ � ≤ 1, � > 0, �(�, 0) = 2�, (5) 

 �� − 6��� + ���� = 0, 0 < � < 1, � > 0, �(�, 0) = −#2
2 sech2 (#�2 ), (6) 

 

⎩{⎨
{⎧�� + ��� + .�/ = 101 (��� + �//), �(�, �, 0) = � + �, 0 ≤ � ≤ 1, � > 0,

.� + �.� + ../ = 101 (.�� + .// ), .(�, �, 0) = � − �, 0 ≤ � ≤ 1, � > 0.  (7) 
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Lane-Emden type equations arise in various physical phenomena that occur in astrophysics and mathematical physics like 
stellar structure, thermionic currents, thermal explosions, radiative cooling, CTC, etc. In this work, we focus on such models by 
considering the following equation: 

�′′(�) + �� �′(�) = 	(�, �(�)), 0 < � < 1, (8) 

where, � ≥ 0, 	: ℝ  × ℝ → ℝ subject to both initial and boundary conditions. The status of the theoretical and numerical work on 
Lane-Emden type equations are well known. Many authors such as Dunninger et al. [1, 2], Zhange et al. [3, 4], Pandey et al. [5-7], 
etc. used equation (8) to develop theoretical results and Russell et al. [8, 9], Chawla et al. [10-12], Jain et al. [13], Pandey [14, 15] 
applied finite difference technique to find the numerical solution. Apart from these techniques many authors applied different 
types of numerical methods like rational Legendre approximation technique [16], methods based on splines polynomials [17-20], 
and different types of collocation approaches [21-24], methods based on Legendre function [25, 26], Haar wavelets and other 
orthonormal polynomial wavelets [27-29], NSFD method [30], Optimal homotopy analysis method [31] and etc.  

We also focus on Burgers' equation which is highly nonlinear and one-dimensional analogue of Navier Stokes equation. It has 
a long history [32] and huge number of articles are available on Burgers's equations, its various generalisations to various forms in 
one dimension, two dimension and as system of nonlinear PDEs. Since the exact solution of Burgers's equation fails for small 
viscosity, it has posed great challenges to researchers to find its analytical solution. Fay [33] gave its solution in a particular set up. 
Hopf [34], and Cole [35] computed the exact solutions by transforming the Burger's equation to heat equation. Group theoretic 
methods for calculating the solution of Burgers' equation with appropriate boundary and initial conditions is proposed by Abd-el-
Malek [36]. We list some existing methods which has been used to compute the analytical solutions of Burgers' equation: Hopf and 
Cole transformation [34, 35], Group theoretic method [37], Adomian decomposition method [38], Variation iteration method [39, 
40], Tanh-function method [41, 42], Taylor series solution [43, 44].  

He [45] derived an analytical solution of a system of Lane-Emden equations by using the Taylor series method and computed 
closed form solution of a system of Lane-Emden equations subject to given initial conditions. After that, he applied this method on 
fractal Bratu-type equation [46] arising in the electro spinning process and third order boundary value problem [47] arising in 
Architectural Engineering to derive the approximate solution which gives better accuracy than other methods. A lot of 
investigations are still pending and to address some of these we consider singular BVP, KDV equation, and Burgers's equations. 
Our main aim is to extend the numerical results of He [45] and explore it further. We present several Mathematica codes for this 
method corresponding to IVP, BVP, and SBVP, coupled IVP, and coupled SBVP to find the approximate and exact solutions with the 
best accuracy. We test each Mathematica code by considering different real-life problems of the form defined in Eq. (8) and compare 
our results with existing numerical results. We also extend the numerical results to Burger's equations, KDV equation, and system 
of nonlinear PDEs corresponding to initial conditions.  

We have summarised the paper in a total of six sections. In section 2, we describe the Taylor series method. We have listed 
Mathematica codes in section 3. Several test examples are presented in section 4. We have derived the exact solutions of Burgers' 
equations, KDV equation, and system of nonlinear two-dimensional Burgers' equation in section 5. Finally, we draw our main 
conclusion along with future scope in section 6. 

2. Description of the Method 

Let us assume that the solution �(�) of equation (8) is : times differentiable at � = 0 and can be written as in the following 
Taylor series expansion: 

�;</=>?(�) ≈ ∑��(0)�!
C

�=0
��, (9) 

where ��(0) are unknown coefficients which are to be determined. Now, differentiating equation (8) : times with respect to �, we 
have: 

EFE�F ( �G�′(�))′ + �G	(�, �(�)) = 0, for � = 0,1,2,… , :, (10) 

and setting � = 0. Therefore, by using initial conditions and equations (10), we can easily determine the unknown constants ��(0) 
for all � = 0,1,… , :. Finally, the exact solution of equation (8) can be written as: 

�(�) = limn→∞ �;</=>?(�) . (11) 

For better understanding, we consider the simple linear IVP: 

�′(�) = 11+� �(0) = 0. (12) 

Differentiating equation (12), with respect to �, we have: 

�′′(�) = − 1(1 + �)2 , �′′′(�) = 2(1 + �)3 , ��O(�) = − 6(1 + �)4. (13) 

Therefore, by setting � = 0, we have: 

�′(0) = 0, �′′(0) = −1, �′′′(0) = 2, ��O(0) = −6. (14) 

So, from equation (9), we have the first order, second order, third order and fourth order approximation are as follows: 

�;</=>?(�) ≈ �, � − �2
2 , � − �2

2 + �3
3 , � − �2

2 + �3
3 − �4

4  .  (15) 

By similar analysis, for : → ∞ we have the exact solution, which is: 

� (�) =  � − �2
2 + �3

3 − �4
4 + ⋯ = log(1 + �) .  (16) 

We provide an algorithm of the Taylor series method which is used to develop code for different real-life problems to compute 
the solution. 
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2.1. Algorithm 

Step 1. Fix the value of : (number of terms of the Taylor series). 
Step 2. Input the differential equation (8) and corresponding initial conditions. 
Step 3. Differentiate equation (8) with respect to � up to : times and put � = 0.  
Step 4. Identify the unknown constants ��(0) for all � = 0,1,… ,: and solve the system of equations as in Step 3. 
Step 5. Substitute all the values of ��(0) for all � = 0,1,… , : in equation (9) to get the solution. 

3. Mathematica Codes 

By using the algorithm 2.1 and Mathematica 11.3 software, we develop codes for this method corresponding to second-order 
IVP, BVP, coupled IVP, and coupled BVP to find the approximate and exact solutions with the best accuracy. 

3.1. IVP 

We consider the following initial value problem: 

�′′(�) + G� �′(�) + W(�, �(�)), 0 < � < 1,   �(0) = �, �′(0) = �, (17) 

where � and � are constants and W(�, �) be arbitrary function of � and �. Below we present a Mathematica code for Eq. (17) which 
gives Taylor series solution up to :�ℎ terms:  

 

3.2. BVP 

We consider equation (8) subject to the boundary condition in the following form: 

�′′(�) + �� �′(�) + W(�, �(�)) = 0, 0 < � < 1,    �′(0) = 0, �2�′(1) + �1�(1) = �, (18) 

where � are constants and W(�, �) be arbitrary function of � and �. Since the value of �(0) is not known therefore we take �(0) =�. Again, we provide a Mathematica code for (18) which gives Taylor series solution up to :�ℎ terms as a function of � and �. The 
value of � can be determined by using the boundary condition �2�′(1) + �1�(1) = �.  

 

3.3. Coupled IVP 

We consider the coupled system of equation with the help of Eq. (8) subject to the initial conditions in the following form: 

�′′(�) + �� �′(�) + W(�, �(�), .(�)) = 0, 0 < � < 1, (19) 
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.′′(�) + �� .′(�) + ℎ(�, �(�), .(�)) = 0, 0 < � < 1, 
 �(0) = �1, .(0) = �2, �′(0) = �1, .′(0) = �2, 

(19-
cont.) 

where, �1, �2, �1, �2 are constants and W(�, �(�), .(�)) and ℎ(�, �(�), .(�)) are arbitrary functions of �, � and ..  
Now, we present a Mathematica code for Eq. (19) which gives Taylor series system of solutions up to :�ℎ terms as a function 

    of �.  

   

3.4. Coupled BVP 

Here, we consider the following coupled system of equations subject to the boundary conditions in the following form: 

�′′(�) + �� �′(�) + W(�, �(�), .(�)) = 0, 0 < � < 1, 
(20) .′′(�) + �� .′(�) + ℎ(�, �(�), .(�)) = 0, 0 < � < 1, 

 �(0) = 0, .(0) = 0, �′(1) = �1, .′(1) = �2, 
where, �1, �2, are constants and W(�, �(�), .(�)) and ℎ(�, �(�), .(�)) are arbitrary functions of �, � and .. Since the value of �(0) and .(0) 
are unknown, so we chose �(0) = Y and .(0) = Z. In the following, we provide a Mathematica code for Eq. (20) which gives Taylor 
series system of solutions up to :�ℎ terms as a function of �, Y and Z. 
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4. Taylor Series Solution for ODE 

Here, we present few real-life problems as test examples to verify our code. 

4.1. IVP 

We consider some initial value problems stated below. 

4.1.1. IVP 1 

We consider equations (17) with W(�, �) = �(�) − (6 + 12� + �2 + �3), � = 0, � = 0 and � = 2 which have an exact solution �2 + �3. 
By using the Mathematica code as in subsection 3.1, we get the Taylor series solution up to third terms which is �;</=>?(�) ≈ �2 + �3. 
The accuracy of the method is better than variational iteration method (VIM) [48] (see Fig. 1). 

4.1.2. IVP 2 

Here we take the Lane-Emden type equations (17) W(�, �) = 8 exp(�) + 4 exp(/2) , � = 0, � = 0  and � = 2  which have an exact 
solution −2 log(1 + �2). With the help of Mathematica code given in subsection 3.1 we compute the Taylor series solution which is 
given as follows: 

�;</=>?(�) ≈ −2�2,−2�2 + �4,  − 2�2 + �4 − 2�6
3 , ⋯ .  (21) 

For : → ∞, we get the closed form of the solution which is: 

�(�) = �;</=>?(�) = − 2�2 + �4 − 2�6
3 − ⋯ = −2 log(1 + �2) .  (22) 

We can also verify our obtained result by VIM [48]. 
 

4.1.3. IVP 3 

We consider the Lane-Emden type equations (17) where W(�, �) = −6� − 4� log(�) , � = 1, � = 0 and � = 2 which have an exact 
solution exp(�2). Now, by using Mathematica code given in subsection 3.1, we arrive at: 

�;</=>?(�) ≈ 1 + �2, 1 + �2 + �4
2 ,  1 + �2 + �4

2! + �6
3! , ⋯ .  (23) 

For : → ∞, we get the closed form of the solution which is exp(�2). Also, we see that each of these approximations are same as 
approximations calculated by VIM [48]. 

 

Fig. 1. Comparison between Taylor series method and VIM. 
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Fig. 2. Comparison between absolute error of Taylor series method and HPM-VIM. 

4.2. BVP 

He [46] applied the Taylor series method on the Bratu type boundary value problem which is nonlinear but regular and 
computed the approximate solution. He also showed that this method is quite powerful than the iterative method VIM. Here, we 
consider a few highly non-linear singular boundary value problems of Lane-Emden type and verify the Mathematica codes given 
in subsection 3.2. 

4.2.1. BVP 1 

First, we consider linear second order singular boundary value problem (18) with W(�, �) = exp(−�) , �1 = 2, �2 = 1, � = 0 and � =2. The exact solution is not known. Now, by using the code and Mathematica, we have: 

�;</=>?(�) ≈ � − exp(−3b)�6
1890

 − 1120 exp(−2�)�4 − 16 exp(−�)�2, (24) 

where � = �(0). By using the boundary condition 2�(1) + �′(1) = 0 we have � = 0.269977. We see that the Taylor series solution 
gives better accuracy than HPM-VIM [49] combined iterative approximation. Below we provide an absolute error graph (see Fig. 2) 
for comparison between these two methods. 

4.2.2. BVP 2 

Now, we consider a model based on equilibrium isothermal gas sphere arising in astronomy of the form of Eq. (18) where W(�, �) = �5 , �1 = 0, �2 = 1, � = √3/2 and � = 2. The exact solution of BVP is 1/√(1 + �2/3). By using the Mathematica code given in 
subsection 3.2 we get second order and 12�ℎ order Taylor series approximations, given as follows: 

�;</=>?(�) ≈  � − b5�26  , (25) 

�;</=>?(�) ≈  � + 77b25�12248832 − 7b21�106912 + 35b17�810368 − 5b13�6432 + b9�424 − b5�26  , (26) 

Now, by using the boundary condition �(1) = √3/2, we have � = 0.999832. Therefore, for : = 12, the Taylor series approximation 
is: 

�;</=>?(�) ≈    0.000308 �12 − 0.001009�10 + 0.003366�8 − 0.0115489�6 + 0.04160�4 − 0.166527�2 + 0.999832. (27) 

Now, we compare our solution (27) with the solution computed by VIM which is: 

�wxy (�) ≈   7 × 10−12 �12 − 0.00003�10 + 0.000577�8 − 0.00609�6 + 0.039355�4 − 0.161465�2 + 0.993678. (28) 

From Fig. 3, we observe that Taylor series solution gives better accuracy than VIM solution [50]. 

4.2.3. BVP 3 

Here, we take the equation of shallow membrane cap of the form of Eq. (18) with W(�, �) = − 12 + 18/2 , � = 1 and � = 3. It has no 
exact solution. Again, by using the Mathematica code given in subsection 3.2 we get Taylor series approximation up to second term 
as follows: 

�;</=>?(�) ≈    � + (4�2 − 1)�2
64�2 , (29) 

where, � = �(0). By using the boundary condition �(1) = 0, we have � = 0.954645. Hence, the Taylor series approximation is: 

�;</=>?(�) ≈    0.045355�2 + 0.654645. (30) 

We compare our computed approximation with the VIM [50] approximation, which is: 

�1wxy (�) ≈    0.0483493�2 + 0.951651. (31) 
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Fig. 3. Comparison between absolute error of Taylor series method and VIM. 

 

Fig. 4. Comparison between absolute error of Taylor series method and VIM. 

We saw that the Taylor series solution gives better approximation than VIM (see Fig. 4). 

4.3. Coupled IVP 

He et al. [44] computed closed form solution of coupled IVP by using Taylor series method. Our main aim in this section is to 
verify our developed Mathematica code as in subsection 3.3 by considering different highly non-linear real-life problems. To 
achieve our goal first we take a real-life example which is described in [1]. We also found closed form solution as given in [1]. Now, 
we consider two real life problems. 

4.3.1. Coupled IVP 1 

Wazwaz et al. [51] considered the system of Lane-Emden type equations of the form of Eq. (19) with W(�, �, .) =8 (exp(�) + 2 exp(− O2)), ℎ(�, �, .) = −8(exp(−.) + exp(z2), � = 3, �1 = 0, �2 = 0, �1 = 0, �2 = 0 and � = 5. Exact solution of this coupled IVP 
is ((�(�), .(�)) = (−2 log(1 + �2), 2 log(1 + �2)).  They used the Adomian's decomposition method (ADM) to find the approximate 
system of solutions. Now, by using Taylor series method, we arrive at: 

�;</=>?(�) ≈ �12
3  − 2�10

5 + �8
2 − 2�6

3 + �4 − 2�2,  (32) 

.;</=>?(�) ≈ −�12
3 + 2�10

5 − �8
2 + 2�6

3 − �4 + 2�2.  (33) 

Therefore, for : → ∞ we get the closed form system of solutions ((�(�), .(�)) = (−2 log(1 + �2), 2 log(1 + �2)). which are same as 
computed by ADM. 

4.3.2. Coupled IVP 2 

Here, we consider the system of equation (19) [51] with W(�, �, .) = 18� − 4� log(.), ℎ(�, �, .) = 4. log(�) − 10., � = 4, �1 = 1, �2 =1, �1 = 0, �2 = 0 and � = 8. Exact solution of this coupled IVP is ((�(�), .(�)) = (exp(−�2), exp(�2)). With the help of Mathematica code, 
we get Taylor series solution as follows: 
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�;</=>?(�) ≈ �12
720 − �10

120 + �8
24 − �6

6 + �4
2 − �2 + 1,  (34) 

.;</=>?(�) ≈ �12
720 + �10

120 + �8
24 + �6

6 + �4
2 + �2 + 1.  (35) 

When : → ∞ we have the exact system of solutions (exp(−�2), exp(�2)). 
4.4. Coupled BVP  

In the following, we present few numerical examples related to system of boundary value problem.  

4.4.1. Coupled BVP 1 

Consider the system of differential equation (20) W(�, �, .) = 18� − 4� log(.) , ℎ(�, �, .) = 4. log(�) − 10. , � = 4, �1 = 1exp(1) , �2 =
exp(1),  and  � = 8 . Exact solution of this coupled IVP is ((�(�), .(�)) = (exp(−�2), exp(�2)) . Now using algorithm described in 
subsection 3.4, we compute the approximate Taylor series solution. For : = 5: 

�;</=>?(�) ≈ −( �4
990)(−20Y (log(Z)) (log(Z)) + 180Y log (Z) − 495Y + 36Y log (a) ) + 19�2(2Y log(Z) − 9Y) + Y,  (36) 

.;</=>?(�) ≈ ( �4
630) (−36Z (log(Y)) (log(Y)) + 180Z log (Y) + 315Z + 20Z log (b) ) − 15 �2(2Z log(Y) − 5Z) + Z,  (37) 

where Y = �(0) and Z = .(0). For : = 10 we have computed the values of Y and Z by using boundary conditions �(1) = 1exp(1) and 

.(1) = exp(1) which are Y = 1.00299 and Z = 1.00156. Therefore, for : = 10, the system of Taylor series solutions is: 

�;</=>?(�) ≈ −0.00833149x10 + 0.0417031 x8 − 0.166939 x6 + 0.5011 x4 − 1.00264 x2 + 1.00299,  (38) 

.;</=>?(�) ≈ 1.00156 + 1.00037 x2  +  0.499878 x4  +  0.166539 x6  +  0.0416179 x8 + 0.00832063 x10.  (39) 

Here in Fig. 5, we plot absolute error of Taylor series solution of Eq. (20). 

4.4.2. Coupled BVP 2 

We consider the system of differential equation (20) with W(�, �, .) = 8 (exp(� − 1) + 2 exp(− O−12 )) , ℎ(�, �, .) = −8(exp(−(. − 1)) +exp(z−12 ), � = 3, �1 = 1 − 2 log(2) , �2 = 1 + 2 log(2) and � = 5. Exact solution of this coupled BVP is ((�(�), .(�)) = (1 − 2 log(1 + �2), 1 +2 log(1 + �2)). Now, using algorithm developed in subsection 3.4 for : = 5, we have the following Taylor series approximation: 

�;</=>?(�) ≈ (�4
12) (3 exp(Y2 − Z2) + 4 exp(Y − Z2 − 12) + 2 exp(2Y − 2) + 3 exp(32 − 3Z2 )) + 23�2 (exp(Y − 1) + 2 exp(12 − Z2)) + Y,  (40) 

.;</=>?(�) ≈ (�4
9 )(−3exp(Y2 − Z + 12) − 2 exp(Y2 − Z2) − exp(3Y2 − 32) − 3 exp(2 − 2Z)) − exp(−Z − 12)�2 (exp(Y2 + Z) + exp(32)) + Z,  (41) 

where Y = �(0) and Z = .(0). Now from �(1) = 1 − 2 log(2)  and .(1) = 1 + 2 log(2), we have two nonlinear system of equations. 
Therefore, by using Newton Raphson method, we get the values of Y and Z which are given by Y = 1 and Z = 1. Hence, for : = 5 
Taylor series solution of this coupled system are: 

�;</=>?(�) ≈ x4 − 2 x2 + 1,  (42) 

.;</=>?(�) ≈ −x4 + 2 x2 + 1.  (43) 

And for : → ∞, we get exact system of solutions. 

 

Fig. 5. Absolute error of Taylor series method. 



1130 Ji-Huan He et al., Vol. 9, No. 4, 2023 
 

Journal of Applied and Computational Mechanics, Vol. 9, No. 4, (2023), 1122-1134   

5. Taylor Series Solution for PDE 

In this section, we derive analytical solution for three sets of problems. First is two nonlinear PDEs with initial condition and 
the second one is system of nonlinear PDEs subject to given initial conditions. 

5.1. Burgers’ equation 

We consider the following class of Burgers' equations: 

PDE:         �� + ��� = µ���, 0 ≤ � ≤ 1, � > 0 

Initial Condition:                �(�, 0) = 2 �,   

 Exact Solution:                    �(�, �) = 2�1 + 2�. 
(44) 

Using Eq. (44), we get: 

�(0,0) = 0, ��(0,0) = 2, ���(0,0) = 0, ��(0,0) = 0. (45) 

Differentiating with respect to � and �, respectively, we get: 

��� + (��)2 + ���� = µ����, (46) 

��� + ���� + ���� = µ����. (47) 

Differentiating Eq. (46) with respect to � and �, and Eq. (47) with respect to �, we have: 

���� + 2(��)��� + ����� + ����� = µ�����, (48) 

���� + 2����� + ����� + ����� = µ�����. (49) 

���� + ����� + ����� + ����� + ����� = µ�����. (50) 

Differentiating Eq. (48) with respect to �, we get: 

����� + 2������ + 3(���)2 + ������ + 2������ = µ������. (51) 

Therefore, we get: 

����� + 2������ + 3(���)2 + ������ + 2������ = µ������. (52) 

���(0,0) = −4, ���(0,0) = 0, ����(0,0) = 0, ����(0,0) = 0, ����(0,0) = 16, ����(0,0) = 0. (53) 

Taylor series expansion of �(�, �) around the point (0,0) can be written as: 

�(�, �) = �(0,0) + 11! (��(0,0)� + ��(0,0)�) + 12! (���(0,0)�2 + ���(0,0)�2 + 2���(0,0)��) + ⋯ (54) 

Substituting the values of �(0,0), ��(0,0) and all other values in Eq. (54), we get: 

�(�, �) = 2� − 4�� + 8��2 + ⋯ = 2�1 + 2�. (55) 

which is same as computed in [38, 39]. 
 

5.2. KDV equation 

We consider KDV equation: 

�� − 6��� + ���� = 0, 0 < � < 1 and � > 0, (56) 

�(�, 0) = −#2
2 sech2 (#�2 ) . (57) 

The exact solution of KDV equation is − �22 sech2 (�2 (� − #2�)) . 
By using equations (56) and (57), we have: 

� (0,0) = −#2
2 , ��(0,0) = 0, ���(0,0) = #4

4 , ����(0,0) = 0, ��(0,0) = 0. (58) 

Differentiating equation (56) with � and �, we have: 

��� − 6(��)2 − 6���� + ����� = 0, (59) 

��� − 6���� − 6���� + ����� = 0. (60) 

To find the value of �����, we differentiate equation (59) with respect to � and we get: 

���� − 6����� − 6����� − 12����� + ������ = 0, (61) 

����� − 18(���)2 − 24������ − 6������  + ������� = 0. (62) 
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Fig. 6. Absolute error of �(�, �) for � = � for KDV equation. 

By using equations (60), (61) and (62), we have: 

� ����(0,0) = −#6
2 , ������(0,0) = 0, �������(0,0) = 17 #8

8 , ���(0,0) = −#6
4 , ���(0,0) = #8

4 . (63) 

Therefore, first order Taylor series solution is: 

�;</=>?(�, �) ≈   − #2
2 (1 − (#2 (� − #2�))2). (64) 

The KDV equation (56) and (57) have numerically solved by VIM in [2]. First approximation of VIM solution is given by: 

�1wxy (�, �) ≈   − #2
2 sech2 (#2 �) − #5

2 sech2 (#2 �) tanh2 (#�2 ) � . (65) 

From Fig. 6, we see that Taylor series solution provide better accuracy than VIM approximation. 

5.3. System of nonlinear PDE 

We consider the following system of nonlinear PDEs with given initial conditions: 

�� + ��� + .�/ = 1�� (��� + �//), 0 ≤ � ≤ 1 and � > 0, (66) 

.� + �.� + ../ = 1�� (.�� + .//), 0 ≤ � ≤ 1  and � > 0, (67) 

Initial Condition:  �(�, �, 0) = � + �, .(�, �, 0) = � − �, (68) 

Exact Solution: �(�, �, �) = �+/−2��1−2�2 , (69) 

. (�, �, �) =   � − � − 2��1 − 2�2 . (70) 

Here 01 is known as Reynold's number which is related to viscous property of fluid. Now:  

��(�, �, 0) = 1, �/(�, �, 0) = 1, ���(�, �, 0) = 0, �//(�, �, 0) = 0, (71) 

.�(�, �, 0) = 1, ./(�, �, 0) = −1, .��(�, �, 0) = 0, .//(�, �, 0) = 0,  (72) 

�(0,0,0) = 0, .(0,0,0) = 0, �_�(0,0,0) = 0. (73) 

Differentiating Eq. (66) with respect to � and �, we have: 

��� = −��2 − � ��� − .��/ − . ��/ + 101  (���� + ��//), (74) 

��� = −���� − � ��� − .�  �/ − . ��/ + 101 (���� + ��//), (75) 

�/� = −�/�� − � �/� − ./�/ −  . �// + 101  (�/�� + �///),  (76) 

���� = −2 ����� − ����� − � ���� − .���/ − .����/ + 101 (����� + ���//), (77) 
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�//� = −�// �� − �/�/� − �/ �/� − � �//� − .// �/ − ./ �// − ./ �// −  . �/// + 101 (�//�� + �////), (78) 

���� = −2��  ��� − �� ��� − � ���� − .�� �/ − .� ��/  − .� ��/ − . ���/ + 101 (����� + ���//), (79) 

��/� = −��/ �� − �/ ��� − �� �/� − � ��/� − .�/ �/ − ./ ��/ − .� �// − . ��// + 101 (��/�� + ��///), (80) 

�/�� = −�/��� − ���/� − �/ ��� − � �/�� − ./��/ − .��// − ./��/ − . �/�/ + 101 (�/��� + �/�//). (81) 

Hence, we deduce the following: 

���(0,0,0) = −2, ���(0,0,0) = 0, �/�(0,0,0) = 0, (82) 

����(0,0,0) = 0, �//�(0,0,0) = 0, (83) 

��/�(0,0,0) = 0, ����(0,0,0) = 4, �/��(0,0,0) = 4, (84) 

�����(0,0,0) = 0, �///�(0,0,0) = 0, �//��(0,0,0) = 0. (85) 

Similarly, for .(�, �, �), we have: 

.��(0,0,0) = −2, .��(0,0,0) = 0, ./�(0,0,0) = 0,  (86) 

.���(0,0,0) = 0, .//�(0,0,0) = 0, (87) 

.�/�(0,0,0) = 0, .���(0,0,0) = 4, ./��(0,0,0) = 4,  (88) 

.����(0,0,0) = 0, .///�(0,0,0) = 0, .//��(0,0,0) = 0. (89) 

For the sake of brevity, we are not providing calculations further. Taylor series expansion of �(�, �, �) and .(�, �, �) around the 
point (0,0,0) can be written as: 

�(�, �, �) = �(0,0,0) + 11! (��(0,0,0)� + �/(0,0,0)� + ��(0,0,0)�)
+ 12! ( ���(0,0,0)�2 + �//(0,0,0)�2 + ���(0,0,0)�2 +  2 ��/(0,0,0)� � + 2 ���(0,0,0)� � + 2 �/�(0,0,0)� �) + ⋯ ,  (90) 

.(�, �, �) = .(0,0,0) + 11! (.�(0,0,0)� + ./(0,0,0)� + .�(0,0,0)�)
+ 12! ( .��(0,0,0)�2 + .//(0,0,0)�2 + .��(0,0,0)�2 +  2 .�/(0,0,0)� � + 2 .��(0,0,0)� � + 2 ./�(0,0,0)� �) + ⋯ .  (91) 

Substituting the values of � and . and their derivatives at (0,0,0) in Eqs. (90) and (91), we arrive at: 

�(�, �, �) = � + � − 2�� + 2��2 + 2��2 + ⋯ = � + � − 2��1 − 2�2 ,  (92) 

.(�, �, �) = � − � − 2�� + 2��2 − 2��2 + ⋯ = � − � − 2��1 − 2�2 .  (93) 

Remark: These derivations are based on assumption that mixed derivatives ��/ and �/� and all other higher order derivatives all 
are same. 

6. Conclusions 

In this paper, we extended the work presented by He et al. [45] to various real-life problems which are highly nonlinear in 
nature. We successfully developed a few Mathematica codes to solve a class of singular non-linear ODEs subject to initial conditions 
and boundary conditions. We developed the codes for the system of non-linear singular ODEs and solved them successfully too. 
We also extended this approach to PDEs. This approach can further be extended to a different class of problems that do not have 
exact solutions. Finally, we concluded that this simple technique is very useful for engineering, chemical, and physical sciences. 
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