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Abstract. In this paper, we investigate the effect of magnetic field on two-dimensional flow of a viscous, incompressible fluid 
through composite porous channel using non-primitive boundary element method (BEM). We consider a rectangular channel 
consisting of two packings that are filled with fully saturated porous medium. It is assumed that both the porous regions are 
homogenous and isotropic with different permeabilities. Brinkman equation governs the fluid flow through porous media. We 
analyze the effect of Hartman number, stress-jump coefficient, Darcy number, thickness parameter, electrical conductivity ratio, 
and viscosity ratio on fluid mechanics. We present the effect of stress-jump coefficients on the interfacial velocity of the fluid 
against the thickness parameter and observe that the interfacial velocity increases with increasing stress-jump coefficients. We 
notice that for a fixed value of thickness parameter, the magnitude of vorticity (at lower and upper walls) increases with 
increasing Darcy number. Moreover, we observe that the magnitude of vorticity at the lower wall decreases and increases at the 
upper wall with increasing thickness parameter. We compute the Brinkman layer thickness near the interface of the composite 
porous channel in terms of several flow parameters and observe that the Brinkman layer thickness is strongly depend on the 
Hartman number, Darcy number, viscosity ratios, and stress-jump coefficient, respectively. 

Keywords: Boundary element method, Brinkman equation, Hartmann number, Stress-jump condition, Brinkman layer. 

1. Introduction 

Fluid flow problems have numerous applications in climatology, fluid control system, and oceanography. Also, it has 
widespread environmental and industrial applications like groundwater hydrology, extraction of ceramics and industrial fluids 
from reservoirs, composite material processing, solidifications of casting and overland flow during rainfall, etc. Which 
encourages several researchers to study fluid dynamics [1– 4].  

The study of viscous flow through the composite porous channel attracts many researchers due to its involvement in oil 
extraction processes from the earth, underground water recovery and some biological processes, etc. [5]. Allan and Hamdan [6] 
studied fluid mechanics in between two porous regions consisting in a composite channel. Forchheimer and Brinkman equations 
were used by them to govern the fluid flow from the first and second porous regions, respectively. Fluid flow from the composite 
porous channel has extensive applications in the fields of chemical and agricultural engineering, etc. Turkyilmazoglu [7] 
presented an exact solution for the velocity, pressure, and shear stress of the viscous flow over the porous rotating disk. The 
solutions are presented in terms of dimensionless parameters. The findings evince that the velocity and shear stress of the fluid 
augments as a function of the rising porosity of the porous rotating disk. Additionally, velocity and shear stress are found to 
increase the Reynolds number and decrease with the increasing Prandtl number. Later, the direct method was devised by [8] to 
investigate the non-linear porous fin problem, associated with two parameters namely the material’s porosity and Biot number. 
Also, obtained the temperature profile at the tip of the fin as well as the corresponding heat transfer rate. Yadav and Verma [9] 
analyzed the flow behavior of two immiscible fluids through an inclined porous channel, assuming both porous media had 
distinct permeabilities. Also, the comprehensive analysis of multiple flow variables is elucidated.  

The Brinkman equation is used instead of Darcy’s law when fluid flowing through porous medium is viscous in nature. Due to 
the appearance of spatial derivatives of the velocity, we need a boundary condition at the interface called stress-jump boundary 
condition, which is the very first time presented by Ochoa-Tapia and Whitaker [10, 11]. Using this condition, they resolve the 
problem given by Neale and Nader [12]. Ahmadi et al. [13] used primitive approach in the boundary element method to analyze 
fluid flow specifically at the interface between two porous packings of the channel. The Brinkman equation was used by them to 
govern the flow. Also, they implemented the jump condition for shear stress at the interface of both porous packings of the 
channel. Subsequently, reveals stress-jump coefficient dependency on the porous medium structure. Turkyilmazoglu [14] 
analyze the dynamics of velocity slip and the emergence of entropy in thermal transport across a metallic porous channel and 
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found that velocity slip can significantly affect the heat transfer and entropy generation in the channel, and increase the porosity 
of the material can enhance the heat transfer while reducing the entropy generation. 

Nowadays, the importance of magnetic field has increased significantly as a result of their many important applications in 
medical, industrial fields, and bioengineering fields, such as hyperthermia, treatment of wounds, power generators, catalytic 
reactions, aerodynamic heating, distillation towers, electrostatic precipitation, etc. [15]. Aydin and Selvitopi [16] used BEM and 
finite element method (FEM) coupling approach to analyze the MHD flow through an unbounded external domain. They 
considered an inclined magnetic field and discretized the domain and its boundary with the help of both the BEM and FEM 
coupling approaches. Also, they have shown the contour diagram for velocity and induced current for distinct combination of 
Hartman number, and other flow parameters. Bali and Awasthi [17] analyzed the influence of an applied magnetic field on blood 
flow through a stenotic artery. They considered the viscosity of blood as radial coordinate dependent. Verma and Datta [18] 
analyzed the impact of an applied transverse magnetic field on electrically conducting, viscous, and incompressible fluid. Also, 
they analyzed the behavior of fluid mechanics by varying viscosity graphically. Tiwari et al. [19] presented the variation of 
hydrodynamic permeability on fluid mechanics for different values of the Hartman number. Manyonge et al. [20] extended the 
work of Verma and Datta [18], by taking flow through two infinite parallel plates. Also, they studied the impact of an inclined 
magnetic field on fluid velocity. Ansari and Deo [21] analyzed the dependency of velocity profile on transport parameters in the 
existence of the magnetic field, but not included several parameters like jump in shear stress, fluids having different 
permeability, and interfacial velocity, which can affect the velocity profile along with Hartman number. Wahid et al. [22] utilized 
an exact analytical method to obtain the boundary layer flow and heat transfer of Casson fluid confined by a stretching surface 
with the presence of viscous dissipation. They observed that the skin friction coefficient increases with the increase in 
magnetohydrodynamic (MHD) parameter and decreases with the decrease in velocity slip. Also, the presence of velocity slip and, 
other parameters are enhancing the temperature profile and as these parameters increase, there is a decrement in the heat 
transfer coefficient. 

The impact of magnetic field on micropolar fluid passing through non-permeable porous membranes was investigated by 
Yadav et al. [23]. They presented the impact of flow parameters including Hartman number, etc. on the fluid mechanics. Later, 
Jaiswal and Yadav [24] analyzed the influence of an applied magnetic field on blood flowing through porous arteries. They have 
taken different permeabilities of both phases. They conclude that flow velocity in the core region is inversely proportional to the 
intensity of the magnetic field. After that, the influence of the magnetic field on Jeffrey fluid passing through two-phase 
permeable medium was observed by Ge-JiLe et al. [15]. They also observed that there is a decrement in velocity as the Hartman 
number increases, and there is a rise in flow due to Darcy's number. Yadav and Verma [25] extended the work of [9] by assuming 
different permeabilities of both porous packings consisting of a channel. They observed the impact of several transport 
parameters like viscosity ratio, permeability, etc. on fluid mechanics. A numerical technique called stabilized FEM was utilized by 
[26] to solve coupled convection-diffusion type MHD equations. Contour diagrams depicting the velocity field and magnetic 
induction were presented for distinct values of Hartman number and angles of MHD flow in a T-shaped domain. Selvitopi [27] 
employed both the finite difference method and the Galerkin FEM to inspect the complex dynamics of damped wave-type MHD 
flow. The numerical exploration was conducted with the utmost precision in a substantially elongated rectangular channel, 
pervaded by a time-varying oblique magnetic field, to uncover the intricacies of the underlying physics. Upon close examination, 
it was duly noted that the emergence of the Hartman layer is the direct consequence of elevated Hartman numbers, impeccably 
aligning with the inherent characteristics of the MHD flow.  

In literature, thickness and permeability of both the porous regions in a rectangular channel have taken fixed but in the 
present study, we consider the variation of thickness parameter and permeability in both the porous regions. In this manner, we 
can adjust the thickness and permeability of both porous packings of the channel according to our physical problem. We have 
applied a jump in shear stress at the interface of both porous mediums, which is not much explored in the literature. 

Although the present problem can be solved analytically, when the geometry is irregular and/or boundary conditions are non-
linear, an analytical solution is not possible. In that case, we need a reliable numerical technique to solve the problem. In 
literature, several numerical techniques have been discussed. We have observed from the literature that for irregular geometry, 
Boundary Element Method (BEM) has an advantage over any other numerical method. BEM is based on the integral equation 
method. Recently, Nishad et al. [28] developed the boundary element technique based on non-primitive variables approach for 
modelling the 2D flow of a viscous incompressible fluid through a rectangular channel consisting of two porous packings. In the 
present work, the boundary element technique based on non-primitive variables approach is utilized to analyze the influence of 
magnetic field on viscous fluid passing through a composite porous channel. 

The layout of the paper is arranged as follows: Section 2, describes the mathematical modelling of the physical problem to 
investigate the effect of transverse magnetic field on Brinkman flow through a 2D composite porous channel. To solve the 
mathematical equation, we transform the differential equation to its equivalent form of boundary integral equations. Section 3, 
presents the impact of several transport parameters on the velocity of the fluid to analyze the flow mechanics. A brief overview 
of the current investigation is provided in Section 4. 

2. Mathematical Modelling of the Physical Problem  

2.1 Two-dimensional composite porous channel with an applied transverse magnetic field: Governing equations   

 The motivation for analyzing the impact of the magnetic field on the physics of fluid through a rectangular channel having 
two porous packings arises because of widespread industrial, environmental, and medical applications such as the process of 
extracting oils, polymer technology, control of aerodynamical boundary layer, filtration of underground different fluids flowing 
together, treatment of cancer and cardiovascular diseases, etc. In this study, we consider Brinkman flow through two-
dimensional rectangular porous channel consisting of two porous packings having distinct permeability (refer to Fig. 1).  

We consider that the porous media is homogenous and isotropic. The porous regions above and below the interface are 
denoted by ( )1Ω  and ( )2 ,Ω  respectively. A magnetic field ( )Bɶ  with uniform intensity is applied in the orthogonal direction to the 
flow. The viscous fluid passing through a channel consisting of two packings filled with the fully saturated porous medium in the 
presence of magnetic field is governed by the Brinkman equation which includes the term which represents Lorentz force, 
combined with the continuity equation, which is as follows ([21, 29]): 

2

i

i
e i i i

i

J B p
k

∇ − + × =∇v v
ɶ

ɶ ɶɶ ɶ ɶɶ ɶɶ
ɶ

µ
µ  (1) 

. 0i∇ =vɶ ɶ  (2) 
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Fig. 1. Schematic of the physical problem. 

where ( ),i ii u v=vɶ ɶ ɶ  represents the velocity vector in the regions ( )( 1,2).i iΩ =  Here, , ,
i

ei ik pɶ ɶ ɶµ and 
i
ɶµ are permeability, hydrodynamic 

pressure, effective viscosity of the porous matrix, and fluid viscosity in ( )( 1,2)i iΩ =  respectively. In the absence of an external 
electric field and considering the insignificant effect of induced current, the electric current density ( ),J B= ×vɶ ɶɶɶσ  where ɶσ  
denotes the electrical conductivity of the fluid. Hence, it is concluded that Lorentz force and velocity are collinear and opposite in 
the directions, hence F J B= ×ɶ ɶ ɶ  implies 2

0 ,F B=− vɶ ɶ ɶɶσ  where 0 .B B=ɶ ɶ  Magnetic induction equation is eliminated here, due to the 
assumption that the magnetic Reynolds number mR  is small. When  1,mR <<  the magnetic field is said to be frozen into the fluid, 
meaning that the fluid moves with the magnetic field lines. This assumption allows us to neglect the inertial effects of the 
magnetic field on the fluid and reduces the magnetic induction equation to a simple diffusion equation. We assume 

ie i=ɶ ɶµ µ  for 
both regions. Therefore, Eqs. (1) and (2) become: 

2
2 0i i i i

i

i ii

B p

k

∇
∇ − − =

v v
v

ɶ ɶ ɶɶ ɶɶ
ɶ ɶ

ɶ ɶ ɶ

σ

µ µ
 (3) 

. 0i∇ =vɶ ɶ  (4) 

2.2 Transformation of governing equations into dimensionless form 

Introducing the dimensionless variables as follows: 

1 1 1
0

0 2 2

, , , , , , , ,i i
i i

y px U
x y p p

pU H H H H H

∈ ∇
= = = = = = = ∈= ∇=

v
v

ɶ ɶɶɶ ɶɶ ɶ ɶ ɶ
ɶɶ

ɶ ɶ ɶ ɶ ɶ ɶɶ ɶ ɶ

µ µ σ
α γ
µ σ

 (5) 

where ,H Uɶ ɶ represents the characteristic length and velocity respectively. The dimensionless form of momentum and continuity 
equations for the region ( )1Ω and ( )2Ω are given as follows: 

2 2
1 1 1 1 1,  . 0t p∇ − =∇ ∇ =v v v  (6) 

2 2
2 2 2 2 2,  . 0t p∇ − = ∇ ∇ =v v vα  (7) 

where 2 2 2 2 2( ),  / 1 /i i i i i it n M n H k Da= + = =ɶɶ (here, iDa  are Darcy numbers, i.e., 2Da /i ik H= ɶ ɶ [13])  for α1 21,2,  /i M M= = γ  and 
2 2

1 1 0 1/ .M B H= ɶ ɶɶσ µ  Here, 1,M  2M  are Hartman numbers in ( )1Ω  and ( )2 ,Ω  respectively. 

2.3 Non-dimensional boundary conditions 

1. No-slip condition at upper plate 1 :y =  

1 10, 0.u v= =  (8) 

2. No-slip condition at lower plate 1 :y =−  

2 20, 0.u v= =  (9) 

3. At the upstream: 

( )23
1 , 0 for 1,2.

2i iu y v i= − = =  (10) 

4. At the downstream: 

0, 0 for 1,2.i iu v
i

x x

∂ ∂
= = =

∂ ∂
 (11) 

5. At the porous-porous interface ( )1 :y =− +∈  

    5.1. Velocity continuity:  

1 2 1 2, .u u v v= =  (12) 
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    5.2. Jump in shear stress [13]: 

1 2 1 2
1 2 1 1

1 2

.
u u

u
y y Da Da

 ∂ ∂  − = −   ∂ ∂  

β β
µ µ µ  (13) 

where 1 2,β β are stress-jump coefficients. 

    5.3. Normal stress continuity ([13, 32]): 

1 2
1 22 2 .

v v
P P

y y

∂ ∂
− + =− +

∂ ∂
 (14) 

2.4 Reduction of Governing equations in terms of non-primitive variables 

       The velocity field can be written in terms of stream function ([30]) with the help of the continuity equation: 

( ) ( )

( )ψ
,  v ,  1,2 .

i i

i iu i
y x

∂ ∂
= =− =

∂ ∂
ω

 (15) 

To reduce Eqs. (6) and (7) into boundary value problem, we substitute ( ) ( ),  1,2i i iu v i= =v in Eqs. (6) and (7), we get Eqs. (16) 
and (17), respectively: 

( ) ( )2 2 2 2 2 2 2 21 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  , , ,   ,  .

p p
t p u v t u v p u t u v t v

x y x y

 ∂ ∂ ∂ ∂ ∇ − =∇ ⇒ ∇ − = ⇒ ∇ − = ∇ − =  ∂ ∂ ∂ ∂ 
v v  (16) 

( ) ( )2 2 2 2 2 2 2 22 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  , , , ,   ,  .

p p
t p u v t u v p u t u v t v

x y x y

 ∂ ∂ ∂ ∂ ∇ − = ∇ ⇒ ∇ − = ⇒ ∇ − = ∇ − =  ∂ ∂ ∂ ∂ 
v v α α α α  (17) 

Further, Eq. (16) can be solved as follows: 

2 2 2 2 2 21 1 1 1 1 1 1 1
1 1 1 1 1 1 1   ,

p p u v u v p p
u t u v t v t

y x x y y x y x y x x y

          ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂           ⇒ ∇ − = − ∇ − = ⇒ ∇ − − − = −                      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂       
 (18) 

( ) ( ) ( ) ( )
( )( ) ( )( ) ( ) ( )ψ ψ ψ ψ

ψ ψ ψ
1 1 1 1

1 1 12 2 2 2 2 2 2 2 2
1 1 1 0  0   0.t t t

y y x x y y x x

          ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂               ⇒ ∇ − − − − − = ⇒ ∇ ∇ − ∇ = ⇒ ∇ ∇ − =                  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂             
 (19) 

Similarly, Eq. (17) can be solved as: 

2 2 2 2 2 22 2 2 2 2 2 1 1
2 2 2 2 2 2 2   ,

p p u v u v p p
u t u v t v t

y x x y y x y x y x x y

           ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂            ⇒ ∇ − = − ∇ − = ⇒ ∇ − − − = −                       ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂         
α α α  (20) 

( ) ( ) ( ) ( )
( )( ) ( )( ) ( ) ( )ψ ψ ψ ψ

ψ ψ ψ
2 2 2 2

2 2 22 2 2 2 2 2 2 2 2
2 2 2 0  0   0.t t t

y y x x y y x x

          ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂               ⇒ ∇ − − − − − = ⇒ ∇ ∇ − ∇ = ⇒ ∇ ∇ − =                  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂             
 (21) 

This follows from the Eqs. (19) and (21) that: 

( ) ( )
ψ2 2 2 0,i

it∇ ∇ − =  (22) 

where  ( )2 2 2 ,  ( 1,2).i i it n M i= + =  
Nishad et al. [31] developed a non-primitive BEM to solve the 2D Brinkman equation. We introduce the vorticity variable ( )i

ω , 
by using Eq. (15): 

( ) ( )
( ) ( ) ( ) ( )

( )ψ ψ ψ ψ
ψ

2 2
2

2 2
, .

i i i i
i ii i

i i i

v u
u v

x y x x y y x y

       ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂            = ∇× =∇× = − = − − − =− + =−∇               ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂         
vω  (23) 

To solve Eq. (22), we reduce Eq. (22) into a coupled system of Poisson (Eq. (23)) and modified Helmholtz equations (by 
substituting Eq. (23) into Eq. (22)), which are as follows: 

( ) ( )
ψ2 ,i i∇ =−ω  (24) 

( ) ( )2 2 0.i

it∇ − =ω  (25) 

2.5 Reduction of boundary conditions in terms of non-primitive variables 

1. No-slip condition at upper plate 1 :y =  

( )
( )

ψ
ψ

1
1 1, 0.

y

∂
= =

∂
 (26) 

2. No-slip condition at lower plate 1 :y =−  
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( )
( )

ψ
ψ

2
2 1, 0.

y

∂
=− =

∂
 (27) 

3. At the upstream: 

( ) ( )
ψ

33
, 3 ,  for 1,2.

2 3
i iy

y y i
  = − = =   

ω  (28) 

4. At the downstream: 

( ) ( )
ψ

0, 0,  for 1,2.
i i

i
x x

∂ ∂
= = =

∂ ∂
ω

 (29) 

5. At the porous-porous interface ( )1 :y =− +∈  

    5.1. Velocity continuity  

( ) ( )
( ) ( )

ψ ψ
ψ ψ

1 2
1 2 ,

y y

∂ ∂
= =

∂ ∂
 (30) 

    5.2. Jump in shear stress: 

( ) ( )
( )

ψ
1

1 2 1 2
1 2 1

1 2

.
yDa Da

  ∂ =− + −    ∂   

β β
µ ω µ ω µ  (31) 

To establish the above relationship, we employ a step-by-step approach. Initially, we utilize Eq. (12). Subsequently, we use Eq. 
(15). Finally, we make use of the relation, as stated by Eq. (24). By following these steps, Eq. (13) is simplified and ultimately 
reduced to Eq. (31). 

    5.3. Normal stress continuity: 

( ) ( ) ( ) ( )
ψ ψ

1 1 2 2
2 2
1 2

1
,t t

y y y y

 ∂ ∂ ∂ ∂  + =− −  ∂ ∂ ∂ ∂ 

ω ω

α
 (32) 

where ( )2 2 2 ,  ( 1,2).i i it n M i= + =  and 1 2/ .=α µ µ  

2.6 Non-primitive boundary element method for Brinkman-Brinkman system    

To ensure a clear understanding of the numerical solution procedure, it is necessary to discuss the algorithm in detail before 
moving forward. The following steps are as follows: 

 
Algorithm 1. Algorithm of the Numerical Solution Procedure 

Step 1. Formulation of boundary value problem (BVP) by defining the relevant physics and mathematics governing the problem at hand. 

Step 2. Computation of the free space Green’s function or fundamental solution. 

Step 3. Utilization of Green’s second identity, which relates the behavior of a system inside a closed boundary to the sources and sinks of 
the system outside that boundary. 

Step 4. Derivation of boundary integral formulation (BIF), which transforms the original BVP into a set of equations that can be solved using 
only boundary data. This is where the BEM comes into play, as it is used for boundary information. 

Step 5. Discretization of the boundary integral equations using suitable elements (BEM), allowing for an efficient and accurate numerical 
solution. 

Step 6. Evaluation of boundary integrals (also called influence coefficients), representing the sensitivity of the boundary values to variations 
in the sources. 

Step 7. Solution corresponding to the system of linear equations to get the unknown boundary data. 

Step 8. Evaluation of solution at any point inside the given domain. 

 Let 0 0( , )p X Y , and ( , )q X Y  be the field point and integration point, respectively. Here,  ,p∈Ω∪Λ  and ,q∈Λ  where 
(1) (2),∪Ω=Ω Ω  and (1) (2).∪Λ=Λ Λ  We assume that the outer boundaries of the regions (1),Ω  and (2)Ω are denoted by (1)Λ and (2),Λ  

respectively and (12)Λ  denote the interface region where (1) (1) (12)* ,Λ =Λ ∪Λ , and (2) (2) (12)* ,Λ =Λ ∪Λ  (refer to Fig. 2). Let ,L MHG G  and 
CG  represents free space Green’s function with respect to Laplacian, modified Helmholtz, and composite operator given by  

π π0ˆ ˆln / 2 ,  ( ) / 2 ,L MH
i i iG r G K t r= =−  and 2( ) / ,  ( 1,2)C MH L

i i i iG G G t i= − =  where 0K  represents the modified Bessel function of zeroth 
order of second kind and ˆ | | .r p q= −  

 

Fig. 2. Discretization of the boundary of the computational domain [28]. 
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Applying Green’s second identity to Eqs. (24) and (7) together with the fundamental solution, we obtain boundary integral 
equations (please refer to Appendix C) at any field point p: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( )

( ) ( ) ( ) ( ) ( )
( ) ( )

( )

( )
Λ Λ

ψ
ψ ψ

* *

, ,
( ) , ,

i i

i iL C
i i iL Ci i

i i
q q q q

G p q q G p q q
c p p q G p q ds q q G p q ds q

n n n n

   ∂ ∂ ∂ ∂    = − − −     ∂ ∂ ∂ ∂    
∫ ∫

ω
ω  (33) 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( )

( )
Λ

*

,
( ) ,

i

iMH
i i MHi

i
q q

G p q q
c p p q G p q ds q

n n

 ∂ ∂  = −   ∂ ∂ 
∫

ω
ω ω  (34) 

where free term coefficient ( )c p  is defined as: 

( )

Ω

Λ

Ω Λ

1,  

1
,   

2
0,  

p

c p p

p

 ∈= ∈ ∈/ ∪

 (35) 

Here, Eqs. (33) and (34) involves weakly singular (free space Green’s function) and strongly singular (normal derivatives of free 
space Green’s function) kernels inside the integrals. In this case, one has to handle these singularities very carefully. Also, most 
of the time, the boundary of the computational domain is irregular in shape. In this scenario, analytical evaluation of the 
integrals is not possible. Therefore, numerical treatment is needed at the boundary. In order to compute the integrals in Eqs. (33) 
and (34), we approximate the boundary by straight line segments and assumed boundary quantity constant. Further, we 
discretize the boundary ( ) ( ) ( ) ( )

Λ Λ Λ Λ
*

1 2 12 1,  ,  ,  , and ( )Λ
*

2 into ( ) ( ) ( ) ( )*1 2 12 1N , N ,  N ,  N , and ( )*2N  constant elements respectively, which is 
the simplest constant element in the positive orientation sense, where   ( ) ( ) ( )*

1 1 12N N +N  = , and ( ) ( ) ( )*
2 2 12N N +N  = (refer to Fig. 2). 

The boundary quantities ψ ψ, / ,  ,n∂ ∂ ω  and / n∂ ∂ω  are approximated by piece-wise constant functions ψ ψ, / ,  ,j j jn∂ ∂ ω  and 
/j n∂ ∂ω  over each element Λ( ) ( )* *

,  1,2,...,  N ,  ( 1,2).i ij i= =  
Applying the corresponding discretized forms of Eqs. (33) and (34) at the mid-point 

*( ),  1,2,..., i
lp q l N≡ =  of each element (this 

process is called collocation), we obtain: 

( ) ( ) ( )

( )

( )
( )

( )
( )

( ) ( ) ( )
( )

( )

( )

( )
( )

( )
( )

Λ Λ ΛΛ

ψ
ψ ψ

*

* * * *
q q q

1
q

, ,
, ,

i

i i i i
j j j j

i iL CN
j ji i iL Cl li i

l li j i j i
j q q q q

G q q G q q
c ds q G q q ds q ds q G q q ds q

n n n n
∈ ∈ ∈

=
∈

 
 ∂ ∂∂ ∂ = − − + ∂ ∂ ∂ ∂ 
  

∑ ∫ ∫ ∫ ∫
ω

ω  (36) 

( ) ( ) ( )

( )

( )
( )

( )
( )

( )
( )

Λ Λ

*

* *
q q

1

,
,

i

i i
j j

iMHN
ji i MHli

li j i
j q q

G q q
c ds q G q q ds q

n n
∈ ∈

=

 
 ∂∂ = − ∂ ∂ 
  

∑ ∫ ∫
ω

ω ω  (37) 

The equivalent form of Eqs. (36) and (37) is given by: 

( ) ( ) ( )
( )

( ) ( ) ( )
( )

ψ
ψ 0

i i
i i i i i i

lj lj lj ljA B C D
n n

∂ ∂
+ + + =

∂ ∂
ω

ω  (38) 

( ) ( ) ( )
( )

0
i

i i i

lj ljE F
n

∂
+ =

∂
ω

ω  (39) 

where the influence coefficients are given by: 

( ) ( )

( )

( ) ( ) ( )
( )

( )
Λ Λ

δ
* *

q q

,
,  B ,

i i
j j

L
i i Lli

llj j lj lj i
q

G q q
A ds q c G q q ds q

n
∈ ∈

∂
= − =−

∂∫ ∫  (40) 

( ) ( )

( )

( ) ( ) ( )
( )

( )
Λ Λ

* *
q q

,
,  D ,

i i
j j

C
i i Cli

llj lj i
q

G q q
C ds q G q q ds q

n
∈ ∈

∂
=− =

∂∫ ∫  (41) 

( ) ( )

( )

( ) ( ) ( )
( )

( )
Λ Λ

δ
* *

q q

,
,  F ,

i i
j j

MH
i i MHli

llj j lj lj i
q

G q q
E ds q c G q q ds q

n
∈ ∈

∂
= − =−

∂∫ ∫  (42) 

where δlj  represents the Kronecker delta function. We denote ( ) ( )( )i i
lj ljA A= and ψ ψ ψ ψ ( )*

( ) ( ) ( ) ( )( , ,..., )i

i i i i

N
=  etc. To obtain the information 

of the unknown boundary data, we solve Eqs. (38) and (39), with the help of Eqs. (26)- (32). The systems stated by Eqs. (38) and (39) 
have more number ( ) ( ) ( )1 2 12(2 2 8 )N N N+ + of unknowns than the number ( ) ( ) ( )1 2 12(2 2 4 )N N N+ +  of equations, which results in an 
inconsistent system. In order to make the system solvable, we apply interfacial boundary conditions given by Eqs. (30)- (32). In 
this manner, the resultant system of linear algebraic equations has an equal number of equations and unknowns. Once we know 
all the boundary data, we get ψ( ) ( ), ,( 1,2)i i i =ω  at general field point inside the computational domain. In BEM simulation, to 
discretize the boundary of each domain, we have considered 220 straight-line elements. This follows that 220  number of nodes 
for each domain, as the node is present in the mid of the straight line. We cross-verified that there is no significant change in 
computed values if we increase the boundary elements. We have used 2500 (i.e., 50 50)× solution points ( )SN  inside each domain. 
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To execute the numerical implementation, MATLAB®(R2014b) has been utilized. To execute BEM code, PC having the properties 
Intel(R) Core (TM) i5-2400 CPU@ 3.10 GHz processor has been used. The estimated computational time to run the BEM code in 
MATLAB is 23.666407 seconds. 

2.7 Evaluation of singular boundary integrals   

When ,l j≠ then integrals are free from any singularity. As a result, the numerical Gauss quadrature method can be utilized 
to evaluate regular these integrals. In case, when ,l j= the vector r lies on the thj element, where r̂  is the magnitude of r i.e., 
r̂ p q= − = r  is consistently orthogonal to the orthogonal vector n, then integrals stated by Eqs. (40)-(42) become singular. In 
situations involving constant elements, integrals having singularity can be deduced via analytical computation. The influence 
coefficients jjA and jjB are obtained and presented as follows (please refer to [33, 34]): 

π
, ln 1 ,

2 2
j j

jj j jj

l l
A c B

    =− =− −     

⌣ ⌣

 (43) 

where jl
⌣

denotes the length of the thj element. To solve ,  ,  jj jj jjC D E  and jjF , we proceed with the methodology utilized by Nishad 
et al. [33] and obtained the expressions for these singular integrals analytically. The fundamental solutions namely, 

,   and L MH C
i i iG G G  and their normal derivatives are as follows:   

π π π 2

ˆ1 1 .
ˆln ,  ,

ˆ ˆ2 2 2

L
L i
i

G r
G r

r r

∂ ∂
= = =

∂ ∂
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n n
 (44) 
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1 1
,  ,  1,2 .

C MH L
C MH L i i i
i i i

i i

G G G
G G G i

t t

 ∂ ∂ ∂  = − = − =  ∂ ∂ ∂ n n n
 (46) 

As ˆ 0,r → i.e., the asymptotic behavior of ( )0 ˆ
iK t r  is provided by ( ) ( )0 ˆ ˆln ,i iK t r t r≈− −γ where 0.5772=γ is known as Euler’s 

constant. In accordance with the fundamental solutions presented before, we have:  
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(47) 

Above said vectors namely, r  and n  are orthogonal to each other, which results in the vanishing of the integrals that appear 
above. In the same manner:  
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4

1 1 2
(a) 1,  10 ,  1,  1, 0, 0M −∈= = = = = =γ α β β  1 2 1 2(b) 1,  0.5,  0.4,  1.5,  1.7,  0Da Da∈= = = = = = =γ α β β  

Fig. 3. Effect of (a) Darcy number, and (b) Hartman number on flow velocity. 
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Table 1.  L2- error corresponding to horizontal velocity for distinct values of Darcy number (Da) 

Serial No. Darcy Number (Da) L2- error 

1. 1  6.86E 03−  

2. 110−  4.37E 03−  

3. 310−  3.21E 03−  

4. 510−  1.97E 03−  

Table 2.  L2- error for horizontal velocity for distinct values of Hartman number (M1) 

Serial No. Hartman number (M1) L2- error 

1. 1 4.58E 03−  

2. 3 2.39E 03−  

3. 5 1.41E 03−  

3. Results and Discussion 

3.1 Validation of BEM code 

In absence of magnetic field 4
1(i.e. 10 )M −=  and taking the same porous material parameters in both the regions i.e., 

1 2 1 2( ,  ),Da Da= =µ µ  the 2D flow of a viscous incompressible fluid through a composite porous channel is reduced to a single 
porous channel (please refer Fig. 3(a)). In this context, we have shown the impact of Darcy number on the flow velocity and 
compared the BEM results with the exact solution (Nishad et al. [31]) and observe that our result agrees very well with Nishad et 
al. [31]. This ensures the correctness of the BEM code. Next, we consider 2D fully developed flow of viscous incompressible fluid 
flow through a rectangular porous channel of distinct permeability. In this scenario, we have presented the influence of the 
Hartman number on flow velocity and compared our BEM solution with the corresponding exact solution. From Fig. 3(b), we 
determined that our BEM solution agrees with the exact solution (please refer to Appendix A). This further strengthens the 
correctness of BEM code.   

3.2 L2- error  

 To check the accuracy of the BEM code, we have determined the 2L - error corresponding to Fig. 3(a) and Fig. 3(b). The 2L - 
error in terms of velocity, for the steady value of 4

1 1 21,  10 ,  1,  1, 0, 0M −∈= = = = = =γ α β β  and distinct values of Darcy number 
( )Da i.e., 1 3 51,  10 ,  10  and 10Da − − −= (please refer Table 1). The 2L - error for horizontal velocity is defined as:  

( ) ( )( )
1

222

1

L  error = 
SN

E C
i

u i u i
=

 
 −  
∑  (51) 

where Eu and Cu denotes the exact and computed velocity and SN  denotes the number of solution points in the y-direction. By 
utilizing the above relation, 2L - error for horizontal velocity evaluated at the vertical centerline ( )0x = corresponding to Fig. 3(a) 
is given in Table 1. 

Similarly, for the steady value of 1 2 1 21,  0.5,  0.4,  1.5,  1.7,  0Da Da∈= = = = = = =γ α β β and distinct values of Hartman 
number ( )1M  i.e., 1 1,3 and 5M = , we have determined the 2L - error for horizontal velocity at the vertical centerline 
( )0x = corresponding to Fig. 3(b) is given  in Table 2. 

3.3 Pressure-driven flow through 2D composite porous channel with applied transverse magnetic field 

We assume 2D pressure-driven flow of a viscous, incompressible fluid through a channel consisting of two packings that are 
filled with fully saturated porous medium with an applied transverse magnetic field. It is assumed that the permeability of both 
porous packings has taken distinct. No-slip condition is applied on both walls of the channel. At the interface between two 
porous regions continuity of the velocity, a jump in shear stress and normal stress are applied. The dimension (length and 
breadth) of the rectangular channel is 10 and 2 units respectively (refer to Fig. 1). 

 

Fig. 4. Influence of thickness parameter ( )∈  on velocity of fluid with 
1 2

0.= =β β  
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1 2
(a) 0,  0= =β β  

1 2
(b) 0.5,  1.5= = −β β  

 

1 2
(c) 1.5,  0.5=− =β β  

Fig. 5. Influence of Stress-jump coefficients on velocity of fluid with Hartman number 
1

3.M =  

In Fig. 4, we have presented the impact of ∈  ranging from 0  to 2  on flow velocity with 1 2
1 210 ,  5 10 ,Da Da− −= = ×  

10.5,  0.5,  3.M= = =α γ  When ∈  approaches either to 0  or 2 , we observe that the channel consisting of two porous packings 
gets reduced to a single porous channel and the fluid velocity acquires its maxima at the middle portion and vanishes at the 
lower and upper surface due to no-slip condition. When ∈  holds the value in between 0.4 and 1.6,  the fluid velocity attains 
maxima in the upper region. 

Next, in Fig. 5, we have presented the impact of stress-jump coefficients on the fluid velocity with distinct values of ,∈   
1 2

1 1 23, 10 , 5 10 , 0.5, 0.5.M Da Da− −= = = × = =α γ In every case we have taken three pairs of stress-jump coefficients ( )1 2,β β which 
are ( ) ( )0.5, 1.5 , 0,0−  and ( )1.5,0.5 .−  We can notice from here that in considering pairs of ( )1 2, ,β β  when 1β  increases from 

1.5 to 0.5,− at the same time 2β  decrease from 0.5 to 1.5− . From Fig. 5(a), we observed that when 0.4∈= , as the 

1 1.5 to 0.5,→−β  the flow velocity ( )u  increases in the middle portion of the region ( )1 ,Ω and then starts dropping from the 
interface ( 0.6)y =−  to the lower wall ( 1)y =−  of the porous packing ( )2 .Ω  Next, in Fig. 5(b), we analyzed that when 1,∈=  and 

1 1.5 to 0.5→−β , horizontal velocity ( )u  increases in ( )1 ,Ω  and  decreases in ( )2 .Ω  Lastly, in Fig. 5(c), When 1.6∈= and 1 2<β β  

1 2(i.e., the case when 1.5, 0.5),=− =β β  the velocity of the fluid becomes maximum closer to the interface ( 0.4),y =  but when 

1 2≠β β  or 1 2>β β  1 2 1 2(i.e., when 0 or 0.5, 1.5),= = = =−β β β β  flow velocity attains its maxima (maximum value of ( )u  in 
comparison to all corresponding values of ( )u ) in the porous region ( )1 ,Ω  then decreases in the region ( )2 .Ω  Also, we observed that 
there exist some points including point ( 0.27)y =−  in the region ( )2Ω (please refer Fig. 5(a)), two points namely 0.25y = in the 
region ( )1 ,Ω  and 0.36y =−  in the region ( )2Ω  (please refer Fig. 5(b)), and point ( 0.3)y = in the region ( )2Ω (refer to Fig. 5(c)), at which 
fluid velocity becomes independent of the variation of stress-jump coefficient, due to the existence of the boundary layer closer 
to the interface. 

From Fig. 6(a) to Fig. 6(c), we analyzed that for the steady value of Hartman number ( )1 3M =  while increasing the electrical 
conductivity γ  from 0.25  to 1, fluid velocity increases in lower region ( )2Ω and identically decreases in upper region 

( )1 ,Ω ( 0y = to 0.2) . The horizontal velocity ( )u  remains uniform near the interface ( 0y = to 0.2), this is because of the fact that 
increasing the electrical conductivity enhances the magnetic effect in upper porous region and suppresses the magnetic effect in 
lower region. There exists a point 0.2,y = where the horizontal velocity ( )u remains constant with increase in an electrical 
conductivity. 
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Next, in Fig. 7, we analyzed that for the steady value of Hartman number ( i.e. 1 3),M =  the horizontal velocity increases for 
the region ( 1y =− to 0.1)  and decreases in the region ( 0.1y = to 1) with increasing viscosity ratio ,α ranging from 0.25  to 1.  But 
when viscosity ratio ,α varies from 1  to 1.75, the flow velocity starts dropping in the region ( )1 ,Ω  and increasing in the region 

( )2 .Ω  The horizontal velocity remains same near the interface ( )0 .y =  
Next, in Fig. 8 to Fig. 10, for the steady value of viscosity ratio ( )0.5 ,=α  Darcy number ( )1 2

1 210 , 5 10Da Da− −= = ×  and 
electrical conductivity ratio ( )0.5 ,=γ we have presented the influence of 1M  on flow velocity with distinct values of 1 2,β β  and 

.∈  We analyzed that increment in the value of 1M  suppresses the velocity of the fluid along with three different cases of 1 2,β β  
with 0.4∈=  to 1.6, which validates the prominent outcome that the magnetic field suppresses the fluid velocity. It takes place 
due to the applied magnetic field which acts perpendicular to the flow direction and is capable of generating force like Lorentz 
force which opposes the flow. When the Hartman number ( )1M  becomes very large i.e., 1 10,  15,  and 20,M = then horizontal 
velocity ( )u becomes uniform throughout the major part of the composite channel. 

 

  

1 2
(a) 0,  0= =β β  

1 2
(b) 0.5,  1.5= = −β β  

 

1 2
(c) 1.5,  0.5=− =β β  

Fig. 6. Impact of electrical conductivity ratio on flow velocity with 1 2

1 1 1
3,  1,  0.5,  10 ,  5 10 .M Da Da− −= ∈= = = = ×α  

 

  
1 2

(a) 0,  0= =β β  
1 2

(b) 0.5,  1.5= = −β β  

Fig. 7. Impact of viscosity ratio ( )α  on the velocity of fluid with 1 2

1 1 1
3,  1,  0.5,  10 ,  5 10 .M Da Da− −= ∈= = = = ×γ  
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1 2

(c) 1.5,  0.5=− =β β  

Fig. 7. Continued. 

 

  

1 2
(a) 0,  0= =β β  1 2

(b) 0.5,  1.5= = −β β  

 

1 2
(c) 1.5,  0.5=− =β β  

Fig. 8. Influence of Hartman number ( )
1

M on velocity of the fluid with thickness parameter 0.4.∈=  

Next, from Fig. 8(a) to Fig. 8(c), we observe that as 1M  rises, the fluid velocity drops in the middle portion ( 0.6y =− to 0.6)  of 
the composite porous channel and increases near the lower ( 1y =− to 0.6)−  and upper ( 0.6y = to 1)  surface to retain the 
constant volumetric flow. This is because of the fact that due to applied transverse magnetic field which acts in the normal flow 
direction, is high at the middle portion and low near the lower and upper surface. When the Hartman number increases, we 
observed that the slope of the tangent of the velocity field at the interface ( )0y =  is continuously changes due stress-jump 
condition. 
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From Fig. 9(a) to Fig. 9(c), we observe that as the Hartman number rises, the flow velocity amplifies near the boundary of the 
composite porous channel, in the portion ( 1 to 0.4)y =− −  and ( 0.6 to 1y = approx.) in the region ( )2Ω  and ( )1 ,Ω  respectively. Also, 
the interesting aspect is that we noticed in Fig. 9(a), uniformity in the velocity of the fluid, in the portion ( 0 to 0.1)y = and at the 
point ( 0.4y =− approx.) is because of boundary layers formed in the vicinity of the upper and lower walls of the channel. In Fig. 
9(a) and Fig. 9(c), by increasing the Hartman number ( )1 ,M  flow velocity decreases in the portion ( 0.4 to 0)y =− and ( 0 to 0.6)y =  
in porous regions ( )2Ω  and ( )1 ,Ω  respectively. From Fig. 9(b), we analyzed that on increasing the Hartman number ( )1 ,M  horizontal 
velocity becomes ( )u  uniform in the portion ( 0.4 to 0.1y =− approx.) and decreases in the portion ( 0.1 to 0.7)y =  of the 
composite porous channel. 

 

  

1 2
(a) 0,  0= =β β  1 2

(b) 0.5,  1.5= = −β β  

 

1 2
(c) 1.5,  0.5=− =β β  

Fig. 9. Influence of Hartman number ( )
1

M on velocity of the fluid with thickness parameter 1.∈=  

 

  

1 2
(a) 0,  0= =β β  1 2

(b) 0.5,  1.5= = −β β  

Fig. 10. Influence of Hartman number ( )
1

M on velocity of the fluid with thickness parameter 1.6.∈=  
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1 2
(c) 1.5,  0.5= − =β β  

Fig. 10. Continued. 

 

  

1 2
(a) 0.5,  1.5= = −β β  

1 2
(b) 1.5,  0.5= − =β β  

Fig. 11. Impact of Darcy number on the fluid velocity with thickness parameter 0.4.∈=  

  

1 2
(a) 0.5,  1.5= = −β β  

1 2
(b) 1.5,  0.5= − =β β  

Fig. 12. Impact of Darcy number on fluid velocity with thickness parameter 1.∈=  
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1 2
(a) 0.5,  1.5= = −β β  

1 2
(b) 1.5,  0.5= − =β β  

Fig. 13. Impact of Darcy number on fluid velocity with thickness parameter 1.6.∈=  

  

1 2
(a) 0.5,  1.5= = −β β  1 2

(b) 1.5,  0.5= − =β β  

Fig. 14. Impact of larger Darcy number fluid velocity with thickness parameter 0.4.∈=  

Next, In Fig. 10(a) and Fig. 10(b), we observe that by increasing the Hartman number ( )1 ,M  flow velocity ( )u increases in the 
portion ( 1y =− to 0.6− approx.) and ( 0.6y = to 1) of porous region ( )2Ω and ( )1 ,Ω  respectively. Parallelly, flow velocity ( )u decreases 
in the middle portion ( 0.6y =− to 0.6 approx.) of the composite porous channel. In Fig. 10(c), we observe that by increasing the 
Hartman number ( )1 ,M flow velocity ( )u increases in the portion ( 1y =− to 0) and ( 0.7y = to 1) of porous region ( )2Ω  and ( )1 ,Ω  
respectively. Parallelly, horizontal flow velocity ( )u  decreases in the portion ( 0y = to 0.6) and ( 0.6y = to 0.7) of porous region 

( )2Ω and ( )1 ,Ω  respectively. 
Next, in Fig. 11 to Fig. 14, for the steady value of Hartman number 1( 3),M = viscosity ratio ( 0.5)=α and electrical conductivity 

ratio ( 0.5),=γ we have presented the influence of Darcy number 1 2( ,  )Da Da on fluid velocity with distinct values of thickness 
parameter (here 1Da is fixed and 2Da varies), with described values of stress-jump coefficients. Here, we observed that for the 
steady value of Darcy number 1 2

1 1(e.g. 10 , 5 10 ),Da Da− −= = × , when 1 2 ,>β β  the flow velocity increases in ( )1Ω  and decreases in 
( )2Ω in comparison to the case when 1 2 ,<β β where flow velocity decreases in ( )1Ω and increases in ( )2Ω  (please refer Fig. 11 to Fig. 

13). 
Similarly, we observed the same trend corresponding to a high Darcy number in Fig. 14, for both the cases when 1 2 ,>β β  and 

1 2 ,<β β  where 0.4.∈=  This happens because the porous packing below the interface in the channel provides resistance by virtue 
of its reduced permeability relative to the porous packing upper to the interface of the channel. Also, we observe that there exists 
a point 0.6y =  (please refer Fig. 13), 0.1y =  approx. (please refer Fig. 12) and 0.3y =−  approx. (please refer Fig. 11 and Fig. 14), 
on which the velocity ( )u  remains constant. This occurs because of the existence of the boundary layer closer to the interface.  

Next, Fig. 15(a) presents influence of 1 2 and β β on the interfacial velocity of the fluid against the thickness parameter with 
distinct values of 1 2,β β  and 1 2

1 1 23,  10 ,  5 10 ,  0.5,  0.5.M Da Da− −= = = × = =α γ  We observe that when 0∈→  or 2,  the interfacial 
velocity vanishes at the top and bottom non-permeable surface of the channel because of the applied no-slip condition. We 
analyzed that 1 2 and β β  strongly affects the flow velocity ( )u  at the interface i.e., interfacial velocity increases with an increment 
in stress-jump coefficient. In Fig. 15(b), we observed the existence of two boundary layers, one below the interface and one above 
the interface of both porous regions of thickness δ1  and δ2 ,  respectively. So, in this manner, we can determine the modified 
Brinkman layer of thickness δ δ δ1 2mod = +  closer to the interface of the channel. 
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(a)  (b)  

Fig. 15.  (a) Influence of stress-jump coefficients ( )
1 2
,β β  on the interfacial velocity of the fluid against thickness parameter, (b) Appearance of 

Brinkman layer of thickness ( )δ δ
1 2
+  corresponding to 3 4

1 1 2 1 2 1 2
5,  10 ,  10 ,  1,  1,  1,  1.5,  0.5,  0.5.M Da Da− −= = = ∈= = = = = =µ µ β β γ   

 

  
1

1
(a) Da 10−=  1

2
(b) Da 10−=  

Fig. 16. Influence of thickness parameter ( )∈  on flow vorticity 
( )

.i
ω  (a) flow vorticity at the bottom wall for 1

1
Da 10 ,−=  (b) flow vorticity at the top 

wall for 1

2
Da 10 .−=  

 

Next, in Fig. (16), for the steady values of stress-jump coefficient ( )1 2 0 ,= =β β Hartman number ( )1 5 ,M = electrical 
conductivity ( )0.5 ,=γ and viscosity ratio ( )1 ,=α we have shown the impact of Darcy number ( )Da  on flow vorticity ( )ω for 
distinct values of  thickness parameter ( ).∈  Figure 16(a) shows that flow vorticity at the lower surface varies with 2Da  for distinct 
values of .∈  For a steady value of ,∈  we observe that the magnitude of vorticity at the lower and upper walls increases with 
increasing Darcy number. This is because a high Darcy number results in high velocity near the walls, which in turn leads to high 
vorticity at the walls. The drop of flow vorticity at the lower wall, owing to the decrease in available volume flux within the lower 
porous region as the thickness parameter ( )∈  increases. The equilibrium of volume flux ensures the amplification of flow 
vorticity at the upper wall, as demonstrated in Fig. 16(b). 

3.4 Investigation of Brinkman layer thickness 

We have computed Brinkman layer thickness δ1  and δ2  near the interface (please refer Appendix B), for both the regions ( )iΩ  
for 1,2i =  as a function of transport parameters presented in Table 3. We observed that δ δ1 2 and  strongly depends on the flow 
parameters. For example, when 1 5,M =  for the steady values of ( )1 2,µ µ  and ( )1 2, ,β β distinct porous materials including Foametal, 
Aloxite etc. [12], have been discussed and it is obtained that by rising the value of Darcy number ( )1 2, ,Da Da  there is an increase 
in Brinkman layer thickness. In this context, if we take 1 12 and 20,M = it is observed that Brinkman layer thickness is greater in 
the case when 1 20M = than the case when  1 5 or 12,M =  with increasing Darcy number. Finally, we conclude from here that 
Brinkman layer thickness increases with the Hartman number as well as the Darcy number for the steady values of ( )1 2,µ µ  and 
( )1 2, .β β  
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Table 3. Thickness of Brinkman layer for distinct porous material. 

Hartman number 

( )
1

M  

Darcy number 

( )
1 2
,Da Da  

Viscosity 

( )
1 2
,µ µ  

Stress-jump coefficient 

( )
1 2
,β β  

Brinkman-layer thickness 

( )δ δ
1 2
,  

1
5M =  

(Foametal (1), Aloxite (2))  

( )4 58.2 10 ,  1.6 10− −× ×  
( )10,4  ( )1.5,0.5  ( )0.0308,0.0042  

(Foametal (1), Aloxite (2)) 

( )5 41.6 10 ,  8.2 10− −× ×  
( )4,10  ( )0.5,1.5  ( )0.0040,0.0873  

( )3 410 ,10− −  ( )10,4  ( )1.5,0.5  (0.0340,0.0142)  

( )4 310 ,10− −  ( )4,10  ( )0.5,1.5  (0.0099,0.1479)  

( )2 310 ,10− −  ( )10,4  ( )1.5,0.5  (0.1524,0.0428)  

1
12M =  

(Foametal (1), Aloxite (2)) 

( )4 58.2 10 ,  1.6 10− −× ×  
( )10,4  ( )1.5,0.5  ( )0.0372,0.0042  

(Foametal (1), Aloxite (2)) 

( )5 41.6 10 ,  8.2 10− −× ×  
( )4,10  ( )0.5,1.5  ( )0.0040,0.0920  

( )3 410 ,10− −  ( )10,4  ( )1.5,0.5  (0.0416,0.0138)  

( )4 310 ,10− −  ( )4,10  ( )0.5,1.5  (0.0097,0.1643)  

( )2 310 ,10− −  ( )10,4  ( )1.5,0.5  (0.3615,0.0320)  

1
20M =  

(Foametal (1), Aloxite (2)) 

( )4 58.2 10 ,  1.6 10− −× ×  
( )10,4  ( )1.5,0.5  ( )0.0508,0.0042  

(Foametal (1), Aloxite (2)) 

( )5 41.6 10 ,  8.2 10− −× ×  
( )4,10  ( )0.5,1.5  ( )0.0040,0.1018  

( )3 410 ,10− −  ( )10,4  ( )1.5,0.5  (0.0573,0.0131)  

( )4 310 ,10− −  ( )4,10  ( )0.5,1.5  (0.0093,0.2013)  

( )2 310 ,10− −  ( )10,4  ( )1.5,0.5  (0.7024,0.0130)  

4. Conclusion 

We have analyzed the impact of magnetic field on steady 2D viscous, incompressible flow through composite porous channel 
consisting of two porous packings having distinct permeabilities using the non-primitive boundary element method. The 
employment of non-primitive variables-based BEM exhibits several merits over the primitive variables-based BEM approach, 
including but not limited to: (a) the stream function satisfies the continuity equation intrinsically, and (b) the pressure term is 
eliminated from the momentum equation. Despite the notable advantages, the employment of non-primitive variables based 
BEM approach in certain physical systems has inherent drawbacks, namely, (a) the 3D extension is not always amenable to 
straightforward treatment and often necessitates additional variables, (b) the explicit computation of the pressure field is not 
always feasible, and (c) non-primitive variables are not optimally suited to address problems that feature corner singularities, 
thereby warranting specialized treatment. It is found that thickness parameter, stress-jump coefficient, electrical conductivity 
ratio, fluid viscosity ratio, and Hartman number have strong impact on fluid mechanics. We observed that the thickness 
parameter has an impact on the fluid flow. This understanding is essential for the design and analysis of porous media-based 
systems, as well as for optimizing the performance of various industrial applications including mass transfer and mixing 
enhancement. Also, we observed that horizontal velocity decreases as the Hartman number increases. This phenomenon occurs 
as a consequence of an applied magnetic field that is orthogonal to the direction of flow. It is also observed that as the electrical 
conductivity ratio amplifies, the velocity distribution remains steadfastly uniform in the vicinity of the interface, owing to the 
augmentation of electrical conductivity, which in turn reinforces the magnetic field in the corresponding regions. An escalation 
in the stress-jump coefficient produces a corresponding amplification in the interfacial velocity. We observed that for a steady 
value of thickness parameter, the magnitude of vorticity (at the lower and upper walls) increases with increasing Darcy number. 
Also, we observed that the magnitude of vorticity at lower wall decreases and at upper wall increases with increasing thickness 
parameter. We have computed Brinkman layer thickness near the interface and observed that Brinkman layer thickness is 
strongly dependent on the Hartman number, Darcy number, viscosity, and stress-jump coefficient, respectively.  
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Nomenclature 

Bɶ  Magnetic induction vector of the applied uniform α  Fluid viscosity ratio 

1 2
,  Da Da  Darcy number of the porous medium 

1 2
,  β β  Stress-jump coefficients 

Fɶ  Lorentz force γ  Electrical conductivity ratio 
CG  Free space Green’s function for mixed Laplace and modified Helmholtz equation δ δ

1 2
,   Brinkman layer thickness 

LG  Free space Green’s function for Laplace equation ∈  Thickness parameter 
MHG  Free space Green’s function for modified Helmholtz equation 

( ) ( )
Λ Λ

1 2,   Boundary of the porous regions 

Hɶ  Characteristic length ɶµ  Fluid viscosity 

Jɶ  Density of electric current 
e
ɶµ  Effective viscosity of the porous matrix 

1 2
,   k kɶ ɶ  Permeability of the porous regions ɶσ  Electrical conductivity of the fluid 

0
K  Modified Bessel function ψ  Stream function 

1 2
,  M M  Hartman number 

( ) ( )1 2,  Ω Ω  Porous regions 

pɶ  Hydrodynamics pressure ω  Vorticity variable 

Uɶ  Characteristic velocity  /dp dxɶ ɶ  Pressure gradient 

vɶ  Fluid velocity   
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Appendix A. Evaluation of velocity of the fluid for 2D flow through composite porous channel  

The governing equations of corresponding 2D fully developed flow in above and below the interface of the channel are as 
follows: 

2
21
1 12

,  1 1,
d u

t u P y
dy

− = − +∈≤ ≤  (A1) 

2
22
2 22

,  1 1 .
d u

t u P y
dy

− = − ≤ ≤− +∈α  (A2) 

General solution corresponding to Eqs. (A1)-(A2) is given by: 

( ) ( ) ( )1 1 1 2
1

cosh sinh ,  1 1,
P

u y A t y B t y y
t

= + − − +∈≤ ≤  (A3) 

( ) ( ) ( )2 2 2 2
2

cosh sinh ,  1 1 .
P

u y C t y D t y y
t

= + − − ≤ ≤− +∈
α

 (A4) 

where / ,P dp dx= ( )2 2 2 ,  ( 1,2).i i it n M i= + =  Here, we assume 1 .=− +∈η  
For finding the exact values of A, B, C, and D appearing in Eqs. (A3)-(A4), we applied no-slip boundary condition at the upper 

( )1y =  and the lower ( )1y =−  surfaces of the channel, continuity of velocity, and jump in shear stress at the interface ( ),y = η  
given by: 

1 21 1
0,  0

y y
u u

= =−
= =  (A5) 

1 2  
y y

u u
= =

=
η η

 (A6) 

1 2
1 2 1 1

du du
u

dy dy
− =µ µ α  (A7) 

where 1 2
1 1

1 2

.
Da Da

 
 = − 
  

β β
α µ  

The closed form of the flow velocity in ( ) ( )1 2 and Ω Ω  is given by: 

( ) ( ) ( ) ( ) ( )
( )

1
1 1 1 1 2 2

1 1 1

cosh
sinh tanh cosh ,

cosh

P t y P
u y MP t y t t y

t t t
 = − + −   (A8) 

( ) ( ) ( ) ( ) ( )
( )

2
2 2 2 2 2 2

2 2 2

cosh
sinh tanh cosh .

cosh

P t y P
u y NP t y t t y

t t t
 = + + − 

α α
 (A9) 

 
 
 
 



 Vishal Chhabra et al., Vol. 9, No. 4, 2023 
 

Journal of Applied and Computational Mechanics, Vol. 9, No. 4, (2023), 1016-1035   

1034

Denoting: 

( ) ( ){ } ( ) ( ){ }1 1 1cosh tanh sinh ,E s t s t t s= −  (A10) 

( ) ( ){ } ( ) ( ){ }1 1 1sinh tanh cosh ,F s t s t t s= −  (A11) 

( ) ( ){ } ( ) ( ){ }2 2 2cosh tanh sinh ,G s t s t t s= +  (A12) 

( ) ( ){ } ( ) ( ){ }2 2 2sinh tanh cosh ,H s t s t t s= +  (A13) 

( ) ( )
( ) ( )
( )

( ) ( )
( )

1 1

2 2 2

,
t E s H s F s H s

I s F s
t G s t G s

= − +
α α

µ
 (A14) 

( )
( ) ( ) ( )

( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( ) (

2 1 1 2 1 1 1

2 2 2 2 2 2 2
2 2 2 1 1 1 1 2 1 2 2 2 1 2 1 2 1 2

cosh cosh sinh sinh cosh1

cosh cosh cosh cosh cosh

t t H t H t H t H
M

t I t t I t I t t I t t G I t t G I t t t G I t t t G I
= − − + + − − +
α η η α η η α η η α η η α ηα

η η η η η η η η µ η η µ η η

 

(A15) 

( )
( )

( )
( ) ( )

( )
( ) ( )

( )
( )

( )
( ) ( ) ( )

1 1 2 1 1 1 1
2 2 2

2 1 2 1 2 2 2 2 2 1 2 1 2 1 2

sinh sinh cosh
.

cosh cosh cosh

Mt E t t MF t
N

t G t t G t t G t t G t t G t t t G
= + − − − +
α η α η α η α η α η α

η η η µ η µ η µ η
 (A16) 

For obtaining the value of ,P we use Eq. (A17), which implies 2 / :P R=  
1

1 2

1

2.u dy u dy
−

+ =∫ ∫
η

η

 
 

(A17) 
 

where value of R  is given by: 

( ) ( ) ( ) ( )
( ) ( )

( )
( )
( )

( )1 1 2 2

3 3 2 2 3 3 2 2
1 2 1 1 1 1 1 2 2 2 2 2

tanh sinh sinh tanh1
1 1 .

cosh cosh

t t t tM N
R E E G G

t t t t t t t t t t t t

   
      = − + − − + − − + + + − −             

η α η αη αη α
η η  (A18) 

Appendix B. Evaluation of Brinkman layer thickness near the interface 

To obtain the thickness of the Brinkman layer near the interface, we utilize the relations as follows [3, 12, 34]: 

δ  11
1  = 1.01 ,Dy

u u
= +η

 (B1) 

δ  22
2  = 1.01 ,Dy

u u
= −η

 (B2) 

where  
 1Du and 

 2Du  denote the fluid velocity according to Darcy’s law in porous regions above and below the interface of the 
channel, respectively. 

On solving Eqs. (B1)-(B2), we get the expressions for Brinkman layer thickness, which are as follows: 

( ) ( )
( )

δ 1
1 2 3 3

1 1 1 1 1 1

cosh1.01 1
,

cosh

F t

St MSk t MSt MSt t
= + − +

η η
 (B3) 

( ) ( )
( )

δ 2
1 2 3 3

2 2 2 2 2 2

cosh1.01
,

cosh

H t

Tt NTk t NTt NTt t
= + − +

η α ηα
 (B4) 

where S  and T  are defined as: 

( ) ( ) ( )
( )

( )
1

1 1 1 2
1 1

sinh
cosh tanh sinh ,

cosh

t
S t t t

Mt t
=− + −

η
η η  (B5) 

( ) ( ) ( )
( )
( )
2

2 2 2 2
2 2

sinh
cosh tanh sinh .

cosh

t
T t t t

Nt t
= + −

α η
η η  (B6) 

Appendix C. Boundary integral equation in terms of non-primitive variables 

To obtain the boundary integral equation (BIE) corresponding to the obtained boundary value problem (BVP), it is necessary to 
first recall Green’s second identity. Let us suppose, if f  and g  are two functions, which are the members of twice continuously 
differentiable classes over a domain (say) ,Ω  then: 

( )2 2 g g
f g g f d f f d

n n
Ω Γ

 ∂ ∂ ∇ − ∇ Ω= − Γ  ∂ ∂∫ ∫  (C1) 
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where dΓ  denotes an infinitesimal line or surface element depending on the dimension of the domain. To derive the BIE, 
corresponding to the BVP expressed in Eq. (24), we begin by substituting the functions ( )

ψ
if =  and ,L

ig G=  into the above 
expression: 

( ) ( )( ) ( )
( )

ψ
ψ ψ ψ2 2

iL
i i iL L Li

i i i

G
G G d G d

n n
Ω Γ

 ∂ ∂  ∇ − ∇ Ω= − Γ  ∂ ∂ ∫ ∫  (C2) 

By utilizing the relation between the vorticity variable and stream function, i.e.,  ( ) ( )
ψ2 ,i i∇ =−ω above equation reduces into: 

( )
( )

( )ψ
ψ ψ( ) ( )

iL
i iL Li

i i

G
p c p G d G d

n n
Γ Ω

 ∂ ∂  = − Γ− Ω  ∂ ∂ ∫ ∫ ω  (C3) 

where p  is the field point, ( )c p  is called free term coefficient, and 2 ( )L
iG r∇ = δ  is the singular Laplace equation. Subsequently, we 

substitute the functions ( )if = ω and C
ig G=  in Eq. (C1): 

( ) ( )( ) ( )
( )

2 2
iC

i i iC C Ci
i i i

G
G G d G d

n n
Ω Γ

 ∂ ∂  ∇ − ∇ Ω= − Γ  ∂ ∂ ∫ ∫
ω

ω ω ω  (C4) 

On utilizing Eq. (7), above Equation reduces into: 

( ) ( ) ( )
( )

2 2
iC

i iC Ci
i i i

G
t G d G d

n n
Ω Γ

 ∂ ∂  ∇ − Ω= − Γ  ∂ ∂ ∫ ∫
ω

ω ω  (C5) 

There is an inter-relation between the Laplacian operator L
iG  and the composite operator ,C

iG  i.e., ( )2 2 ,C L
i i it G G∇ − =  we 

substitute this relation in the above equation:  

( ) ( )
( )iC

i iL Ci
i i

G
G d G d

n n
Ω Γ

 ∂ ∂  Ω = − Γ  ∂ ∂ ∫ ∫
ω

ω ω  (C6) 

From Eqs. (C3) and (C6):  

( )
( )

( )
( )

ψ
ψ ψ( ) ( )

i iL C
i iL Ci i

i i

G G
p c p G d G d

n n n n
Γ Γ

   ∂ ∂∂ ∂    = − Γ− − Γ     ∂ ∂ ∂ ∂   ∫ ∫
ω

ω  (C7) 

In this way, we can derive the BIE corresponding to the BVP using non-primitive variables. 
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