- Alavipanah, S., Ehsani, A., Metinfar, H., Rafiei, A., Amiri, R. 2017. Comparison of information content of TM and ETM + sensor bands in desert and urban environments of Iran. Geography research. 38 (1): 56_ 65.
- Akbarimoghadam, H., Ghalavi, M., Ghanbarinajar, A., Rostami, H., Kohkan, S. H. A., Podineh, A., Akbarimoghadam, A. and Lakzaei, M. 2010. Effect of crop rotation systems and levels of nitrogen fertilizer on wheat yield in the Sistan region. Proceeding of the 11th Iranian Crop Science Congress. Shahid Beheshti University. 24-26 July, Tehran, Iran.
- Alizadeh Rabie, H. 2014. Remote Sensing (Principles and Application). Samt Press. Tehran.
- Aghapour Sabbaghi, M., Rafiei, H. 2019. The effect of optimal crop rotation on farmers income stability and Agricultural Economics Research Journal.2(1)
- Buschmann, C., and E. Nagel. 1993. In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation. International Journal of Remote Sensing 14: 711–722.
- Birth, G. S., and G. R. McVey. 1968. Measuring color of growing turf with a reflectance spectrophotometer. Agronomy Journal 60: 640-649.
- Fatemi, B., and Rezaei, Y. (2006). Basic of Remote Sensing. Azade publication. 257 p.
- Froughifar H, Jafarzadah AA, Torabi Gelsefidi H and Aliasgharzadah N, 2012. Effect of different landforms on spatial variability and frequency distribution of soil diological droperties in Tabriz plain. Water and Soil Science- University of Tabriz 21(4): 35-52.
- Franch, B., Vermote, E.F., Becker-Reshef, I., Claverie, M., Huang, J., Zhang, J., Justice, C. and Sobrino, J.A. (2015). Improving the timeliness of winter wheat production forecast in the United States of America, Ukraine and China usingMODIS data and NCAR Growing Degree Day information. Remote Sensing of Environment 161 (2015): 131– 148.
- Freebairn, D. M., R. J. Loch and A. L. Cagle. 1993. Tillage methods and soil water conservation in Australia. Soil and Tillage Research 27: 303-325
- Gitelson, A. A., Y. J. Kaufman, R. Stark, and D. Rundquist. 2002. Novel algorithms for remote estimation of vegetative fraction. Remote Sensing of Environment 80: 76–87.
- Ghafari, A. 2012. Studying the rotation of Sardari wheat with oilseed sunflower, chickpea and fallow under dry conditions. Seedling and Seed Scientific Research Journal. 18 (2): 143-150.
- Huete, A. R., C. Justice, and W. Van Leeuwen. 1996. MODIS vegetation index (mod13). Algorithm theoretical basis document. Version 2. NASA Goddard Space Flight Center. Washington D. C.
- Jafarizadeh, Sh. 2013. Agricultural insurance. Agricultural characteristics of bread wheat varieties in Khuzestan province http://agribim.blogfa.
- Jaranoush, M H., Broumand Nesab, S., Naseri, A A., Pakparvar, M., taghvaian, s. 2018. Application of remote sensing index in estimating crown cover, biomass and wheat cultivation date. Iran Irrigation and Drainage Journal. 14 (1): 204-193
- Kim, D and Kaluarachchi, J. 2015. Validating FAO AquaCrop using Landsat images and regional crop information. Agricultural Water Management. 149: 143-155.
- Kamali, L., Kaviani, A., Nazari, B. and Liaqat, A.M. 2017. Determining wheat yield using Landsat 8 satellite images (case study: Mughan plain). Iran water and soil research. 49(1): 1031_1051.
- Karnieli A, Bayasgalan M, Bayarjargal Y, Agam N, Khudulmur S, Tucker C. 2006. Comments on the use of the vegetation health index over Mongolia. International Journal of Remote Sensing, 27(10): 2017-2024.
- LotfAli Aineh, G A., Asadi, H., Gusheh, M.A, Mousavi fazl, M H., Dehghani, A., Pouradar, R., Gilani, A A., Khawaja Azadeh, Y., Hamuleh Shalal, H. 2013. Agricultural and economic survey of the impact of crop rotation in South Khuzestan. Research institute for improvement and preparation of seedlings and seeds. Karaj. Iran.
- Lotfa Ali Aineh, G., Asadi, H., Gusheh, M., Mousavifazl, M., Dehghani, A., Pourader, R., Gilani, A., Khajeh Azadeh, Y., Hamuleh Shelal, H. 2013. Agricultural and economic survey of the impact of crop rotation in South Khuzestan. Research institute for improvement and preparation of seedlings and seeds. Karaj. Iran.
- Languille, F., A. Gaudel1, B. Vidal, R. Binet, V. Poulain, and T. Trémas, 2017. Sentinel-2B Image Quality commissioning phase results and Sentinel2 constellation performances. Conference on Sensors, Systems, and Next-Generation Satellites XXI Location: Warsaw, POLAND Date: SEP 11-14, 2017.
- Loveimi, N., Asadullah, A., Bagheri, N. and Haji Ahmad, A. 2018.Evaluation of several spectral indices to estimate the yield of rapeseed using Centile_2 sensor images. Agricultural machinery engineering department. University of Tehran. 11 (2): 464-480.
- Mubasheri, M. 2015. Basics of physics in remote sensing and satellite technology. Khwaja Nasiruddin Tusi University.
- Matinfar, H.R. 2013. Modeling wheat yield estimation base upon spectral data and field measurement, case study: Razan plain, Iran. Technical Journal of Engineering and Applied Sciences. 17(3): 2123-2130.
- Mohammadi, E, Kamkar, B,.and Abdi, O. (2015). Comparison of geostatistical- and remote sensing data-based methods in wheat yield predication in some of growing stages (A case study: Nemooneh filed, Golestan province). Electronic journal of crop production. Vol. 8(2) Page 51-76.
- Mazaheri, D. and N. Majnonhosseini. 2003. Fundamental of agronomy. Tehran University Press.320 pp.
- Reynolds, M. P.,Delgado, m. I., Gutierrez-Rosriguez, M., Largue-Saavedra, A., 2000. Photosynthesis of Wheat and Warm, irrigated environment. I.genetic diversity and crop productivity. Field Crops Research, 66:37-50.
- Rouse, J. W., R. H. Haas, J. A. Schell, and D. W. Deering. 1974. Monitoring vegetation systems in the Great Plains with ERTS. Third Earth Resources Technology Satellite (ERTS) Symposium, NASA SP-351 I: 309-317. Washington D. C. USA.
- Siadat, S.A., Sadeghzadeh Hamaiti, S., Fathi, Q.A. and Abdali Mashhadi, AR. 2018. Determining the most suitable crop rotation system for Ahvaz region. Journal of Agricultural Sciences: 11 (2): 174-190.
- Sakamoto, T., Yokozawa, M., Toritani, H., Shibayama, M., Ishitsuka, N. and Ohno, H. 2005, A crop phenology detection method using time-series MODIS data, Remote Sensing of Environment. 96(3): 366-374.
- Solaimani, K., Shokrain, F., Tamartash, R., and Banihashemi, M. 2001. Landsat ETM+ based assessment of vegetation indices in highland environment. Journal of Advances in Developmental Research, 4(7): 2_79.
- Sanai nejad, H., Astarai, A., Mir hosseini, P., Agriculture, A., Ghaemi, M. 2018. Using satellite images for vegetation. Fifth National Congress. Ferdowsi University of Mashhad.
- Siadat, S A., Sadeghzadeh Hamaiti, S., Fathi, Q E. Abdali Mashhadi, A. 2018. Determining the most suitable crop rotation system for Ahvaz region. Journal of Agricultural Sciences: 11 (2): 174-192.
- Zare Faizabadi, A. and Azizi, M. 2012. The effect of different crop rotations on yield in the cold climate of Razavi Khorasan. Journal of Seedling and Seed Agriculture, 261-275: 28.
- Zare, Sh., Zare Faizabadi, A., Siyohi, M. 2013. Reviewing the yield and economic analysis of wheat-based crop rotation systems. Seedling and seed cultivation magazine. 2_30(1): 33_45.
- Ziloui, N., Ahmadi, A., Bagheri Dehabadi, M., Mohammad Murad Tarem, H., Nouri, J. 2013. Importance of flowering and grain filling stages in increasing wheat yield. The first international congress and the 13th national congress of agricultural science and plant breeding and the third congress of seed science and technology. Karaj.
- Zahirnia, A., H. R. Matinfar, and M. Zinvand. 2016. Prediction of canola yield base on Landsat-8 in west south of Khouzestan province. 4th International conference on applied research in agricultural sciences. Tehran.
|