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Abstract. The technique of numerical inversion of the Laplace transform is applied to solve the population balance equation (PBE). 
The model considers the dispersed phase systems in which nucleation and heterogeneous condensation are present. The studied 
phenomena model corresponds to a nonlinear integro-partial-differential equation. Test cases are solved considering two 
different collision mechanisms, the first-order removal mechanism and the effect of simultaneous coagulation and growth. 
Numerical results are compared with the analytical solution and with the literature. Based on these results, the technique 
applied in this work demonstrates to be a tool to solve problems in particulate systems, particularly for aerosol modeling where 
coagulation is the most important inter-particle mechanism affecting the size distribution. 

Keywords: Aerosol modeling, Numerical inversion of the Laplace transform, Particle size distribution. 

1. Introduction 

Dispersed phase systems are the subject of interest in many chemical engineering processes such as fluidized beds [1, 2], 
droplet dispersions [3], crystallization [4, 5], precipitation [6], liquid-liquid extraction [7, 8], polymerization [9-11], granulation [12, 
13], and colloid chemistry [14, 15]. In all such applications, micro-scale processes such as nucleation, particle growth through 
collisions and coalescence with other particles (coagulation), and agglomeration of particles are present [16, 17]. The modeling 
approach well suited for systems where nucleation, growth, and aggregation occur is the concept of population balance (PB). In 
mathematics, the PBE is a strong non-linear equation with the same mathematical structure as Boltzmann's transport equation 
which corresponds to a nonlinear integro-partial-differential equation and an exact analytical solution is rarely analytically 
tractable [18, 19] with very few analytical solutions for some ideal cases [20]. 

Precipitation and crystallization are widely studied problems in modern chemical engineering, which are used to separate 
and purify solid materials. Several phenomena are involved, such as cooling rate, thermal history, mixing performance, 
impurities, crystallizer volume/geometry, mixing at various scales, nucleation, crystal growth, aggregation, and breakage [21, 22]. 
Particle size and size distribution are key to the physical properties of catalysts and other particles or aggregates in nature. Near-
monodisperse (≤ ± 15%) if not narrower, approaching monodisperse particle size distributions (PSDs) are highly desirable. Because 
of this, mechanism-based, rational control of particle size and PSDs is a longstanding goal in nano and other-particle science [23]. 
Crystallization, which is a widely used solid-liquid separation technique, has three general operation modes, i.e., evaporation of 
the solvent, cooling down of the solution, and adding antisolvent into the solution. For a practical application, crystal size 
distribution (CSD) is an important quality index of the prepared particles, which directly influences the product properties such 
as filtration rate, bioavailability, and dewatering rate [24]. Thus, controlling the CSD of the particles becomes important and 
challenging work [25]. 

The population balance equation (PBE) has become a fundamental equation in the study on aerosol dynamical processes, 
where the most important phenomena are nucleation and heterogeneous condensation, with subsequent coagulation and break-
up [26]. Because of the strong dependence of aerosol properties such as scattering, and Brownian coagulation, to predict the 
aerosol properties, it is desirable to understand in as much detail as possible the inter-particle mechanism affecting the size 
distribution. The size distribution of an aerosol is described by the number density function of the particles, which is a transient 
multidimensional equation and can include, volume, surface area, or chemical composition [27], and is governed by a general PBE. 
Numerical methods must be necessary for simulations of atmospheric aerosol dynamics including turbulence transport and 
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dispersion. However, many analytical solutions for population balance are applied in atmospheric research-related literature [22] 
and are valuable for the description of the phenomena in more complex particle systems situations [16, 18, 19].  

The Laplace transform operation is an excellent alternative to solve the PBE. The PBE is a nonlinear integro-partial-differential 
equation and the Laplace transform can handle the integral term in PBE directly. Furthermore, the volume domain can be 
transformed into the Laplace transform domain simplifying the equation. Nevertheless, there is no unique method to perform 
the numerical inversion of the Laplace transform and the best method must be verified for each studied phenomenon. On this 
point, the objective of this work is to solve a general model for the size distribution of PBE by applying the Laplace transform 
technique with numerical Laplace transform inversion to demonstrate the possibility of the numerical inversion for PBE 
applications enabling future research using the same methodology. An analytical comparison of the present results with 
solutions presented in the literature for simplified situations is performed to verify the method solution. Moreover, the results 
obtained in this work are appropriate for characterizing the dynamic behavior of any system of particles in which the 
phenomena of condensation with subsequent coagulation are present such as crystallization [4, 5] and precipitation [6] processes. 

2. Analysis 

The general population balance equation of a spatially and chemically homogeneous particulate system considering the 
mechanisms of agglomeration of the small particles into larger particles (coagulation), condensation and the adding material 
through the fluid phase (sink or loss of material), Fig. 1, is described in terms of the continuous particle size distribution, ( , )n v t  

[28-31]: 

[ ] [ ]
0 0

( , ) 1
( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ), ,

2

vn v t
I v t n v t v v v n v v t n v t dv n v t v v n v t dv S n v t v t

t v
β β

∞∂ ∂
=− + − − − +

∂ ∂ ∫ ∫ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ  (1.a) 

where t is the time, v is the particle volume, ( , )I v t  is the growth/loss and ( , ) 0I v t >  represents the surface growth rate whereas 
( , ) 0I v t <  the evaporation loss rate, S is the nucleation rate including the possible addition of new particles in the system. The 

integral source term accounts for agglomeration following the continuous counterpart of the Smoluchowski equation where 
( , )v v vβ − ɶ ɶ  represents the coagulation kernel function for particles of volume v  and vɶ . The initial and boundary conditions for 

Eq. (1.a) are usually given as: 

0/0

0

( ,0) ;    (0, ) 0v vN
n v e n t

v
−= =  (1.b,c) 

where N0 and v0 are the initial total particle number and the initial total particle volume respectively. The first term on the right 
side of Eq. (1.a) represents the growth rate of change of a particle size distribution ( , )n v t  by mass transfer to individual particles. 
The second term corresponds to the production of particles by coagulation of the appropriate combinations of smaller particles 
by the collision of two particles of volume ( , )v v vβ − ɶ ɶ  and vɶ  to form a particle of volume v (assuming conservation of volume 
during coagulation). The third term corresponds to the loss of particles with collisions with all available particles. The last term is 
the net rate of the addition of fresh particles into the system. Equation (1) provides a wide variety of physical contexts, similar to 
polymerization, atmospheric dynamics of aerosols, crystallization and precipitation, and biological population dynamics.  

2.1 Solution methodology via Laplace transform technique 

For solving the mathematical model given by the integro-partial-differential Eq. (1), the Laplace transform with numerical 
inversion was employed. Therefore, for this purpose, four test cases were considered (Table 1) and compared with the finite 
element method in the literature [29], namely, i) test-case 1: constant aggregation coefficient 0( , )v vβ β=ɶ  and no condensation 
and source terms ( , ) [ ( , ), , ] 0;I v t S n v t v t= =  ii) test-case 2: linear aggregation coefficient 1( , ) ( )v v v vβ β= +ɶ ɶ  and no condensation and 
source terms ( , ) [ ( , ), , ] 0,I v t S n v t v t= =  iii) test-case 3: constant aggregation coefficient 0( , )v v vβ β− =ɶ ɶ  with linear growth rate 
( , )I v t vσ=  and no source terms, and iv) test-case 4: linear aggregation coefficient 1( , ) ( )v v v vβ β= +ɶ ɶ  no condensation and particle 

removal rate 0[ ( , ), , ] ( , ).S n v t v t R n v t=−   

 
Fig. 1. Schematic configuration of the considered structure/system. 

 

Table 1. Test Cases for the studied phenomena. 

Test Case Aggregation ( , )v vβ ɶ  Condensation ( , )I v t   Source Term [ ( , ), , ]S n v t v t  

1 0
β  - - 

2 1( )v vβ + ɶ  - - 

3 0
β  vσ  - 

4 1( )v vβ + ɶ  - 0
( , )R n v t−  
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2.1.1 Test-case 1 

The Laplace transform procedure of Eq. (1.a), to remove the independent variable v, for the test-case 1 is now established as 
follows: 

20 0
0 0 0

0 0

( , ) ( , )
; ( , ) ( , ) ( , );  ( , ) ( , ) ( ) ( , )

2 2

vn v t n s t
n v v t n v t dv n s t n v t n v t dv M t n s t

t t

β β
β β

∞   ∂ ∂     = − = =      ∂ ∂    
∫ ∫ɶ ɶ ɶ ɶ ɶL L L  (2.a-c) 

where, ( , )= [ ( , )].n s t n v tL  Therefore, the transformed differential equation for this case, from the results of Eqs. (2), together with 
the transformed initial condition, are written as: 

20
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β
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∂
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The zeroth order moment 0( )M t  that appears in Eq. (3.a) is obtained from its usual definition, and in this case is given by 

[32]: 

0
0

0
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2
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N
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Equations (3) are readily analytically solved, resulting: 
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2

0 0 0 0 0

4( / )
( , )

(2 ) { 2 / [(2 ) ]}

N v
n s t

N t s N t vβ β
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Applying the inverse Laplace transform in Eq. (4), one obtains: 
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Assuming spherical particles, the volume distribution density is now related to its diameter distribution density through: 

2

( , ) ( , ) ( , )
2D

dv D
n D t n v t n v t

dD

π
= =  (6) 

Therefore, introducing Eq. (5) into Eq. (6), it results in: 

32
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2
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2.1.2 Test-case 2 

Similarly, the Laplace transform procedure of Eq. (1.a) for the test-case 2 is done, to obtain: 

1
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The transformed differential equation for this case is given from Eqs. (8), in the form: 

1 0 1 1

( , ) ( , )
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where, the zeroth and first-order moments, 0( )M t  and 1( ),M t  respectively, in Eq. (9.a) are obtained as [32]: 

0 0 1 0 0 1 0 0
0 0
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= = − = =∫ ∫  (9.c,d) 

Equation (9.a) is a hyperbolic-type differential equation and is analytically solved through the method of characteristics, to 
yield: 
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The inverse Laplace transform of Eq. (10) is given by [32]: 

2 2
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Applying Eq. (6) to Eq. (11), the diameter distribution density is obtained as: 
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2.1.3 Test-case 3 

For this case, the only difference, concerning the test-case 1, is the Laplace transform of the first term on the right side of Eq. 
(1.a), which is given as follows: 
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Therefore, the transformed differential equation for this test-case 3 is obtained from Eqs. (2), in conjunction with Eq. (13), to 
yield: 
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where the zeroth order moment 0( )M t  is the same as given by Eq. (3.c). Equation (14.a) is also analytically solved through the 
method of characteristics, to yield: 
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The inverse Laplace transform of Eq. (15) is: 
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In terms of diameter distribution density by applying Eq. (6) into Eq. (16), one has: 
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2.1.4 Test-case 4 

For this case, the only difference, concerning the test-case 2, is the Laplace transform of the last term on the right side of Eq. 
(1.a), which is given as follows: 

[ ]0 0( , ) ( , )R n v t R n s t=L  (18) 

Therefore, the transformed differential equation for this test-case 4 is obtained from Eqs. (9), in conjunction with Eq. (18), to 
yield: 
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where, the zeroth and first-order moments, 0( )M t  and 1( ),M t  respectively, in Eq. (19.a) are shown below: 
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Equation (19.a) is also analytically solved through the method of characteristics, to yield: 
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Table 2. Results of comparison by both analytical and numerical Laplace transform inversion against the literature [29]. 

Test Case τ = 0.25 τ = 1.0 τ = 2.0 τ = 10.0 τ = 20.0 

1 0.00010 0.00358 0.00643 0.00684 0.00066 

2 0.00578 0.02677 0.03443 - - 

3 0.00145 0.00248 0.00397 - - 

4 0.00201 0.00286 0.00757 - - 

 

where 0 0 0 1/ ,R N vθ β= 0 0 0 ,N v tτ β= ( )exp ,T θτ= −ɶ ( )1 exp 1 / ,g T θ = − −  
ɶɶ ( ) 01S s g v= + + ɶ and 02 .A v g= ɶ  The inverse Laplace 

transform of Eq. (21) is: 
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ɶ
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In terms of diameter distribution density by applying Eq. (6) into Eq. (16), one has: 

( )0
0 1 0

1
( , ) exp exp 1 (2 )

TN T
n v T g v v I gvv

v g θ
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ɶ
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2.2 The numerical inverse Laplace Transforms 

The Laplace transform has also the advantage that it solves problems directly, initial value problems without determining 

first a general solution and nonhomogeneous differential equations without solving first the corresponding homogeneous 

equations [33]. The Laplace transform of ( )f t  given by 
0

F(s) ( ) stf t e dt
∞

−= ∫  is a highly stable operation since variations in ( )f t  

are averaged out in integration. Furthermore, the Laplace transform kernel, ,ste−  converges asymptotically to zero when t tends 

to infinity, unless s is small, which implies that large variation on ( )f t  indicates small F(s)  changes. However, difficulties may 

be encountered in the inversion step of the transformation because the inversion may not be possible through the usual 

techniques and the inverse Laplace transform is generally done numerically. There are over 100 methods available for the 

numerical inversion of Laplace transforms [34] based on the approximation of the inversion complex integral, PostWidder 

inversion formula, and methods based on the deformation of the contour of the Bromwich inversion integral [35]. 

Equations (4), (10), (15), and (21) are all non-linear in the s-variable. Particularly, for these test cases, it was possible to perform 

the inverse Laplace transform. However, difficulties may be found while using the Laplace transform to solve a differential 

equation in the inversion of the solutions from the Laplace domain to the time domain [36], and where the inverse transform 

cannot be determined analytically. 

Alternatively, aiming at more general cases, in the present work, Eqs. (4), (10), (15), and (21) are numerically inverted through 

of the subroutine DINLAP from [37] at each time and spatial position of interest with a required tolerance of 10-4. The DINLAP is 

an optimized subroutine for high-performance computation from the thoroughly-tested IMSL Fortran Library and computes the 

inverse Laplace transform of a complex-valued function. The computation of the inverse Laplace transform is based on applying 

the epsilon algorithm to the complex Fourier series obtained as a discrete approximation to the inversion integral [37]. Given a 

complex-valued transform F(s), the trapezoidal rule gives the approximation to the inverse transform. 
 

 
 
 

 

Fig. 2. Comparison of ( , )N D τ distribution for pure coagulation with constant kernel (test-case 1). 
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Fig. 3. Comparison of ( , )N D τ distribution for pure coagulation with constant kernel and ratio (D/D0) in the range [0,4] (test-case 1). 

 
 

 

Fig. 4. Comparison of ( , )N D τ distribution for pure coagulation with varying kernel (test-case 2). 

3. Results and Discussions 

The results of the numerical inversion for the four test cases were obtained in terms of diameter distribution. The codes were 
implemented in Fortran 90/95 programming language, which was run on a Pentium IV 1.70 GHz computer. For the numerical 
inversion of Eqs. (4), (10), (15), and (21), the subroutine DINLAP from the [37] was used with a tolerance of 10-4. 

The comparison of results in the present work by both analytical and numerical Laplace transform inversion are compared 
against the results reported in the literature [29] for the solution of Eq. (1.a) by finite element method considering two different 
collisions mechanisms, first-order removal mechanism and the effect of simultaneous coagulation and growth, here referred to 
as test-case 1, 2, 3, and 4. The summary of the results can be observed in Table 2 in terms of mean absolute error. In Table 2 the 
comparison of numerical Laplace inversion against analytical Laplace transform inversion is suppressed since the calculated 
absolute error is less than 10-7.  

The simplest form of Eq. (1.a) is considering the absence of growth and sources with constant collision mechanisms (case 1). 
Figure 2 shows the numerical inversion and exact results for the diameter density for the test-case 1 (pure coagulation with the 
constant kernel), using equally space elements in the range [0,3] of the ratio (D/D0), for the dimensionless times 0 0( ),N tτ β=  τ = 0, 
0.25, 1.0 and 2.0. An excellent agreement between the numerical inversion and exact solution was obtained, as well as with the 
results of [29]. Here, this is related to the diameter distribution in the dimensionless form: 0 0( , ) ( , ) .DN D D n D Nτ τ=  The 
precipitation and growth of particles are the result of several mechanisms, nucleation, molecular growth, and secondary 
processes such as aggregation and breakage. The phenomena of nucleation and growth are competitive, both consume the solute 
molecules and therefore the particle size is the result of this competition over time. In Fig. 2 it is noted that at time zero, the 
system precipitates many particles, increasing the population density of these particles. As time increased the phenomena of 
nucleation and growth happen simultaneously consuming the excess of these particles, providing their growth, and decreasing 
the density of the precipitated particles. 
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Fig. 5. Comparison of ( , )N D τ distribution for both coagulation and particle growth with constant kernel (test-case 3). 

 
 
 

 

Fig. 6. Comparison of ( , )N D τ distribution for coagulation with varying kernel and removal rate (test-case 4). 

 

Figure 3, using equally space elements in the range [0,4] of the ratio (D/D0), shows a similar analysis as for Fig. 2, however, to 
demonstrate the performance of both techniques for long times (τ = 0, 10.0, and 20.0), the distribution ( , )N D τ  is multiplied by 
the term 2( 2) 4.τ +  Also, an excellent agreement among the results is verified. In contrast to Fig. 2, in Fig. 3, considering long 
times, most of the molecules are already nucleated and the growth mechanism is dominant increasing both the density of the 
precipitated particles and the ratio (D/D0). 

Figure 4 shows a comparison of the ( , )N D τ  distribution for pure coagulation with varying kernel (test-case 2), also using 
equally space elements in the range [0,3] of the ratio (D/D0), for the dimensionless times using equally space elements in the 
range [0,3] of the ratio (D/D0), for the dimensionless times 0 0 0( ),v N tτ β=  τ = 0, 0.25, 1.0 and 2.0. Once again, the three sets of 
results are in excellent agreement, which emphasizes the ability of the Laplace transform with numerical inversion in handling 
such types of problems. Compared to Fig. 2, in Fig. 4 the particle sizes are shifted faster than in case 1 due to the linear collision 
mechanism whereas in case 1 the collision is a constant. 

Figure 5 shows the numerical inversion and exact results for the comparison of the ( , )N D τ  distribution for both coagulation 
and particle growth with constant kernel (test-case 3), using equally space elements in the range [0,3] of the ratio (D/D0), for the 
dimensionless times 0 0( ),N tτ β=  τ = 0, 0.25, 1.0 and 2.0. As observed throughout the analysis an excellent agreement is verified 
among the sets of results. Compared to Fig. 2, in Fig. 5 the particle sizes are shifted faster than in case 1 due to the linear growth 
rate. Moreover, the linear growth rate condition causes the centrality of the density to be shifted as time is increased.   

Figure 6 shows the comparison of ( , )N D τ  distribution for coagulation with varying kernel and removal rate (test-case 4), also 
using equally space elements in the range [0,3] of the ratio (D/D0), for the dimensionless times 0 0 0( ),v N tτ β=  τ = 0, 0.25, 1.0 and 
2.0. Note that, an excellent agreement among the results is verified. Compared to Fig. 4, in Fig. 6 the particle size distributions are 
flattened due to the imposed particle removal rate. 
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4. Conclusion 

The numerical inversion of the Laplace transform was successfully applied for the solution of the population balance 
equation. The studied cases considered different collision mechanisms, removal mechanisms, and growth. Because there is no 
universal method of numerical inversion that works well for all problems, the comparison of the numerical inversion in cases 
where the analytic inverse transform is known enables a more rational choice of the method to be used. The FORTRAN 
subroutine DINLAP performed the numerical inversion of the Laplace transform. The results generated were compared with data 
produced by the analytical solution, which have an excellent agreement. Thus, the method demonstrated to be an alternative 
tool for handling problems mathematically described by integro-differential equations, particularly for particulate systems. 
Considering the results presented in this work the population balance equation can also be solved using the Laplace transform 
technique with numerical inversion in problems where the same micro-scale processes. In such processes nucleation, growth, 
and agglomeration of particles can be present as in precipitation and crystallization processes    
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Nomenclature 

D  Particle diameter [μm] s  Laplace transform domain 

0D  Initial particle diameter [μm] S  Net rate of addition or removal of particles in the system [cm³.s-1] 

( , )
v

I v t  Rate of change of volume by mass transfer between particles v  Particle volume [cm³] 

 and fluid w  Importance weights 

tK  Perturbation kernel   

( , )n v t  Size distribution density function [μm-3.cm-3]  Greek Letters 

( , )n D t  Size distribution density function as a function of diameter β  Coagulation coefficient 

 [μm-1.cm-1] 0β  Constant aggregation coefficient [cm³.s-1] 

( , )N D τ  Dimensionless size distribution density function 1β  Linear aggregation coefficient [cm³.s-1] 

0N  Total number of particle at t = 0 [cm-3] τ  Dimensionless time 

0R  Removal Rate [cm³.s-1]   
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