
تعداد نشریات | 31 |
تعداد شمارهها | 1,031 |
تعداد مقالات | 9,109 |
تعداد مشاهده مقاله | 10,353,659 |
تعداد دریافت فایل اصل مقاله | 8,577,810 |
واکنش بیوشیمیایی شبپره مدیترانهای آرد Ephestia kuehniella Zeller (Lep.: Pyralidae) به سمیت ترانس آنتول | ||
گیاه پزشکی | ||
دوره 45، شماره 2، مرداد 1401، صفحه 121-136 اصل مقاله (664.31 K) | ||
نوع مقاله: علمی پژوهشی-فارسی | ||
شناسه دیجیتال (DOI): 10.22055/ppr.2022.17573 | ||
نویسندگان | ||
مرتضی شهریاری1؛ نجمه صاحب زاده* 2؛ آرش زیبایی3 | ||
1دانش آموختهی دکتری گروه گیاهپزشکی، دانشکده علوم کشاوری، دانشگاه گیلان، رشت، ایران | ||
2دانشیار گروه گیاهپزشکی، دانشکده کشاوری، دانشگاه زابل، زابل، ایران | ||
3دانشیار گیاهپزشکی، دانشکده علوم کشاوری، دانشگاه گیلان، رشت، ایران | ||
چکیده | ||
ترکیبات مونوترپنوئیدی از اجزای اصلی اسانسهای گیاهی بوده و با ایجاد اختلال در عملکردهای فیزیولوژیکی و رفتاری حشرات، میتوانند در مدیریت آفات مورد استفاده قرار گیرند. شبپره مدیترانهای آرد Ephestia kuehniella Zeller, 1879 (Lep.: Pyralidae) علاوه بر ایجاد خسارت روی محصولات انباری، به دلیل سهولت پرورش در شرایط آزمایشگاهی، به عنوان یک حشرهی مدل در آزمایشهای سمشناسی و بیوشیمیایی مورد توجه محققین قرار دارد. در این پژوهش به منظور درک بهتر سازوکار عمل ترانس آنتول بهعنوان یکی از مهمترین متابولیتهای ثانوی گیاهان تیره چتریان، اثر غلظت کشنده 50 درصد (L g-1µ 03/7LC50=) این ترکیب بر فعالیت آنزیمهای گوارشی، سمزدا و مواد موثر در متابولیسم حد واسط لاروهای سن 4 شبپره مدیترانهای آرد مورد ارزیابی قرار گرفت. کاهش معنیداری در فعالیت آنزیمهای گوارشی (آلفا-آمیلاز، آلفا و بتاگلوکوزیداز، لیپاز) و پروتئازهای اختصاصی (تریپسین، کیموتریپسین، الاستاز، آمینو و کربوکسی پپتیداز) مشاهده شد در حالیکه فعالیت آنزیمهای سمزدا (استرازها و گلوتاتیون استرنسفرازها) در حشرات تیمارشده افزایش نشان داد. تغییرات افزایشی در فعالیت آمینو ترنسفرازها (آلانین، آسپارتات و گاما گلوتامیل) و کاهشی در فعالیت لاکتات دهیدروژناز، اسید و آلکالین فسفاتاز بهعنوان آنزیمهای دخیل در متابولیسم حد واسط لاروهای شبپره مدیترانهای آرد مشاهده شد. میزان ذخایر درشتمولکولهای ذخیرهای (پروتئین کل، گلیکوژن، تریگلیسرید) در حشرات تیمارشده کاهش معنیداری در مقایسه با شاهد نشان داد. القاء و بازدارندگی فعالیت آنزیمها پس از تیمار با غلظت LC50 ترانس آنتول، نشاندهنده کارایی استفاده از این ترکیب در ایجاد اختلالات فیزیولوژیکی در شبپره مدیترانهای آرد است. | ||
کلیدواژهها | ||
اختلال فیزیولوژیکی؛ ترانس آنتول؛ سمزدایی؛ ذخایر انرژی؛ متابولیسم حد واسط | ||
مراجع | ||
Athanassiou, C. G., Rani, P. U., & Kavallieratos, N. G. (2014). The use of plant extracts for stored product protection. Singh, D. (ed.), Advances in Plant Biopesticides. New Delhi, India. pp. 131-148. Bernfeld, P. (1955). Amylases, α and β. Methods in Enzymology, 1, 149-158. https://doi.org/10.1016/0076-6879(55)01021-5 Bessey, O. A. (1954). A method for a rapid determination of alkaline phosphatase with five cubic millimeters of serum. Journal of Biological Chemistry, 207, 19-23. Chun, Y., & Yin, Z. D. (1993). Glycogen assay for diagnosis of female genital Chlamydia trachomatis infection. Journal of Clinical Microbiology, 36(4), 1081-1082. https://doi.org/10.1128/JCM.36.4.1081-1082.1998 Cruz, G. S., Wanderley-Teixeira, V., Oliveira, J. V., D’assunçã, C. G., Cunha, F. M., Teixeira, A. A. C., et al. (2017). Effect of trans-anethole, limonene and your combination in nutritional components and their reflection on reproductive parameters and testicular apoptosis in Spodoptera frugiperda (Lepidoptera: Noctuidae). Chemico-Biological Interactions, 63, 74-80. https://doi.org/10.1016/j.cbi.2016.12.013 Dias, M. L., Auad, A. M., Magno, M. C., Resende, T. T., Fonseca, M. G., & Silva, S. E. B. (2019). Insecticidal activity of compounds of plant origin on Mahanarva spectabilis (Hemiptera: Cercopidae). Insects, 10(10), 1-11. https://doi.org/10.3390/insects10100360 Fossati, P., & Prencipe, L. (1982). Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clinical Chemistry, 28(10), 2077-2080. https://doi.org/10.1093/clinchem/28.10.2077 Fournier, D., Cuany, A., Pralavorio, M., Bride, J. M., & Berge, J. B. (1987). Analysis of methidathion resistance mechanisms in Phytoseiulus persimilis A.H. Pesticide Biochemistry and Physiology, 28, 271-278. https://doi.org/10.1016/0048-3575(87)90025-3 Gallego, F.J., Rodríguez-Gómez, A., Carmen Reche, M., Balanza, V., & Bielza P. (2022). Effect of the amount of Ephestia kuehniella eggs for rearing on development, survival, and reproduction of Orius laevigatus. Insects, 13(250), 1-8. https://doi.org/10.3390/insects13030250 Ghanem, I., Audeh, A., Alnaser, A.A., & Tayoub, G. (2013). Chemical constituents and insecticidal activity of the essential oil from fruits of Foeniculum vulgare Miller on larvae of Khapra beetle (Trogoderma granarium Everts). Herba Polonica, 59(4), 86-96. https://doi.org/10.2478/hepo-2013-0026 Goharrostami, M., & Sendi, J.J. (2018). Investigation on endosymbionts of Mediterranean flour moth gut and studying their role in physiology and biology. Journal of Stored Products Research, 75, 10-17. https://doi.org/10.1016/j.jspr.2017.11.003 Han, Z., Moores, G., Devonshire, A., & Denholm, I. (1998). Association between biochemical marks and insecticide resistance in the Cotton Aphid, Aphis gossypii. Pesticide Biochemistry and Physiology, 62, 164-171. https://doi.org/10.1006/pest.1998.2373 Hemingway, J., & Karunatne, S. H. P. (1998). Mosquito carboxylesterases: A review of the molecular biology and biochemistry of a major insecticide resistance mechanism. Medical and Veterinary Entomology, 12(1), 1-12. https://doi.org/10.1046/j.1365-2915.1998. 00082.x Isman, M. B. (2006). Botanical insecticides, deterrents and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology, 51, 45-66. https://doi.org/10.1146/annurev.ento.51.110104.151146 Isman, M.B. (2020). Botanical insecticides in the twenty-first century-fulfilling their promise?. Annual Review of Entomology, 65, 233-249. https://doi.org/10.1146/annurev-ento-011019-025010 Kim, S.W., Kang, J., & Park, I.K. (2013). Fumigant toxicity of Apiaceae essential oils and their constituents against Sitophilus oryzae and their acetylcholinesterase inhibitory activity. Journal of Asia Pacific Entomology, 16, 443-447. https://doi.org/10.1016/j.indcrop.2014.09.052 King, J. (1965). The dehydrogenases or oxidoreductases. Lactate dehydrogenase, In King, J. (Ed.). Practical clinical enzymology. London: Van Nostrand, pp. 83-93. Klowden, M. J. (2007). Physiological systems in insects. Second edition, Academic Press, USA. Kumrungsee, N., Pluempanupat, W., Koul, O., & Bullangpoti, V. (2014). Toxicity of essential oil compounds against diamondback moth, Plutella xylostella, and their impact on detoxification enzyme activities. Journal of Pest Science, 87(4), 721-729. https://doi.org/10.1007/s10340-014-0602-6 Li, X. C., Schuler, M. A., & Berenbaum, M. R. (2007). Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annual Review of Entomology, 52, 231-253. https://doi.org/10.1146/annurev.ento.51.110104.151104 Lima, F. M., Favero, S., & Lima, J. O. G. (2001). Production of the Mediterranean flour moth, Anagasta kuehniella (Zeller) (Lepidoptera: Pyralidae), on an artificial diet containing corn meal. Neotropical Entomology, 30(1), 37-42. https://doi.org/10.1590/S1519-566X2001000100007 Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265-75. https://doi.org/10.1016/S0021-9258(19)52451-6 Nation, J. L. (2008). Insect physiology and biochemistry. 2nd edition. CRC Press, New York. Oppenoorth, F.J., Van der Pas, L., & Houx, N. (1979). Glutathione S-transferase and hydrolytic activity in a tetrachlorvinphos-resistant strain of housefly and their influence on resistance. Pesticide Biochemistry and Physiology, 11, 176-178. https://doi.org/10.1016/0048-3575(79)90057-9 Oppert, B., Kramer, K.J., & McGaughey, W.H. (1997). Rapid microplate assay of proteinase mixtures. Biotechnology, 23(1), 70-72. Pascual-Villalobos, M. J., Cantó-Tejero, M., Guirao, P., & López, M. D. (2020). Fumigant toxicity in Myzus persicae Sulzer (Hemiptera: Aphididae): Controlled release of (E)-anethole from microspheres. Plants, 9(1), 1-11. https://doi.org/10.3390/plants9010124 Pavela, R., Maggi, F., Cianfaglione, K., Bruno, M., & Benelli, G. (2018). Larvicidal activity of essential oils of five Apiaceae taxa and some of their main constituents against Culex quinquefasciatus. Chemistry and Biodiversity, 15(1), 1-12. https://doi.org/10.1002/cbdv.201700382 Rajaei, A., Yazdanian, M., & Asadeh, Gh. (2021). Lethal and sublethal effects of low temperature, alone and in combination with eucalyptus essential oil, against adult Mediterranean flour moth, Ephestia kuehniella. Plant Protection (Scientific Journal of Agriculture), 43(4): 91-109. https://doi.org/10.22055/PPR.2021.16769 Rajendran, S., & Sriranjini, V. (2008). Plant products as fumigants for stored-product insect control. Journal of Stored Products Research, 44(2), 126-135. https://doi.org/10.1016/j.jspr.2007.08.003 Ramzi, S., Sahragard, A., & Zibaee, A. (2014). Effects of Citrullus colocynthis agglutinin on intermediary metabolism of Ectomyelois ceratoniae Zeller (Lepidoptera: Pyralidae). Journal of Asia-Pacific Entomology, 17(3), 273-279. https://doi.org/10.1016/j.aspen.2014.01.005 Ramzi, S., Seraji, A., Gonbad, R.A. & Haghighat, S. (2022). Effects of the extract and the essential oil of Allium sativum on tea mealy bug, Pseudococcus viburni Sigornet (Hemiptera: Pseudococcidae). Biocatalysis and Agricultural Biotechnology, 42,102359. https://doi.org/10.1016/j.bcab.2022.102359 Rosa, J.S., Oliveira, L., Sousa, R.M.O.F., Escobar, C.B., & Fernandes-Ferreira, M. (2020). Bioactivity of some Apiaceae essential oils and their constituents against Sitophilus zeamais (Coleoptera: Curculionidae). Bulletin of Entomological Research, 110(3), 406-416. https://doi.org/10.1017/S0007485319000774 Scott, I. M., Jensen, H., Scott, J. G., Isman, M. B., Arnason, J. T., & Philogène, B. J. R. (2003). Botanical insecticides for controlling agricultural pests: Piperamides and the Colorado potato beetle Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae). Archives of Insect Biochemistry and Physiology, 54(4), 212-225. https://doi.org/10.1002/arch.10118 Senthil-Nathan, S. (2006). Effects of Melia azedarach on nutritional physiology and enzyme activities of the rice leaf folder Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Pyralidae). Pesticide Biochemistry and Physiology, 84, 98-108. https://doi.org/10.1016/j.pestbp.2005.05.006 Shahriari, M., & Sahebzadeh, N. (2017). Effect of diallyl disulfide on physiological performance of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Archive of Phytopathology and Plant Protection, 50(1) 33-46. https://doi.org/10.1080/03235408.2016.1253252 Shahriari, M., Sahebzadeh, N., & Zibaee, A. (2017a). Metabolic response of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) to essential oil of Ajwain and thymol. Toxin Reviews, 36(3), 204-209. https://doi.org/10.1080/15569543.2017.1294605 Shahriari, M., Sahebzadeh, N., & Zibaee, A. (2017b). Effect of Teucrium polium (Lamiaceae) essential oil on digestive enzyme activities and energy reserves of Ephestia kuehniella (Lepidoptera: Pyralidae). Invertebrate Survival Journal, 14(1), 182-189. https://doi.org/10.25431/1824-307X/isj.v14i1.182-189 Shahriari, M., Sahebzadeh, N., Sarabandi, M., & Zibaee, A. (2016). Oral toxicity of thymol, α-Pinene, Diallyl Disulfide and Trans-Anethole, and Their Binary Mixtures against Tribolium castaneum Herbst larvae (Coleoptera: Tenebrionidae). Jordan Journal of Biological Sciences, 9(4), 213-219. Shahriari, M., Zibaee, A., Sahebzadeh, N., & Shamakhi, L. (2018). Effects of α-pinene, trans-anethole, and thymol as the essential oil constituents on antioxidant system and acetylcholine esterase of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Pesticide Biochemistry and Physiology, 150, 40-47. https://doi.org/10.1016/j.pestbp.2018.06.015 Silva, C. P., & Terra, W. R. M. (1995). An α-glucosidase from perimicrovillar membranes of Dysdercus peruvianus (Hemiptera: Pyrrhocoridae) midgut cells: Purification and properties. Insect Biochemistry and Molecular Biology, 25(4), 487-494. https://doi.org/10.1016/0965-1748(94)00088-G Sousa, R.M.O., Rosa, J.S., Oliveira, L., Cunha, A., & Fernandes-Ferreira, M. (2015). Activities of Apiaceae essential oils and volatile compounds on hatchability, development, reproduction and nutrition of Pseudaletia unipuncta (Lepidoptera: Noctuidae). Industrial Crops and Products, 63, 226-237. https://doi.org/10.1016/j.indcrop.2014.09.052 Szasz, G. (1976). Reaction-rate method for gamma-glutamyltransferase activity in serum. Clinical Chemistry, 22(12), 2051-2055. Talepour, F., Zibaee, A., Seyahooei, M.A., & Sendi, J.J. (2021). Toxicity and physiological effects of diallyl sulfide and dialyl disulfide on Tuta absoluta Meyrick. Physiological and Molecular Plant Pathology, 116, 101741. https://doi.org/10.1016/j.pmpp.2021.101741 Tavakoli, B., & Ajam Hosni, M. (2018). Effect of palizin, diflubenzuron, chlorpyrifos, deltamethrin and hexaflumuron on bio- demographic characteristic and feeding index of Flour moth, Anagasta kuehniella, (Lep: Pyralidae). Journal of Applied Plant Protection, 6(1), 25-33. Thomas, L. (1998). Clinical laboratory diagnostic. first ed., TH Books Verlasgesellschaft, Frankfurt. Tsujita, T., Ninomiya, H., & Okuda, H. (1989). p-nitrophenyl butyrate hydrolyzing activity of hormone-sensitive lipase from bovine adipose tissue. Journal of Lipid Research, 30(7), 997-1004. https://doi.org/10.1016/S0022-2275(20)38302-4 Xavier, V. M., Message, D., Picanco, M. C., Chediak, M., Santana Junior, P. A., Ramos, R. S., et al. (2015). Acute toxicity and sublethal effects of botanical insecticides to honeybees. Journal of Insect Sciences, 15(1), 1-6. https://doi.org/10.1093/jisesa/iev110 Yazdani, E., Sendi, J.J., Aliakbar, A., & Senthil-Nathan, S. (2013). Effect of Lavandula angustifolia essential oil against lesser mulberry pyralid Glyphodes pyloalis Walker (Lep: Pyralidae) and identification of its major derivatives. Pesticide Biochemistry and Physiology, 107(2), 250-257. https://doi.org/10.1016/j.pestbp.2013.08.002 Zhu, Y.C., Guo, Z., Chen, M.S., Zhu, K.Y., Liu, X.F., & Scheffler, B. (2011). Major putative pesticide receptors, detoxification enzymes, and transcriptional profile of the midgut of the tobacco budworm, Heliothis virescens (Lepidoptera: Noctuidae). Journal of Invertebrate Pathology, 106(2), 296-307. https://doi.org/10.1016/j.jip.2010.10.007 Zibaee, A., & Bandani, A. R. (2010). Effects of Artemisia annua L. (Asteracea) on digestive enzymes profiles and cellular immune reactions of sun pest, Eurygaster integriceps (Heteroptera: Scutellaridae), against Beauvaria bassiana. Bulletin of Entomological Research, 100, 185-196. © 2022 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/ | ||
آمار تعداد مشاهده مقاله: 582 تعداد دریافت فایل اصل مقاله: 377 |