
تعداد نشریات | 31 |
تعداد شمارهها | 1,031 |
تعداد مقالات | 9,109 |
تعداد مشاهده مقاله | 10,353,994 |
تعداد دریافت فایل اصل مقاله | 8,577,989 |
Effects of sub-lethal concentrations of Biomite® on life-history traits of Tetranychus urticae (Acari: Tetranychidae) | ||
گیاه پزشکی | ||
دوره 45، شماره 2، مرداد 1401، صفحه 33-48 اصل مقاله (752.38 K) | ||
نوع مقاله: علمی پژوهشی -انگلیسی | ||
شناسه دیجیتال (DOI): 10.22055/ppr.2022.17436 | ||
نویسندگان | ||
Mohammad Reza Havasi1؛ Katayoon Kheradmand* 2؛ Hadi Mosallanejad3؛ Yaghoub Fathipour4 | ||
1M.Sc. Graduate student, Department of Entomology and Plant Pathology, College of Aburaihan, University of Tehran, Tehran, Iran | ||
2Associate professor, Department of Entomology and Plant Pathology, College of Aburaihan, University of Tehran, Tehran, Iran | ||
3Assistant Professor, Iranian Research Institute of Plant Protection, Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran | ||
4Professor, Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran | ||
چکیده | ||
The two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), is one of the key pests that can damage a wide range of crops in farms and greenhouses. Using chemical pesticides is one of the main methods for its management. Laboratory bioassays were conducted to evaluate the effects of sub-lethal concentrations (LC5, LC10 and LC20) of Biomite (a formulation based on Citronellol) on biological characters and life table parameters of T. urticae under laboratory conditions (25±2°C, 60±5% RH, and L:D16:8 hours). Data were analyzed based on age-stage, two-sex life table analysis. Our results indicated that when adults of T. urticae were treated with LC5, LC10 and LC20 of Biomite, the oviposition period and total lifetime were significantly reduced compared with the control. The highest and lowest values of the fecundity (61.1 and 41.56 eggs/female) and longevity (13.01and 9.97 days) were obtained in control and LC20, respectively. The individuals treated with LC10 (R0 = 38.1) and LC20 (R0 = 32.92) showed a significantly reduced net reproductive rate, compared to individuals that treated with LC5 (R0 = 47.01) and to the control (R0 = 48.88 individuals/female/generation). The intrinsic rate of increase (r) and finite rate of increase (λ), were not significantly reduced in different treatments compared to the control. The mean generation time (T) decreased significantly at upper concentration (LC20=15.58 days), in comparison to LC5 (16.66 days). Due to the obtained results of current study and considering the detrimental effects of Biomite on some biological parameters, it could be incorporated in IPM programs of T. urticae. | ||
کلیدواژهها | ||
Biomite®؛ Life table؛ Sub-lethal concentrations؛ Tetranychus urticae | ||
مراجع | ||
Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2), 265-267. Akköprü, E.P., Atlıhan, R., Okut H., & Chi, H. (2015). Demographic assessment of plant cultivar resistance to insect pests: a case study of the dusky-veined walnut aphid (Hemiptera: Callaphididae) on five walnut cultivars. Journal of Economic Entomology, 108 (2), 378-87. https://doi.org/10.1093/jee/tov011 Alinejad, M., Kheradmand, K., & Fathipour, Y. (2015). Sublethal effects of fenazaquin on biological performance of the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae): application of age-stage, two-sex life tables. Acarina, 23 (2),172-80. https://elib.utmn.ru/jspui/handle/ru-tsu/12845 Alinejad, M., Kheradmand, K., & Fathipour, Y. (2014). Sublethal effects of fenazaquin on life table parameters of the predatory mite Amblyseius swirskii (Acari: Phytoseiidae). Experimental and Applied Acarology, 64 (3), 361-73. https://doi.org/10.1007/s10493-014-9830-y Alinejad, M., Kheradmand, K., & Fathipour, Y. (2016). Assessment of sublethal effects of spirodiclofen on biological performance of the predatory mite, Amblyseius swirskii. Systematic and Applied Acarology, 21 (3), 375-84. https://doi.org/10.11158/saa.21.3.12. Atlihan, R., Kasap, İ., Özgökçe, M. S., Polat-Akköprü, E., & Chi, H. (2017). Population growth of Dysaphis pyri (Hemiptera: Aphididae) on different pear cultivars with discussion on curve fitting in life table studies. Journal of Economic Entomology, 110(4), 1890-1898. https://doi.org/10.1093/jee/tox174 Barati, R., & Hejazi, M.J. (2015). Reproductive parameters of Tetranychus urticae (Acari: Tetranychidae) affected by neonicotinoid insecticides. Experimental and Applied Acarology, 66(4), 481-9. https://doi.org/10.1007/s10493-015-9910-7. Casida, J. E. (2012). The greening of pesticide–environment interactions: some personal observations. Environmental health perspectives, 120(4), 487-493. https://doi.org/10.1289/ehp.1104405 Chi, H., & Liu, H. (1985). Two new methods for the study of insect population ecology. Bulletin Institute of Zoology and Academia Sinica, 24(2), 225-240. Chi, H. (1988). Life-table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology, 17(1), 26-34. https://doi.org/10.1093/ee/17.1.26 Chi, H. (2019). Twosex-Mschart: a computer program for the age-stage, two-sex life table analysis. National Chung Hsing University, Taichung, Taiwan. Available from http://140.120.197.173/ecology/prod02.htm. Cloyd, R.A., Galle, C.L., & Keith, S.R. (2006). Compatibility of three miticides with the predatory mites Neoseiulus californicus McGregor and Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae). HortScience, 41(3), 707-10. https://doi.org/10.21273/HORTSCI.41.3.707 Crouse, G.D. (2007). DE-175 (Spinetoram), a new semi-synthetic spinosyn in development. Modern crop protection compounds, 3, 1013-1031. https://ci.nii.ac.jp/naid/10030707829/en/. DeAmicis, C., Edwards, N.A., Giles, M.B., Harris, G.H., Hewitson, P., Janaway, L., & Ignatova, S. (2011). Comparison of preparative reversed phase liquid chromatography and countercurrent chromatography for the kilogram scale purification of crude spinetoram insecticide. Journal of Chromatography A, 1218(36), 6122-7. https://doi.org/10.1016/j.chroma.2011.06.073. Dekeyser, M. A. (2005). Acaricide mode of action. Pest Management Science: Formerly Pesticide Science, 61(2), 103-110. https://doi.org/10.1002/ps.994 Desneux, N., Decourtye, A., & Delpuech, J.M. (2007). The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology, 52, 81-106. https://doi.org/10.1146/annurev.ento.52.110405.091440 Dittrich, V., Streibert, P., & Bathe, P.A. (1974). An old case reopened: mite stimulation by insecticide residues. Environment Entomology, 3(3), 534-40. Duchovskienė, L, & Survilienė E. (2009). Effect of Abamectin on two-spotted spider mite and leaf miner flies in greenhouse cucumbers. Sodininkystė ir daržininkystė. 28: 47-56. Efron, B. & Tibshirani, R.J. (1993). Permutation tests. In An introduction to the bootstrap (202-219). Springer US. EPPO (European and Mediterranean Plant Protection Organization) (2014). New EU plant protection products legislation. https://www.eppo.int/PPPRODUCTS/information/new_eu_regulations.htm Fathipour, Y., & Maleknia B. (2016). Mite predators. In Ecofriendly pest management for food security (329-366). Academic Press. https://doi.org/10.1016/B978-0-12-803265-7.00011-7. Finney, D. J. (1971). Probit analysis 3rd ed Cambridge Univ. Press. London, UK. pp. Garriga, M., & Caballero, J. (2011). Insights into the structure of urea-like compounds as inhibitors of the juvenile hormone epoxide hydrolase (JHEH) of the tobacco hornworm Manduca sexta: Analysis of the binding modes and structure–activity relationships of the inhibitors by docking and CoMFA calculations. Chemosphere, 82(11), 1604-1613. https://doi.org/10.1016/j.chemosphere.2010.11.048 Goulson, D. (2013). An overview of the environmental risks posed by neonicotinoid insecticides. Journal of Applied Ecology, 50(4), 977-987. https://doi.org/10.1111/1365-2664.12111 Grbić, M., Van Leeuwen, T., Clark, R.M., Rombauts, S., Rouzé, P., Grbić, V., Osborne, E.J., Dermauw, W., Ngoc, P.C.T., Ortego, F., & Hernández-Crespo, P. (2011). The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature, 479(7374), 487-492. https://doi.org/10.1038/nature10640 Havasi, M., Kheradmand, K., Mosallanejad, H., & Fathipour Y. (2018). Sublethal effects of diflovidazin on life table parameters of two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae). International Journal of Acarology, 44(2-3),115-20. https://doi.org/10.1080/01647954.2017.1417328 Havasi, M., Kheradmand, K., Mosallanejad, H., & Fathipour Y. (2019a). Sublethal effects of diflovidazin on demographic parameters of the predatory mite, Neoseiulus californicus (Acari: Phytoseiidae). International Journal of Acarology, 45, 238-244. https://doi.org/10.1080/01647954.2019.1607550 Havasi, M., Kheradmand, K., Mosallanejad, H., & Fathipour Y. (2020a). Influence of low-lethal concentrations of thiamethoxam on biological characteristics of Neoseiulus californicus (Acari: Phytoseiidae). Journal of Crop Protection, 9(1), 41-55. http://jcp.modares.ac.ir/article-3-32441-en.html Havasi, M., Kheradmand, K., Mosallanejad, H., & Fathipour Y. (2020b). Life history traits and demographic parameters of Neoseiulus californicus McGregor (Acari: Phytoseiidae) treated with the Biomite®. Systematic and Applied Acarology, 25(1), 125-138. https://doi.org/10.11158/saa.25.1.10 Havasi, M., Kheradmand, K., Parsa M., & Riahi, E. (2019b). Acaricidal activity of Punica granatum L. peels extract against Tetranychus urticae Koch (Acari: Tetranychidae). Archive of Phytopathology and Plant Protection, 1-14. https://doi.org/10.1080/03235408.2019.1700590 Havasi, M., Sangak Sani Bozhgani, N., Golmohmmadi, G., & Kheradmand, K. (2021). Impact of hexythiazox on life table parameters of the Amblyseius swirskii (Acari: Phytoseiidae) and its prey Tetranychus urticae. Journal of Crop Protection, 10, 295-308. http://jcp.modares.ac.ir/article-3-44924-en.html Hedayati, M., Sadeghi, A., Maroufpoor, M., Ghobari, H., & Güncan A. (2019). Transgenerational sublethal effects of abamectin and pyridaben on demographic traits of Phytonemus pallidus (Banks)(Acari: Tarsonemidae). Ecotoxicology, 28(4), 467-477. https://doi.org/10.1007/s10646-019-02040-2 Helle, W., & Overmeer, W.P.J. (1985). Toxicological test methods. In: W. Helle and Sabelis MW.(eds), Spider Mites. Their Biology, Natural Enemies and Control. Vol. 1A. Elsevier, Amsterdam, Oxford, New York, Tokio, 391–395. Huang, Y.B., & Chi, H. (2013). Life tables of Bactrocera cucurbitae (Diptera: Tephritidae): with an invalidation of the jackknife technique. Journal of Applied Entomology, 137(5),327-339. https://doi.org/10.1111/jen.12002 IBM SPSS. (2010). IBM SPSS Statistics for Windows, Version 19. Ibrahim, Y.B., & Yee, T.S. (2000). Influence of sublethal exposure to abamectin on the biological performance of Neoseiulus longispinosus (Acari: Phytoseiidae). Journal of Economic Entomology, 93(4),1085-9. Immaraju, J. A. (1998). The commercial use of azadirachtin and its integration into viable pest control programmes. Pesticide Science, 54(3), 285-289. James, D.G., & Price, T.S. (2002). Fecundity in two spotted spider mite (Acari: Tetranychidae) is increased by direct and systemic exposure to imidacloprid. Journal of Economic Entomology, 95(4), 729-732. Khanamani, M., Fathipour, Y., & Hajiqanbar, H. (2013). Population growth response of Tetranychus urticae to eggplant quality: application of female age-specific and age-stage, two-sex life tables. International Journal of Acarology, 39(8), 638-648. https://doi.org/10.1080/01647954.2013.861867 Kim, S.S., & Yoo, S.S. (2002). Comparative toxicity of some acaricides to the predatory mite, Phytoseiulus persimilis and the two spotted spider mite, Tetranychus urticae. BioControl, 47(5),563-573. https://doi.org/10.1023/A:1016585607728. Li, D., Tian, J., & Shen, Z. (2006). Assessment of sublethal effects of clofentezine on life-table parameters in hawthorn spider mite (Tetranychus viennensis). Experimental and Applied Acarology, 38(4), 255-73. https://doi.org/10.1007/s10493-006-0016-0 Li, YY., Fan, X., Zhang, G.H., Liu, Y.Q., Chen, H.Q., Liu, H., & Wang, J.J. (2017). Sublethal effects of bifenazate on life history and population parameters of Tetranychus urticae (Acari: Tetranychidae). Systematic and Applied Acarology, 22(1),148-58. https://doi.org/10.11158/saa.22.1.15 Liu, YH., Jia D., Yuan, X.F., Wang, Y.X., Chi, H., Ridsdill-Smith, T.J., & Ma, R.Y. (2018). Response to short-term cold storage for eggs of Agasicles hygrophila (Coleoptera: Chrysomelidae), a biological control agent of alligator weed Alternanthera philoxeroides (Caryophyllales: Amaranthaceae). Journal of Economic Entomology, 111(4), 1569-76. Luo, Y., Ni, J., Zheng, K., Yang, Z., Xie, D., Da, A., Chai, J., Jiang, X., & Li, S. (2018).Cloning and different expression of ATP synthase genes between propargite resistant and susceptible strains of Tetranychus cinnabarinus (Acarina: Tetranychidae). Journal Asia-Pacific Entomology, 21(1), 402-7. https://doi.org/10.1016/j.aspen.2018.01.023 Maleknia, B., Fathipour, Y., & Soufbaf, M. (2016). How greenhouse cucumber cultivars affect population growth and two-sex life table parameters of Tetranychus urticae (Acari: Tetranychidae). International Journal of Acarology, 42(2), 70-80. https://doi.org/10.1080/01647954.2015.1118157 Marčić, D. (2007). Sublethal effects of spirodiclofen on life history and life-table parameters of two-spotted spider mite (Tetranychus urticae). Experimental and Applied Acarology, 42(2),121-129. https://doi.org/10.1007/s10493-007-9082-1. Marcic, D. (2012). Acaricides in modern management of plant-feeding mites. Journal of Pest Science, 85(4), 395-408. https://doi.org/10.1007/s10340-012-0442-1 Marčić, D., & Međo I. (2014). Acaricidal activity and sublethal effects of an oxymatrine-based biopesticide on two-spotted spider mite (Acari: Tetranychidae). Experimental and Applied Acarology, 64(3), 375-391. https://doi.org/10.1007/s10493-014-9831-x Marčić, D., Ogurlic, I., Mutavdzic, S., & Peric, P. (2010). The effects of spiromesifen on life history traits and population growth of two-spotted spider mite (Acari: Tetranychidae). Experimental and Applied Acarology, 50(3), 255-267. https://doi.org/10.1007/s10493-009-9316-5 Martínez-Villar, E., Sáenz-De-Cabezón, FJ., Moreno-Grijalba, F., Marco, V., & Pérez-Moreno, I. (2005). Effects of azadirachtin on the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Experimental and Applied Acarology, 35(3),215. https://doi.org/10.1007/s10493-004-5082-6 Mohammadi, S., Ziaee, M., & Seraj, A.A. (2016). Sublethal effects of Biomite® on the population growth and life table parameters of Tetranychus turkestani Ugarov and Nikolskii on three cucumber cultivars. Systematic and Applied Acarology, 21(2), 218-226. https://doi.org/10.11158/saa.21.2.6 Mollaloo, M.G., Kheradmand, K., Sadeghi, R., & Talebi, A.A. (2017). Demographic analysis of sublethal effects of spiromesifen on Neoseiulus californicus (Acari: Phytoseiidae). Acarologia, 57(3), 571-580. 10.24349/acarologia/20174173 Nikpay, A., Soleyman-Nejadian, E., Goldasteh, S., & Farazmand, H. (2016). Efficacy of Biomite (R) and GC-Mite (R) on Oligonychus Sacchari and its predator Stethorus gilvifrons on sugarcane: Preliminary results. International Sugar Journal, 18, 454-8. Orr, N., Shaffner, A.J., Richey, K., & Crouse, G.D. (2009). Novel mode of action of spinosad: Receptor binding studies demonstrating lack of interaction with known insecticidal target sites. Pesticide Biochemistry and Physiology, 95(1),1-5. https://doi.org/10.1016/j.pestbp.2009.04.009 Park, K.H., Choi, J.H., Abd El-Aty, A.M., Cho, S.K., Park, J.H., Kim, B.M., Yang, A., Na, TW., Rahman, M.M., Im, G.J., & Shim, JH. (2012). Determination of spinetoram and its metabolites in amaranth and parsley using QuEChERS-based extraction and liquid chromatography–tandem mass spectrometry. Food chemistry, 134(4), 2552-9. https://doi.org/10.1016/j.foodchem.2012.04.066 Reilly, S.K., Hollis, L., Jones, R.S., & Wilkins, R. (2009). US Environmental Protection Agency Office of Pesticide Programs Biopesticides registration action document, suggested format for acute toxicity studies, Citronellol (PC Code 167004) (Vol. 1, pp. 22). US Environmental Protection Agency. Riahi, E., Fathipour, Y., Talebi, A.A., & Mehrabadi, M. (2017). Linking life table and consumption rate of Amblyseius swirskii (Acari: Phytoseiidae) in presence and absence of different pollens. Annual of the Entomology Society of America, 110(2), 244-253. Saber, M., Ahmadi, Z., & Mahdavinia, G. (2018). Sublethal effects of spirodiclofen, abamectin and pyridaben on life-history traits and life-table parameters of two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Experimental and Applied Acarology, 75(1),55-67. https://doi.org/10.1007/s10493-018-0226-2 Saenz-de-Cabezon Irigaray, FJ., Zalom, F.G., & Thompson, P.B. (2007). Residual toxicity of acaricides to Galendromus occidentalis and Phytoseiulus persimilis reproductive potential. Biolo. Control: theory and application in pest management. Sáenz-de-Cabezón, FJ., Martínez-Villar, E., Moreno, F., Marco, V., & Pérez-Moreno, I. (2006). Influence of sublethal exposure to triflumuron on the biological performance of Tetranychus urticae Koch (Acari: Tetranychidae). Spanish Journal of Agriculture Review, 4(2),167-72. Sanatgar, E., Shoushtari, R.V., Zamani, A.A., & Nejadian, E.S. (2011). Effect of frequent application of hexythiazox on predatory mite Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae). Academic Journal of Entomology, 4(3), 94-101. Sedaratian, A., Fathipour, Y., & Moharramipour, S. (2011). Comparative life table analysis of Tetranychus urticae (Acari: Tetranychidae) on 14 soybean genotypes. Insect Science, 18(5),541-53. https://doi.org/10.1111/j.1744-7917.2010.01379.x Stark, J.D., & Banks, JE. (2003). Population-level effects of pesticides and other toxicants on arthropods. Annual review of entomology, 48, 505-19. https://doi.org/10.1146/annurev.ento.48.091801.112621 Stavrinides, M.C., & Mills, N.J. (2009). Demographic effects of pesticides on biological control of Pacific spider mite (Tetranychus pacificus) by the western predatory mite (Galendromus occidentalis). Biological Control, 48(3), 267-73. https://doi.org/10.1016/j.biocontrol.2008.10.017 Szczepaniec, A., Creary, S.F., Laskowski, K.L., Nyrop, J.P., & Raupp, M.J. (2011). Neonicotinoid insecticide imidacloprid causes outbreaks of spider mites on elm trees in urban landscapes. PloS one, 6(5), e20018. https://doi.org/10.1371/journal.pone.0020018 Van Leeuwen, T., Tirry, L., Yamamoto, A., Nauen, R., & Dermauw, W. (2015). The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research. Pesticide biochemistry and physiology, 121, 12-21. https://doi.org/10.1016/j.pestbp.2014.12.009 Van Leeuwen, T., Vontas, J., Tsagkarakou, A., Dermauw, W., & Tirry, L. (2010). Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: a review. Insect biochemistry and molecular Biology, 40(8), 563-572. https://doi.org/10.1016/j.ibmb.2010.05.008 Van Pottelberge, S., Van Leeuwen, T., Nauen, R., & Tirry, L. (2009). Resistance mechanisms to mitochondrial electron transport inhibitors in a field-collected strain of Tetranychus urticae Koch (Acari: Tetranychidae). Bulletin of Entomological Research, 99(1), 23. https://doi.org/10.1017/S0007485308006081 Villanueva, R.T., & Walgenbach, J.F. (2006). Acaricidal properties of spinosad against Tetranychus urticae and Panonychus ulmi (Acari: Tetranychidae). Journal of Economic Entomology, 99(3), 843-9. Wang L., Zhang, Y., Xie, W., Wu, Q., & Wang, S. (2016). Sublethal effects of spinetoram on the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Pesticide Biochemistry and Physiology, 132,102-7. https://doi.org/10.1016/j.pestbp.2016.02.002 Wang S., Tang, X., Wang, L., Zhang, Y., Wu, Q., & Xie, W. (2014). Effects of sublethal concentrations of bifenthrin on the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Systematic and Applied Acarology, 19(4), 481-90. https://doi.org/10.11158/saa.19.4.11. Wang, D., Gong, P., Li, M., Qiu, X., & Wang, K. (2009). Sublethal effects of spinosad on survival, growth and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae). Pest Management Science: Formerly Pesticide Science, 65(2), 223-227. https://doi.org/10.1002/ps.1672 Yorulmaz, S., & Ay, R. (2009). Multiple resistance, detoxifying enzyme activity, and inheritance of abamectin resistance in Tetranychus urticae Koch (Acarina: Tetranychidae). Turkish Journal of Agriculture and Forestry, 33(4), 393-402. doi:10.3906/tar-0809-15 Yu, J.Z, Chen, B.H., Güncan, A., Atlıhan, R., Gökçe, A., Smith, C.L., Gümüş, E., & Chi, H. (2018). Demography and mass-rearing Harmonia dimidiata (Coleoptera: Coccinellidae) using Aphis gossypii (Hemiptera: Aphididae) and eggs of Bactrocera dorsalis (Diptera: Tephritidae). Journal of Economic Entomology, 111(2), 595-602. Ziaee, M., Nikpay, A., Koohzad-Mohammadi, P., & Behnam-Oskuyee, S. (2017). The toxicity of Biomite®, GC-mite®, Oberon® and Envidor® acaricides against sugarcane yellow mite, Oligonychus sacchari (Acari: Tetranychidae). Persian Journal of Acarology, 6(2). http://dx.doi.org/10.22073/pja.v6i2.28024 Zhang, P., Zhao, YH., Wang, Q.H., Mu, W., & Liu, F. (2017). Lethal and sublethal effects of the chitin synthesis inhibitor chlorfluazuron on Bradysia odoriphaga Yang and Zhang (Diptera: Sciaridae). Pesticide Biochemistry and Physiology, 136, 80-88. https://doi.org/10.1016/j.pestbp.2016.07.007 Zhen, C., Miao, L., & Gao, X. (2018). Sublethal effects of sulfoxaflor on biological characteristics and vitellogenin gene (AlVg) expression in the mirid bug, Apolygus lucorum (Meyer-Dür). Pesticide Biochemistry and Physiology, 144, 57-63. https://doi.org/10.1016/j.pestbp.2017.11.008 | ||
آمار تعداد مشاهده مقاله: 588 تعداد دریافت فایل اصل مقاله: 502 |