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Abstract. The beam theory allowing for rotary inertia and shear deformation and without the fourth order derivative with respect 
to time as well as without the slope inertia, as was developed by Elishakoff through the dynamic equilibrium consideration, is 
derived here by means of both direct and variational methods. This formulation is important for using variational methods of 
Rayleigh, Ritz as well as the finite element method (FEM). Despite the fact that literature abounds with variational formulations of 
the original Timoshenko-Ehrenfest beam theory, since it was put forward in 1912-1916, until now there was not a single derivation 
of the version without the fourth derivative and without the slope inertia. This gap is filled by the present paper. It is shown that 
the differential equations and the corresponding boundary conditions, used to find the solution of the dynamic problem of a 
truncated Timoshenko-Ehrenfest via variational formulation, have the same form to that obtained via direct method. Finally, in 
order to illustrate the advantages of the variational approach and its adaptability to the finite element formulation, some 
numerical examples are performed. The calculations are implemented through a software developed in Mathematica language 
and results are validated by comparison with those available in the literature.  

Keywords: Rotary inertia and shear deformation, variational method, truncated Timoshenko-Ehrenfest model. 

1. Introduction 

In 1916, Timoshenko [1] published, in his textbook on elasticity, written in the Russian language, a first work on dynamic 
theory, which takes into account both rotary inertia and shear deformation effect. As Timoshenko stated in the footnote, he 
developed this theory together with Paul Ehrenfest who lived in St. Petersburg during the years 1907-1912. In 1920 [2], and later in 
1921 [3], Timoshenko re-published the derivation in his two papers in English. Timoshenko did not includes Ehrenfest as his co-
author due to reasons unknown to present authors. Later on, in 1922 [4], Timoshenko maintained that this theory was developed 
by Paul Ehrenfest and himself. Detailed history of these developments in the monograph by Elishakoff [5] is given. In [6] Elishakoff 
showed via derivation of dynamic equilibrium equations, with modification of the original derivation by Timoshenko and 
Ehrenfest, that the last term in the Timoshenko-Ehrenfest equation, namely the fourth-order derivative was superfluous. Actually, 
Timoshenko [1-3] found that for simply supported beams, in the characteristic equation, the last term was of the negligible value. 
Elishakoff [6] demonstrated that the term should be neglected in the differential equation itself. The question arises if the 
omission of the fourth-order derivative is a simplification or it bears some additional significance. Naturally, it simplifies the 
derivations greatly. It should be noted that already in 1977 van der Heijden [7] stressed: As T.B.T. [Timoshenko Beam Theory] may 
be considered as a one-dimensional case of Reissners plate theory, it may yield quite accurate numerical results, even though it is 
not a consistent theory from the point of view of asymptotic analysis. An asymptotically consistent dynamic equation for a 
Timoshenko-Ehrenfest-type linear isotropic prismatic beam was apparently first derived by Berdichevsky and Kvashnina [8] using 
the variational asymptotic approach based on series expansion of the energy functional in 3D elasticity (see also works by 
Goldenveiser et al. [9] and Berdichevsky [10]). Justification of neglecting the fourth order derivative in Timoshenko-Ehrenfest 
equations was provided in [12]. In [5] the Timoshenko-Ehrenfest equations without the fourth order time derivative is referred to 
as the truncated Timoshenko-Ehrenfest equation. The natural question arises about the variational derivation of the Timoshenko-
Ehrenfest beam theory. Variational derivation of the original Timoshenko-Ehrenfest equations is given by numerous authors. The 
interested reader can consult with papers by Carnegie [13], Leech [14], Lee et al. [15], Li and Ho [16], Yu and Hodges [17], Barguev 
and Mizhidon [18], and possibly others. Dym and Shames [19] and Reddy [20] also provided variational derivation of Timoshenko-
Ehrenfest equations in definitive monographs. The papers by Soldatos [21] and Jafarali et al. [22] the equilibrium of dynamic shell 
theories based upon the variational and vectorial formulation has been presented; papers by Freddi et al. [23], Jemielita [24], 
Kusuk et al. [25], Shi and Voyiadjis [26], Auciello et al. [27-29], De Rosa, Lippiello and their collaborators [30-34] present much 
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interest in this context. In particular, in [30] for the first time De Rosa and Lippiello, using the nonlocal Euler-Bernoulli beam 
theory, presented a re-formulation of Hamilton’s principle and derived the equations of motion and the general corresponding 
boundary conditions for vibration analysis of nanotube. The novelty of the developed formulation consisted in introducing a 
potential energy term in the variational approach that considers the work of rotational inertia forces, thus validating the theory 
formulated by Reddy and Pang [35] obtained geometrically. The pertinent question arises on whether or not the truncated version 
of Timoshenko-Ehrenfest equation can be obtained variationally. In the paper by Elishakoff et al. [36] there is such an initial 
attempt taken. They did not obtain the truncated Timoshenko-Ehrenfest version but one additional term that was identified as 
stemming from slope inertia. This version dealt with in the papers by Bhat et al [37] and Xia et al [38]. 
The use of Timoshenko-Ehrenfest beam theory, in the field of engineering and nanotechnology was also reported in [39-42] and 
further applications have been employed in analyzing the buckling and vibration problems in beams, functionally graded beams 
and nanobeams or nanotubes.  

This paper develops the truncated Timoshenko-Ehrenfest model via variational formulation and direct method. According to 
Tonti [43], “people are divided into two categories: from one side who see the variational formulation of a physical law the 
apotheosis of economy of nature; from the other side those who deny them any interest and affirm that they can be formulated 
only after the physical law of the phenomenon is established”.  

The novelty of the proposed approach is that to show a perfect analogy between variational and direct methods for the 
dynamic analysis of beams. The aim of the proposed formulations is devoted to finding the truncated Timoshenko-Ehrenfest 
equations and the corresponding boundary conditions and their mathematical similarity using the two different approaches is 
established. It is shown that the differential equations and the corresponding boundary conditions, used to find the solution of 
the dynamic problem of a truncated Timoshenko-Ehrenfest via variational formulation, have the same form to that obtained via 
direct method. The proposed theory is variationally consistent, so that both the variational approach and the direct geometric 
approach lead to the same governing equation and to the same boundary conditions. Previously, a similar beam model has been 
developed by one of the authors, by using the dynamic equilibrium equations of the classical Timoshenko-Ehrenfest beams. Quite 
arbitrarily, in the resulting differential equation a fourth-order term was considered negligible. Now, this paper gives the exact 
variational theory for this “truncated beam”, and from this point of view closes a gap in the literature. To the authors’ knowledge, 
no analytical formulation have been provided in the literature for this truncated model. Finally, in order to illustrate the 
advantages of the variational approach and its adaptability to the finite element formulation, some numerical examples are 
performed. The calculations are implemented and the obtained results are validated by comparison with those available in the 
literature.  

2. Theoretical Formulation 

2.1. Variational method for truncated Timoshenko-Ehrenfest beam model 

Consider a Timoshenko beam of length L. According to the Hamilton Principle, the motion equations of system are derived as 
follows: 

( )δ
2

1

dt = 0
t

t
t

V E−∫  (1) 

where  denotes the variation, t is time, V and Et denote the kinetic and total potential energy of the beam, respectively. 
The kinetic energy of the structure under consideration can be expressed as: 

2

0

1
A dz

2
 

L v
V

t
ρ
 ∂ =   ∂∫  (2) 

where v(z,t) is the transverse displacement of the beam, z is the spatial coordinate along the beam, A is the cross-sectional area,  
the mass density of beam. 
 

 

Fig. 1. Geometric representation of rotations variation for Timoshenko beam theory. 
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The transverse displacement that are acting downwards are considered positive. The strain energy is given by: 

2 2

0 0

1 1
L EI dz GA dz 

2 2

L L

e

v

z z

φ
κ φ+

   ∂ ∂  = +       ∂ ∂∫ ∫  (3) 

where φ  is the slope of the deflection curve due to bending and shear. The rotation acting in counter clock direction is 
positive. Parameters E, I, G and  denote the Young modulus, moment of inertia, Lame’s second parameter and the shear 
coefficient, respectively. 

Finally, the bending rotation bφ  can be expressed as: 

b

v

z
φ

∂
=−
∂

 (4) 

Let us consider the inertial rotational force as a function of the slope of the deflection curve due to bending (see Fig. 1): 

2
b
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φ
ρ
∂

=−
∂

 (5) 

Let us assume that this force works for the total rotation of Timoshenko beam: 

b

v

z
φ φ ψ ψ

∂
= + =− +

∂
 (6) 

so that the work reads as: 
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φ
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=∫ ∫  (7) 

So, the total potential energy is sum of different contributions: the strain energy of the beam (see Eq. (3)) and the potential 
energy which is equal to the opposite of the work (7): 

2 2 3

20 0 0

1 1
EI dz GA dz I dz

2 2
 

L L L

t

v v
E

z z z t

φ
κ φ ρ φ
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The first variation of kinetic and total potential energy of the beam can be easily calculated as: 
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Hamilton principle becomes: 
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Performing integration by parts and substituting the obtained equations into Eq. (11), one gets: 
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Due to the arbitrariness of variations v and δφ , the two following equations of motion can be defined: 
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together with the following general boundary conditions: 
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From the first equation of Eqs. (13), the slope deflection function / zφ∂ ∂  is obtained: 
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and deriving appropriately, one gets: 
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Also, deriving the second equation of Eqs. (13), respect to abscissa z, one obtains: 
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and substituting Eqs. (18-19) into Eq. (20), one obtains a single equation in v: 
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Equtation (21) has the same form as the Eq. (24) of the paper [12] by Elisakhoff et al.. 

2.2. Direct method for truncated Timoshenko-Ehrenfest beam model 

According to the Timoshenko-Ehrenfest beam theory, the total rotation of the cross section is given by: 

b

v

z
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∂
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 (22) 

Moreover, the constitutive equations read as: 
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If we consider the beam element in Fig. 2, at the abscissa z, we should impose the equilibrium of the applied loads: 
Equilibrium of the vertical forces: 
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z t
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Equilibrium of the couples around the right section: 
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where the rotational inertia term depends on the bφ  rotation, instead of the total rotation φ . If the equations (23) are inserted 

into Eqs. (24) and (25), we obtain: 
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Fig. 2. Beam element. 
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As can be seen, the Eqs. (26) has the same form as the Eqs. (13) obtained by the variational formulation. It is interesting to note 
that the governing differential equation for truncated Timoshenko-Ehrenfest beam theory via direct method has already been 
derived in [38]. 

3. Discussion 

3.1. Variational method for truncated Timoshenko-Ehrenfest beam model 

Variational derivation of Timoshenko-Ehrenfest equations is obtained by using the following expression of the kinetic energy: 

2 2

0 0
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2 2

L Lv
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t t

φ
ρ ρ
   ∂ ∂  =        

+
∂ ∂∫ ∫  (27) 

The interested readers can consult with texts by Dym and Shames [19], Rao [44], Craig and Kurdila [45], in conjunction with 
the expression for potential energy given in Eq. (3). In order to derive improved equations of motion, Elishakoff et al. [35] adopted 
the following expression for the kinetic energy 
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+

 ∫ ∫  (28) 

with the same expression of the potential, strain energy as in Eq. (3). This leads to the following equations (see Eq. (58) in [35]): 
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 (29) 

We immediately derive that the latter equation contains an additional term, specifically the last one that does not appear in 
Eq. (28). Authors dubbed Eq. (29) as slope-inertia based version of the Timoshenko-Ehrenfest equation. The slope-inertia based 
version was studied recently in [46] and [47].The question arose if it was possible to obtain the truncated Timoshenko-Ehrenfest 
equations without slope-inertia term. Indeed, the derivation of Timoshenko Ehrenfest equations by asymptotic means (see [12]) 
does not contain the slope inertia term. The present paper provides with the variational formulation that does not lead to slope 
inertia term but directly results in the truncated version of Timoshenko-Ehrenfest beam, as articulated in [6]. 

3.2. Direct method for truncated Timoshenko-Ehrenfest beam model 

In [6] Elishakoff obtained an equation both more consistent and simpler than the Bresse-Timoshenko equation given by the 
following expression: 
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Since the last term of Eq. (30) is obviously of higher order it can be omitted and its elimination leads to the following equation: 
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κ
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 (31) 

namely truncated Timoshenko-Ehrenfest equation, whose the corresponding boundary conditions are the same as those with the 
classical beam theory. The question arose if it was possible to obtain the truncated Timoshenko-Ehrenfest equation by means 
variational and direct methods. 

3.3. Finite element method for truncated Timoshenko-Ehrenfest beam model 

In this section, the finite element method for truncated Timoshenko-Ehrenfest beam model is developed, according to the 
Dawe’s formulation [48].  

The element model, having 3-nodes and two degrees of freedom per node, is represented by the following interpolated 
polynomial functions:  

( ) 2 3 4 5
0 1 2 3 4 5  A   A   A   A   A   Av z z z z z z= + + + + +  (32) 

( ) 2 3 4
0 1 2 3 4  B   B    B    B   Bz z z z zφ = + + + +  (33) 

By using the second equation of (13) and neglecting the rotary inertia term, one gets: 
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2
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v

z z

φ
κ φ

 ∂ ∂ = +   ∂ ∂
 (34) 

and the coefficients g = {B0,..., B4} can be expressed in terms of the coefficients b = {A0,..., A5} by equating coefficients of powers of z. 
This procedure yields: 

( ) ( )
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4 4 5

B A 6 A 120 A

B = 2 A 12 A ; B 3 A 20 A

B = 4A ; B 5A
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− =−

 (35) 

where ε=EI/ GAκ . In matrix form, Eq. (35) becomes: 

=f R b  (36) 

where f = { A0,..., A5, B0,..., B4} and R is an 11 x 6 rectangular matrix. 
Consider the finite element with three nodes whose nodal displacements are given by: 
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{ }1 1 2 2 3 3, , , , ,v v vφ φ φ=d  (37) 

and imposing the boundary conditions gets: 

1; −= =d Cb b C d  (38) 

for z = -L/2, z = 0; z = L/2. For the uniform Timoshenko beam model, the total potential energy, Et, and the kinetic energy, V, are: 
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is the stiffness matrix;  

( )
L /2T1 T 1

1 5 6
L /2

I dzρ− −

−

 =   ∫TM C R D D RC  
(41) 

M1 is potential energy matrix of the rotational inertial loads; 
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M2 is mass matrix related to the kinetic energy; 

1 2= +M M M  
(43) 

M is the total mass matrix. 
Finally, the matrices D1 to D5 are defined as: 
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4. Numerical Results 

In order to illustrate the advantages of the variational approach and its adaptability to the finite element formulation, some 
numerical examples are performed. The calculations are implemented through a software developed in Mathematica language 
[49] and results are validated by comparison with those available in the literature.  

In all numerical examples, the structure under consideration is composed of rectangular cross section beam of length L and 
with the following material properties: mass density  = 7860 Kgs2/m3, the shear coefficient  = 0.86667 and Poisson’s ratio  = 0.3, 
so as taken from [35]. Also, the two parameters characterizing the shear effect are defined as follows: 

2 2

I EI
0.02; 3

AL GAL
r s r

κ
= = = =  (45) 

where r is the slenderness ratio.  
Finally, following the paper of Elishakoff et al. [35], the first four dimensionless natural frequencies are calculated for different 

boundary conditions (simply supported, clamped-free and clamped-clamped). The numerical calculations are performed in order 
to compare the finite element results with those obtained by Elishakoff et al. and reported in [35], for the simply-supported beam 
case, and with those obtained by the present formulation, for clamped free and clamped-clamped beam cases, respectively. 

In the first numerical example, let us consider a simply supported beam and the obtained results are quoted in Table 1.  

Table 1. Comparison of the first four dimensionless frequencies from [35] and finite element method, for a simply supported beam 

 1 F.E. 2 F.E. 3 F.E. [35] 

1
Ω  9.79662 9.79261 9.79259 9.7925 

2
Ω  38.5402 38.3156 38.2888 38.2877 

3
Ω  134.5103 83.6666 83.2147 83.1163 

4
Ω  298.686 142.709 141.736 141.092 
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Table 2. Comparison of the first four dimensionless frequencies, as obtained with finite elements, and with the differential equation theory, for a 
clamped-free beam 

 1 F.E. 2 F.E. 3 F.E. [Truncated] 

1
Ω  3.50303 3.50302 3.50302 3.50302 

2
Ω  21.6393 21.4838 21.4835 21.4834 

3
Ω  60.4262 58.3783 58.2059 58.2021 

4
Ω  270.444 111.999 109.378 109.070 

Table 3. Comparison of the first four dimensionless frequencies, as obtained with finite elements, and with the differential equation theory, for a 
clamped-clamped beam 

 1 F.E. 2 F.E. 3 F.E. [Truncated] 

1
Ω  21.7797 21.6867 21.6867 21.6867 

2
Ω  59.0602 57.6457 57.5254 57.5239 

3
Ω  - 109.634 107.77 107.530 

4
Ω  - 172.598 169.766 168.275 

 

where 2 4A L / EIi iρ ωΩ = . As can be seen from Table 1, the obtained numerical and exact results are in an excellent agreement. 

In the second numerical example, consider the clamped-free beam. Using the Eq. (21) with the following corresponding 
boundary conditions, Table 2 lists the first four dimensionless frequencies values and as in the previously reported example, 
numerical and truncated formulation results are compared, with an excellent agreement found. 

Finally, the last numerical example consider the clamped-clamped beam case. The truncated solution, given by the Eq. (21), 
with those obtained by finite elements procedure, are compared and the variation of the first four dimensionless frequencies 
values are quoted in Table 3. 

The results of Tables 1-3 show high accuracy and efficiency of the proposed element in calculating natural frequencies of 
beam with different boundary conditions. Also, they confirm that the finite element answers always converge onto the exact 
results as given by the truncated Timoshenko-Ehrenfest theory. Thus, we conclude that the proposed variational truncated 
Timoshenko-Ehrenfest model provides a simple and powerful tool in dealing with the vibration analysis of beams.  

5. Conclusion 

In this study, we derive the truncated Timoshenko-Ehrenfest model via variational formulation and direct method. The 
advantages of variational setting consists in its adaptability to variational method by Ritz, along with the finite element 
formulation. Besseling [50] advocates for variational formulation in following words: “A variational formulation of a theory for physical 
processes has several advantages . . . the variational formulation provides a sound basis for an approximate formulation of the problem. 
Theories of beams, plates, and shells, but also finite element models are typical examples of such approximate formulation”. Why is the 
obtained variational derivation important? 

Although there are numerous variational derivations in papers and books of the original Timoshenko-Ehrenfest beam model, 
there was not a single variational formulation of the truncated version of the Timoshenko-Ehrenfest beam theory. This paper 
illustrates that Elishakoff’s [6] truncated version of the Timoshenko-Ehrenfest beam equations in both asymptotically and 
variationally valid. Elishakoff, Kaplunov and Nolde demonstrated asymptotic validity of it in [12], whereas variational correctness 
of it is corroborated by the present study.  
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Nomenclature 

A The cross-sectional area of rectangular cross-section I Moment of inertia 

L Length of beam  Mass density 

E Young’s modulus  Shear coefficient 

G Lame's second parameter  Poisson’s ratio 
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