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Abstract. In this paper, dynamic results of carbon nanotube (CNT)-reinforced composite beams under a moving load are presented. 
The constitutive equations in motion are obtained by the Lagrange procedure according to Timoshenko beam theory and then 
solved by using the Ritz method. In the solution of the moving load problem, the Newmark average acceleration method is used in 
the time history. In the numerical results, the effects of CNTs’ volume fraction, patterns of CNTs, and the velocity of moving load 
on the dynamic responses of CNT-reinforced composite beam are investigated in detail. It is observed that the reinforcement 
patterns and volume fraction of CNTs are very effective on the behavior of the moving load. Also, it is found that X-Beam and O-
Beam have the biggest and lowest rigidities in all models, respectively. 

Keywords: Reinforced composite beam, Dynamical behavior, Lagrange procedure, Newmark Average Acceleration method, Ritz 
method. 

1. Introduction 

In many engineering applications like civil, automotive, marine, aviation, and space, the most desirable properties of structural 
components can be specified as safe, ergonomic, aesthetic, and economical. Because the structural stiffness and efficiency can be 
increased while the overall cost and weight can be reduced, it may be beneficial to use variable cross-sections, composite, and 
reinforced members to meet the above requirements. 

Tapered and stepped beams/columns with variable cross-sections are frequently used in a variety of engineering applications 
such as bridges, roofs, flagpoles, energy harvesters, and airplanes to save both weight and cost. 

A composite material can be defined as a combination of at least two materials with different mechanical, physical, thermal, 
and chemical properties. The desired material can be formed, for instance, to become stronger, lighter or resistant to electricity. The 
main advantages of composite materials may be defined as having very high strength-to-weight and stiffness-to-weight ratios. In 
addition, they can have great resistance to corrosion. Composite materials can generally be classified as follows: structural, 
particulate and fiber-reinforced composites. 

Laminated composites consist of some separate layers with various material properties. There are various types of laminated 
composites as symmetric, balanced, cross-ply, and angle-ply. These materials offer decisive advantages over more conventional 
materials due to their high specific modulus, high specific strengths, and the ability to adapt to a specific application. However, a 
disadvantage of laminated composites is that high stress concentrations can occur at the interfaces of adjacent layers and 
unfortunately this situation can cause an undesired result as delamination of the layers. Some studies on the mechanical 
characteristics of laminated composite structures can be given [1-7]. 

Functionally graded materials (FGMs) can be defined as new kind of nonhomogeneous composites composed of at least two 
different materials. The material properties vary gradually and smoothly throughout length, thickness, and both of them (bi-
directional). FGMs have a wide range of application areas like aerospace, dental, orthopedic, military, energy, and optoelectronics. 
For instance, one of the most important properties of functionally graded material is its ability to inhibit crack propagation. This 
feature makes it useful in a defense application as a puncture-resistant material used for armor plates and bulletproof vests. A 
number of studies were performed on the mechanical and thermal analysis of FG structures [8-25]. 

Fiber-reinforced composites are other types of composite materials. They gain their strength from fibers as reinforcement set 
within their resin matrix. These strong and stiff fibers carry the load while the resin matrix spreads the load imposed on the 
composite. They have a wide range of application area as in automotive, civil, and aerospace applications, transportation industry, 
and high-performance sporting goods. The most used fibers are glass. Fibers can also be produced from carbon, boron, and aramid. 
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While these materials offer higher tensile strength and are harder than glass, they cost much more. For this reason, carbon, boron, 
aramid, and graphene nanoplatelets are typically reserved for high-tech applications that require exceptional fiber properties [26-
35]. 

Carbon nanotubes (CNTs) [36] are considered as ideal reinforcement components for new generation composite materials and 
have recently been used in place of the aforementioned traditional fibers in composite structures due to the exceptional properties 
of carbon nanotubes (CNTs) and providing good interfacial bonds. Due to the exceptional properties of them, many studies have 
been performed on the static and dynamic responses of CNTs [37-42]. CNT-reinforced structures have received great attention from 
researchers due to these unique features. Also, there are various applications of CNT-reinforced composites as tennis rackets, 
hockey sticks, and wind turbine blades. There are many studies on the mechanical responses carbon nanotube-reinforced 
composite (CNTRC) beams in the literature.  

Large amplitude vibration analysis of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) beams was 
performed based on Timoshenko beam theory with von Kármán assumption by Ke et al. [43]. The Ritz method with a direct iterative 
method was employed to solve the dynamic problem for different boundary conditions. The free vibration and buckling responses 
of nanocomposite beams surrounded by an elastic medium were investigated by Yas and Samadi [44]. The generalized differential 
quadrature method (GDQM) was applied for the solution. The vibrational behaviors of FG-CNTRC beams based on Euler- Bernoulli 
and Timoshenko beam theories via finite element method were surveyed by Yas and Heshmati [45] and Heshmati and Yas [46]. Ke 
et al. [47] studied the dynamic stability analysis of FG-CNTRC beams under an axial force based on first-order shear deformation 
beam theory via DQM. The bending, free vibration, and buckling analyses of embedded CNTRC beams resting on Pasternak elastic 
foundation were made by Wattanasakulpong and Ungbhakorn [48]. Navier’s method was utilized to solve these problems 
analytically. An investigation on the nonlinear thermo-mechanical bending behavior of simply supported FG-CNTRC plates under 
uniform and sinusoidal load was performed by Shen [49]. Vibrational responses of CNTRC beams were examined based on shear 
deformation beam theories [50-54]. The free and forced vibration analyses of CNTRC beams with constant and varying cross-
sections were comprehensively addressed via finite element method. Mohseni and Shakouri [55] perused the free vibration and 
buckling responses of tapered FG-CNTRC beams embedded in an elastic medium on the basis of Timoshenko beam theory. The 
dynamic analysis in pad concrete foundation containing Silica nanoparticles was performed by applying differential quadrature 
and Newmark methods by Taherifar et al. [56]. Thermal buckling of FG Euler-Bernoulli beam with temperature-independent and 
temperature-dependent properties was examined by Chen et al. [57]. Beni et al. [58] presented the nonlinear forced vibration of 
visco-piezo-electro nanobeam with couple stress effect. Additionally, dynamics and stability of FG flexoelectric smart beam were 
given with size-dependency by Esmaeili and Beni [59]. Buckling and vibration responses of CNTRC beams resting on elastic 
foundation were perused with shear deformation and stretching effects by Khelifa et al. [60] and Hadji et al. [61]. The concrete 
structure was modeled as a thick plate and the governing equations were obtained on the basis of Mindlin plate theory. On the 
other hand, there have recently been many studies on the mechanical behaviors of beam type structures [62-78] and plates [79-100]. 

After a literature survey, it can be seen that the studies on the dynamic displacements of CNTRC beams under a moving load 
are limited. The purpose of this study is to peruse the vibrational behavior of a simply supported carbon nanotube-reinforced 
composite (CNTRC) beam subjected to a moving load. The composite beam is considered as made of polymeric matrix and 
reinforced by single-walled carbon nanotubes with various distribution patterns. Timoshenko beam theory is used for 
mathematical modeling of CNTRC beam. The governing equations are obtained by the Lagrange procedure and solved by utilizing 
Ritz method. In the solution of the moving load problem, the Newmark average acceleration method is employed in the time history. 
The influences of the velocity of moving load, volume fraction and distribution patterns of CNT on the dynamic responses of CNTRC 
beam are examined in detail. 

2. Theory and Formulation 

In Fig. 1, a schematic configuration of a simply supported CNTRC beam subjected to a moving load is displayed with three 
different patterns of CNTs [60, 61]. The length, height, and width of beam are represented by L, h, and b, respectively. On the other 
hand, Q and vf denote the magnitude and the constant velocity of load, respectively. 

The effective material properties for CNTRC beams are given below [48, 49]: 
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where E, G, v, and ρ denote the modulus of elasticity, shear modulus, Poisson’s ratio, and density. The superscripts CNT and p 
respectively symbolize the related material properties of carbon nanotube and polymer matrix. ��, ��, ��  can be indicated the 
efficiency parameters of CNT. Also, VCNT and Vp are the volume fractions for CNT and polymer matrix, respectively. 

Table 1. Volume fractions of CNTs as a function of thickness direction for different distributions of CNTs [48, 49]. 

Patterns of CNTs ����  

UD ����∗   

FG-O 2����∗ �1 − 2 |�|
ℎ �

FG-X 4����∗ |�|
ℎ  
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Fig. 1. A schematic configuration of a simply supported CNTRC beam under a moving load and three different patterns of CNTs. 

 
Volume fractions of CNTs as a function of thickness direction for different patterns of CNTs [48] are presented in Table 1. In this 

table, ����∗  is the given volume fraction of CNTs. In this study, the efficiency parameters of CNTs for three different values of ����∗  
are considered as the same with [44]. 

Based on Timoshenko beam theory, the displacement field of an initially straight beam can be given as: 

����, �, � = 0, �"��, �, � = �#��, � , �$��, �, � = �#��, � − %∅��, �  (7) 

where �# and �# are the axial and the transverse displacement of any point on the neutral axis, ∅ is the total bending rotation of 
the cross-sections at any point on the neutral axis.  

After some mathematical manipulations, the strain energy (Ui), the kinetic energy (K), the dissipation function and potential 
energy of the external loads (Ue) are presented as follows: 
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where 45 is the shear correction factor. 

�+#, +�, +� = 7 ��% �1, %, %� 0+D , 6# = 7 �% 0+D ,, �8#, 8�, 8� = 7 ��% �1, %, %� 0+D  (11) 

in which E and  are the Young’s modulus and shear modulus.  
The Lagrangian functional of the problem is presented as: 

8 = 4 − �'( + '@  (12) 

In the solution of the problem in Ritz method, approximate solution is given as a series of i terms of the following form: 
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where ai, bi, and ci are the unknown coefficients, G(��, � , K(��, � , M(��, �  are the coordinate functions depending on the end 
conditions over the interval [0, L]. The coordinate functions for the simply supported beam are given as algebraic polynomials: 

G(�� = �( (14a) 

K(�� = �N − � �O (14b) 
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M(�� = ��(P�  (14c) 

where i indicates the number of polynomials involved in the admissible functions. After substituting Eqs. (8)-(10) into Eq. (12), and 
then using the Lagrange’s equation, gives the following equation: 

-8
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where qi is the unknown coefficients which are ai, bi, and ci. After implementing the Lagrange procedure, the motion equation of the 
problem is obtained as follows: 

SKUVq�t Y + SMUVq[ �t Y = VF�t Y (16) 

where S4U, S]U, and VF�t Y are the stiffness matrix, mass matrix, and load vector, respectively. The details of these expressions are 
given as follows: 
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The constitutive equation of motions is solved by implementing implicit Newmark average acceleration method with G = 0.5, K = 0.5 in the time domain. By this procedure, the dynamic problem is transferred to system of static problem in each step as 
following: 

S4u��, v UV0eY`w� = Vlx�� Y (22) 

in which 

S4u��, v U = S4U + S]UK∆�� + SzUGK∆�  (23a) 

Vlx�� Y = Vl�� Y`w� + 6�V0eY` + 6�{0Re|` + 6�{0[e|` (23b) 

where 
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After evaluating V0eY`w� at a time �̀ w� = �̀ + ∆�, the acceleration and velocity vectors can be expressed as: 
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The dimensionless quantities are presented as follows: 
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2 ,   �∗ = = 
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where �̅ is the dimensionless transversal displacement and �∗ is dimensionless time.  
 

 
 

Fig. 2. Time history of dimensionless dynamic displacements at midspan of CNTRC beam with different reinforcement patterns and volume fraction 
of CNTs. 
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3. Numerical Results 

In this section, the effects of carbon nanotube volume fraction, patterns of CNTs and velocity of moving load on the dynamic 
displacements of CNTRC beam are perused and discussed. The five-point Gauss rule is employed to calculate the integration. In 
the numerical results, number of the series term is taken 10.  

In this study, the following material properties for reinforcement and matrix constituents are used as [44, 48]: ������ = 600 ��, ������ = 10 ��, ����� = 17.2 ��, ���� = 0.19, ���� = 1400 ��/��, �
 = 2.5 ��, �
 = 0.30, and �
 = 1190 ��/��. It is also notable that 
the shear correction factor (Ks) is chosen as 5/6 in the analysis. The geometry parameters of the beam are selected as b=0.1 m, h=0.1 
m and L=4 m and the magnitude of load is chosen as Q=100 kN. 
 

 
Fig. 3. Time history of dimensionless dynamic displacements at midspan of CNTRC beam with different reinforcement patterns and the velocities of 

load for volume fraction of CNTs VCNT=0.12. 
 

 
Fig. 4. Time history of dimensionless dynamic displacements at midspan of CNTRC beam with different reinforcement patterns and the velocities of 

load for volume fraction of CNTs VCNT=0.17. 
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Fig. 5. Time history of dimensionless dynamic displacements at midspan of CNTRC beam with different reinforcement patterns and the velocities of 
load for volume fraction of CNTs VCNT=0.28. 

In Fig. 2, time histories of dimensionless dynamic displacements at midspan of CNTRC beam are presented with different 
reinforcement patterns and volume fraction of CNTs for VCNT=0.12 , VCNT=0.17 , and VCNT=0.28. In this figure, the velocity of load is 
taken as �� = 30 �/� . It is seen from Fig. 2 that the dynamical displacements of O-Beam are the biggest of all. It is known that the 
upper and lower surfaces of the beam have high axial stresses and strains. So, O-Beam model has lowest stiffness. Consequently, 
more deflections occur in O-Beam model. Also, the dynamical displacements of UD-Beam are bigger than those of X-beam. This is 
because; however, the reinforcements spread at bother surfaces in UD- and X-Beams, X-beam has the biggest specific strength in 
all patterns. So, dynamic responses of X-Beam are the lowest of all.  

Figures 3-5 depict the effects of velocities of load on the dynamic displacements at midspan of CNTRC beam with different 
reinforcement patterns for volume fraction of CNTs for VCNT=0.12, VCNT=0.17 and VCNT=0.28, respectively. It is observed from these 
figures that the reinforcement patterns and volume fraction of CNTs are very effective on the behavior of the moving load. With 
different load velocity, the dynamic responses of different reinforcement patterns change considerably. For example, the 
dimensionless displacements at midspan for different velocity of moving load are vx�# �/� > vx�# �/� > vx�# �/� for t*=0.5 for UD-beam. 
However, this situation is very different for O-beam and X-beam such as vx�# �/� ≅ vx�# �/� > vx�# �/� for t*=0.5 for X-beam. 

4. Conclusion 

Dynamic response of Carbon nanotube-reinforced composite beams under a moving load is investigated. The composite beam 
is considered as made of polymeric matrix and reinforced the single-walled carbon nanotubes. Three different distribution patterns 
are taken into consideration. Lagrange procedure is used to evaluate the governing equations on the basis of Timoshenko beam 
theory. The resulting equation is solved by utilizing Newmark average and Ritz methods. The effects of patterns and volume 
fractions of CNTs, and moving load’s velocity on the dimensionless dynamic displacements of CNTRC beam are examined. The 
main findings of the present study can be outlined as: 

 The volume fraction of CNTs are quite effective.  
 The dynamic displacements decrease by increasing the volume fraction of CNTs.  
 The effect of distribution pattern is also considerable. 
 X-Beam is the most rigid model while O-Beam model has the lowest rigidity. 
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Nomenclature 

ai, bi, ci Unknown coefficients u0 Axial displacement 

b Width of beam cross-section Ue Potential energy of external loads 

E Elastic modulus Ui Strain energy 

VF�t Y  Load vector �̅ Dimensionless transversal displacement 

G Shear modulus v0 Vertical displacement 

h Height of beam cross-section vf Velocity of load 

I Lagrangian functional VCNT Volume fraction of carbon nanotube 

K Kinetic energy Vp Volume fraction of polymer matrix 

Ks Shear correction factor G(, K(, M(  Coordinate functions 

[K] Stiffness matrix � Efficiency parameter 

L Length of beam v Poisson’s ratio 

[M] Mass matrix ρ Density 

Q Magnitude of load ∅ Rotation 

t* Dimensionless time �� Dimensionless frequency 
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