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Abstract. The paper presents an approach to the strength analysis in steel cylindrical panels reinforced from the concave side with 
an orthogonal grid of stiffeners. A mathematical model of the Timoshenko (Mindlin – Reissner) type is used. Transverse shears and 
geometric nonlinearity are taken into account. The stiffeners are introduced in two ways: using the method of refined discrete 
introduction (proposed by author) and the method of structural anisotropy. Computational algorithm based on the Ritz method and 
the best parameter continuation method. For strength analysis von Mises criterion is used. The values of the maximum permissible 
strength loss loads are shown for several variants of structures made of steel S345. The extension of areas of non-fulfillment of 
strength conditions according to the Mises criterion for the stiffened and unstiffened structures are shown. 

Keywords: Cylindrical panels, Ritz method, shells, stiffeners, strength. 

1. Introduction 

Thin-walled structures are commonly used for solving a wide class of applied challenges, including the problems of mechanical 
engineering, construction building, and transport industry. Such structures, made of many different materials (from metals to 
composites and wood), are often used as hangars for vehicles, coverings and floors of industrial buildings, light structures in 
shipbuilding, aerospace and so on. At the same time, thin-walled structures often need to include stiffeners with the scope to 
achieve the design requirements for stiffness and resistance.  

It is significantly more difficult to study stiffened structures than structures of uniform thickness considering how these 
geometric non-uniformities do not allow the application of theoretical approaches and simplifying models [1–3]. Thus, the need to 
use more complex techniques such as numerical simulations with numerical models based on experimental verifications becomes 
inaudible. This is detailed, e.g., in [4] where a finite element (FE) model was developed and validated with the scope to investigate 
the stiff and buckling behaviour of extra-large stiffened structures. 

In this regard, there are several approaches to the introduction of stiffeners and for evaluating their effects on the structures. 
For instance, some papers (Jaunky et al. [5]; Kidane et al. [6]) distinguish two types of approaches to account for stiffeners in a 
structure: a discrete approach [7–11] and a stiffness smearing approach [12–15]. 

Sadeghifar, Bagheri and Jafari [10] investigates the influence of nonuniformity of eccentricity of stringers on the general axial 
buckling load of stiffened laminated cylindrical shells with simply supported end conditions. The critical loads are calculated using 
Love’s FSDT and solved using the Rayleigh-Ritz procedure. In Tu and Loi [15] a free vibration analysis of rotating functionally graded 
cylindrical shells with orthogonal stiffeners are presents. Based on Love’s first approximation theory and smeared stiffeners 
technique, the governing equations of motion which take into account the effects of initial hoop tension and also the centrifugal 
and Coriolis forces due to rotation are derived. Finally, in Lanzo and Garcea [16] thin-walled complex structures were investigated 
by the so-called Koiter's analysis. 

Therefore, the need to develop consolidated methods for optimizing reinforced structures becomes evident. Referring to simple 
geometries, such as plates reinforced by the addition of stiffeners, there are many works available in the literature as in Pinto et al 
[17] where a multiobjetive approach to the geometrical optimization was develop. Optimization of stiffened cylindrical shells to 
solve specific practical tasks was addressed by Bai et al. [18], Chen et al. [19], Lene et al. [20], Reza Ghasemi et al. [21] and Hao et al. 
[22]. 

Wang et al. [23] presented general similitude requirements and the scaling laws for nonlinear buckling of stiffened orthotropic 
shallow spherical shells by applying similitude transformation to the total energy of the structural system. Cho et al. [24] reports 
experimental and numerical investigations on the ultimate strength responses of steel-welded, ring-stiffened conical shells when 
subjected to external hydrostatic pressure. The numerical computations were performed on the finite element code of ABAQUS 
FEA. The imperfection due to fabrication, such as initial out-of-circularity, and residual stresses due to welding are simulated. 
Strength problems of shell structures were considered, for example, in Duarte et al. [25], Brauns and Skadins [26], Abrosimov and 
Novosel’tseva [27] and Semenov [28]. 
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Fig. 1. Cylindrical shell panel. a) Local coordinate system; b) Option No. 1; c) Option No. 2. 

 
In [25] a comparative study between Hashin damage criterion and the eXtended Finite Element Method (XFEM) applied to the 

failure of plates made of fiber reinforced polymers (FRP). A brief literature review on failure criteria is also presented in the paper 
and Finite element models of square plates with different layer configurations are described within the framework of ABAQUS 
package. A similar numerical approach was used in Pavlovic et al. [29] when FRP tridimentional plates where modelled and 
optimized by ANSYS in the case of very large and thin functional structures. 

The purpose of this paper is to describe the methodology for analyzing the strength of cylindrical panels, stiffened by an 
orthogonal mesh of ribs, based on different approaches to the introduction of reinforcing elements. 

2. Theory and Methods 

2.1 Mathematical Model 

Consider thin-walled shells under external mechanical loading. The geometry of these structures is defined by the Lame 
parameters ,A B  and radii of principal curvatures 1 2,R R  along the ,x y  coordinates, respectively. For cylindrical panels 

2 1 21, , , constA B R R R= = =∞ = . 
It will be used a mathematical model of the Timoshenko (Mindlin–Reissner) type, which takes into account transverse shears, 

material orthotropy, and geometric nonlinearity. According to this model, in the case of static problems, three functions 
characterizing displacement of the coordinate surface points ( ) ( ) ( ), , , , ,U x y V x y W x y  and two functions characterizing the normal 
rotation angles in the planes Ox z , Oy z  ( ( ) ( ), , ,x yx y x yΨ Ψ ) will be the unknown functions. This model is based on the functional 
of total potential deformation energy, which can be written in the following form: 

0= ,R
s s pE E E+  
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1
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(1) 

where , ,x yq P P  denote load components; ,x yN N  denote normal forces in the direction of the ,x y  coordinates; ,xy yxN N  denote 
shear forces in the corresponding plane Ox y ; ,x yM M  denote bending moments; ,xy yxM M  denote torque moments; ,x yQ Q  
denote transverse forces in the planes Ox z  and Oy z , which are defined by the following relationships for the structural skin 
(superscript 0):  
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Here 1 2,E E  denote elasticity moduli in the directions x , y ; = 5 / 6k ; 12 13 23, ,G G G  denote shear moduli in the planes 
O , O , Ox y x z y z , respectively; 12 21,µ µ  denote Poisson’s ratios; ,x yε ε  denote tensile strains; xyγ  denotes shear strains in the plane 
Ox y ; 1 2 12, ,χ χ χ  denote functions of change in curvature and torsion as follows:  
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 (3) 

Geometric nonlinearity is taken into account in expressions for deformations (3) due to terms with variables θ . When the 
variables θ  are multiplied, the products of the displacement functions obtained. 
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Fig. 2. Graphical representation of functions used for approximation. 

 

On the side of the concavity, the shell is reinforced by an orthogonal mesh of stiffeners, parallel to the coordinate lines. The 
stiffeners are characterized by the following parameters: ,j ih h   height of stiffeners, parallel to the axes y and x respectively; ,j ir r  
– width of, respectively, j -th and i -th stiffeners; stiffeners, parallel to the axis y  ( j -th stiffeners) located at j ja x b≤ ≤ , and 
stiffeners, parallel to the axis x  ( i -th stiffeners) located at i ic y d≤ ≤ .  

There are various ways to account for the presence of stiffeners. Earlier in [30], the following were considered in detail: discrete 
introduction of stiffeners in contact with the skin along the line (Lurie), discrete input of stiffeners in contact with the skin along 
the strip (Karpov), the introduction of stiffeners when “smearing” the stiffness by the method of constructive anisotropy (Karpov), 
as well as a new (refined) version of discrete insertion of stiffeners in contact with the skin along the strip (Semenov). Due to the 
cumbersomeness, all these relations here are not presents. 

2.2 Algorithm for the Solution of Strength Problems 

To solve a buckling analysis problem in a shell structure, to find the minimum of the functional (1) are needs. For that purpose, 
it’s applied the Ritz method to reduce the variational problem of finding the functional minimum to solving a system of nonlinear 
algebraic equations. In this case, the unknown functions can be presented in the following form: 

( ) ( ) ( ) ( ) ( )1 1 2 2 3 3 4 4 5 5
=1 =1 =1 =1 =1 =1 =1 =1 =1 =1

, = , , = , , = , , = , , = ,
n n n n n n n n n n

k l k l k l k l k l
x x y ykl kl kl kl kl

k l k l k l k l k l

U x y U X Y V x y V X Y W x y W X Y x y X Y x y X YΨ Ψ Ψ Ψ∑∑ ∑∑ ∑∑ ∑∑ ∑∑  (4) 

where , , , ,x ykl kl kl kl kl
U V W Ψ Ψ  denote unknown numerical parameters, 1 5, ,k kX X…  and 1 5, ,l lY Y…  denote known approximating 

functions with arguments x  and y , satisfying the given boundary conditions. The boundary conditions for a particular structure 
are determined based on the type of shell contour support. 
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Fig. 3. Shape of approximation 1 1 2 2 3 3 4 4 5 5
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Consider simply support thin-walled shells (at = 0, = : = = = = = 0x yx x a U V W M Ψ ; at = 0, = : = = = = = 0y xy y b U V W M Ψ ). 
The following trigonometric functions can then be taken as approximating ones:  
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l Y l
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 (5) 

Figure 2 graphically shows all possible options for functions kX . For lY , the function options are the same. The combination 
of the functions presented can replicate the symmetrical deformation shape of the structure. Figure 3 shows the sums of the 

products of functions 1 1 2 2 3 3 4 4 5 5
1 1 1 1 1 1 1 1 1 1

, , , ,
n n n n n n n n n n

k l k l k l k l k l

k l k l k l k l k l

X Y X Y X Y X Y X Y
= = = = = = = = = =
∑∑ ∑∑ ∑∑ ∑∑ ∑∑ , on the basis of which it can be concluded that the 

above boundary conditions are met. 
The choice of trigonometric functions as the basis is due to the fact that they describe the process of deformation of the 

structure with the formation of dents rather well, and moreover, they satisfy the specified boundary conditions. In addition, for 
closed structures, they can satisfy the periodicity conditions, which is also important. The use of a large number of terms in (5) in 
the case of using trigonometric functions does not lead to a significant increase in the degrees of the variables, as in the case of 
polynomial approximation. In [31–34] one can finds the use of Legendre polynomials, in [34–37] – the use of Chebyshev polynomials 
as approximating functions. A comparison of trigonometric approximation and Legendre polynomials was carried out in [38]. 

By substituting Eq. (5) to Eq. (1), the functional sE  is transformed into the function sfE . To find the minimum, it’s need to find 
derivatives of the function sfE  with respect to all unknown numerical parameters and then equate those to zero. As a result, a 
system of nonlinear algebraic equations is obtained. To solve it, the best parameter continuation method, which makes it possible 
to reduce the solution of a nonlinear system to the solution of the initial problem for a system of ordinary differential equations, 
are used. The resulting initial problem can be solved using various methods, e.g. the Euler method. 

In this case, the Maple analytical software package is the best option for software implementation, since fairly intensive 
symbolic computations are required. 

This approach allows to explore the strength and buckling of shells, to bypass the singular points of curve “load – deflection” in 
order to obtain the values of upper and lower critical loads, find points of bifurcation, and investigate the supercritical behavior of 
shells. Buckling analysis of cylindrical and conical shell panels with an orthogonal grid of stiffeners was carried out by the author 
earlier in the work [39]. 

In this work, it will be analyzed the strength of the structure, which is based on the analysis of the strength criterion at each 
point of the structure with gradually increasing load values. Strength analysis is carried out according to the von Mises criterion, 
which in relation to the study of the strength of shell structures is written in the form: 

,Tiσ σ≤   

where iσ  – stress intensity; Tσ  – material yield strength. The stress intensity can be represented as 

( )2 2 2 2 23 .x x y y xy xz yziσ σ σ σ σ τ τ τ= − + + + +  (6) 
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Table 1. Options of panels under consideration 

No. , mh  , ma  , radb  2
, mR  

1 0.08 16 1 16 

2 0.01 1.5 0.4 2.5 

Table 2. Characteristics of the considered shells  

No. 
Parameter 

0 2, mS  0 3, mV  /a h  m,d  m,i jh h=  m,
i j

r r=  

1 256 20.48 200 1.96 0.24 0.16 

2 1.5 0.015 150 0.05 0.03 0.02 

Table 3. Characteristics of the considered shells depending on the number of stiffeners 

No.  
Characteristics depending on the number of stiffeners 

22 44 66 88 1212 1616 2020 

1 

rx , m 8 4 2.67 2 1.33 1 0.8 

ry , m 8 4 2.67 2 1.33 1 0.8 

2, mRS  10.14 20.07 29.80 39.32 57.75 75.37 92.16 

3, mRV  2.43 4.82 7.15 9.44 13.86 18.09 22.12 

0/RS S  0.040 0.078 0.116 0.154 0.226 0.294 0.360 

0/RV V  0.119 0.235 0.349 0.461 0.677 0.883 1.080 

  22 44 66 88 1212 1616 2020 

2 

rx , m 0.75 0.375 0.25 0.188 0.125 0.09 0.075 

ry , m 0.50 0.25 0.17 0.13 0.08 0.06 0.05 

2, mRS  0.098 0.194 0.286 0.374 0.542 0.698 0.840 

3, mRV  0.003 0.006 0.009 0.011 0.016 0.021 0.025 

0/RS S  0.066 0.129 0.190 0.250 0.362 0.465 0.560 

0/RV V  0.197 0.387 0.571 0.749 1.085 1.395 1.680 

 
“Stress-strain” relationships for linearly elastic deformation of orthotropic materials in a plane stress state will have the form: 

( )

( )

1
21 1 21 2

12 21

2
12 2 12 1

12 21

12 12 13 23

,
1

,
1

2 , , .

x x y

y y x

xy xy xz xz yz yz

E
z

E
z

G z G G

σ ε µ ε χ µ χ
µ µ

σ ε µ ε χ µ χ
µ µ

τ γ χ τ γ τ γ

 
= + + + 

 −  
 

= + + + 
 −  

 
= + = = 

  

 (7) 

Despite the fact that further shell structures made of an isotropic material will be considered, the relations for the orthotropic 
case, as a more general one, are presents. 

For consistency with other criteria [22] and convenience of further comparison, writes the von Mises criterion in the following 
form: 

1.i
r

T

K
σ

σ
= ≤  (8) 

3. Numerical Results 

Calculations for three options of cylindrical panels (Table 1), based on the proposed model and algorithm, are performed. 
Geometric nonlinearity is taken into account. Type of support: pin support; loading: uniformly distributed static loading directed 
along the normal to the surface. Material: Steel S345 with 5

1 2 2.1 10E E E= = = ⋅  MPa, 12 21 0.3µ µ µ= = = , 265 345Tσ = ÷ MPa. The 
parameters of S345 steel were taken in accordance with GOST 27772-2015 “Rolled steel for building steel structures. General 
specifications (with amendment No. 1)”. It should be noted that the yield point will be different depending on the thickness of the 
rolled stock (from 265 MPa at a thickness of 0.08–0.16 m to 345 MPa at a thickness of 0.002–0.01 m). It will be take this into account 
when calculating the structures under consideration. 

It’s performed calculations at 16N=  summands under the approximation of the Ritz method. 
The orthogonal grid of stiffeners is placed on the inside of the skin. The height and width of stiffeners are 

3 , 2ji
i jh h h r r h= = = = , respectively. The number of stiffeners is equal in both directions, and for each new grid option, it is 

increased by 2 or 4. Stresses will be calculated with regard to the outer surface of the skin. Before presenting the calculation data, 
some characteristics of the considered shells depending on the number of stiffeners will be shown (Table 2, Table 3). Here 0S  – 
skin surface area; 0V  – skin volume; d  – camber of arch; rx  – distance between stiffeners; RS  – stiffeners area; RV  – stiffeners 
volume.  
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Table 4. Maximum allowable loads for stiffened cylindrical panels 

No.  N  Method 
Maximum permissible load pr

q , MPa 
Curve 

00 22 44 66 88 1212 1616 2020 

1 

265 MPa
T
σ =  

0.08 mh =  

9 Refined model 

(Semenov) 

0.2863 0.3938 0.3765 0.4411 0.4599 0.4962 0.5314 0.5658 – 

16 0.2693 0.2310 0.3450 0.4082 0.4230 0.4541 0.4828 0.5112 1 

9 Structural anisotropy method 

(Karpov) 

0.2863 0.3500 0.3757 0.4409 0.4598 0.4961 0.5313 0.5658 – 

16 0.2693 0.3640 0.3899 0.4065 0.4229 0.4541 0.4828 0.5111 2 

265 MPa
T
σ =  

0.01 mh =  

9 Refined model 

(Semenov) 

0.5969 0.9658 1.1434 1.2289 1.2949 1.4066 1.5047 1.5412 – 

16 0.5943 0.9742 1.1575 1.2470 1.3146 1.4262 1.5218 1.6097 3 

9 Structural anisotropy method 

(Karpov) 

0.5969 1.0377 1.1467 1.2289 1.2948 1.4065 1.5046 1.5412 – 

16 0.5943 1.0364 1.1581 1.2460 1.3145 1.4261 1.5218 1.6096 4 

345 MPa
T
σ =  

0.01 mh =  

9 Refined model 

(Semenov) 

0.6455 1.0942 1.4041 1.5398 1.6030 1.7541 1.8812 1.9464 – 

16 0.6196 1.1290 1.4044 1.5183 1.6172 1.7713 1.8979 2.0114 5 

9 Structural anisotropy method 

(Karpov) 

0.6455 1.1995 1.4104 1.5403 1.6030 1.7541 1.8811 1.9463 – 

16 0.6196 1.1871 1.4100 1.5180 1.6172 1.7712 1.8978 2.0114 6 

2 

265 MPa
T
σ =  

0.01 mh =  

9 Refined model 

(Semenov) 

0.6608 0.7501 0.7991 0.8278 0.8592 0.9246 0.9653 1.0287 – 

16 0.6722 0.7891 0.8003 0.8509 0.8821 0.9246 0.9890 1.0529 7 

9 Structural anisotropy method 

(Karpov) 

0.6608 0.7788 0.7991 0.8276 0.8591 0.9245 0.9653 1.0287 – 

16 0.6722 0.7845 0.8225 0.8506 0.8820 0.9245 0.9890 1.0529 8 

345 MPa
T
σ =  

0.01 mh =  

9 Refined model 

(Semenov) 

0.7008 0.9419 1.0078 1.0456 1.0866 1.1496 1.2328 1.3150 – 

16 0.7032 0.9944 1.0087 1.0675 1.1081 1.1711 1.2544 1.3368 9 

9 Structural anisotropy method 

(Karpov) 

0.7008 0.9803 1.0077 1.0454 1.0864 1.1495 1.2327 1.3149 – 

16 0.7032 1.0046 1.0302 1.0671 1.1079 1.1711 1.2544 1.3368 10 

 
 

 

 

Fig. 4. The values of the maximum permissible load qpr at different 
numbers of stiffeners (cylindrical panel 1, N = 16) 

Fig. 5. The values of the maximum permissible load qpr at different 
numbers of stiffeners (cylindrical panel 2, N = 16) 

 

Table 4 shows the values of the maximum permissible strength loss loads for different stiffeners options, obtained using 
different methods of considering stiffeners and at different values of 2N n= . In Fig. 4, 5 results for 16N=  shown graphically 
(curve numbers are shown in Table 4). As can be seen from the data presented, the reinforcement of the structure with stiffeners 
increases its bearing capacity, this is especially noticeable when adding the first few stiffening elements. It is also seen that already 
with an orthogonal mesh of 6x6 edges, the values, obtained by the method of constructive anisotropy and the refined discrete 
method, converge. 

Options in the Table 3 are highlighted in green for which further comparison will be made. 
In Fig. 6 “load – deflection” dependence for a cylindrical panel (option 1, 16N= ) with orthogonal grids of stiffeners 0 0× , 8 8×

are shown. The red curve cW  in the Fig. 6 depicts the deflection in the center of a structure ( )/ 2, / 2x a y b= = , and the blue curve 

4W  the deflection in the quadrant of a structure ( )/ 4, / 4x a y b= = .  
The buckling load is detected as follows: the load/deflection diagram is analyzed, where a small change in the load corresponds 

to a significant change in the deflection (Lyapunov criterion), and snap-through buckling (transition to a new equilibrium state) 
occurs. In software, the moment when the determinant of the Jacobi matrix J  becomes zero also corresponds to the critical load. 
It should be noted that condition = 0detJ  may also correspond to lower critical loads and bifurcation points. 

For considered cylindrical panel 1, critical buckling load are 0.6897 MPa (for orthogonal grids of stiffeners 0 0× ) and 3.1806 MPa 
(orthogonal grids of stiffeners 8 8× ). 

In accordance with the data obtained, Figs. 7 and 8 show the fields of criterion (8) at loads for which the strength condition 
ceases to be met. Areas of the structure for which the criterion ceases to be met correspond to the parts where the criterion field 
exceeds the value 1rK = . The criterion field has a complex shape, for its better interpretation in Fig. 7, 8 added transparency. 

In Fig. 9 the extension of areas of non-fulfillment of the strength conditions (8) for the cylindrical panel 1 is shown with an 
increase in the value of the load already after the initial destruction of the material according to the von Mises criterion. 

As can be seen from the presented data, areas of non-fulfillment of strength conditions appear near the edge of the 
circumferential coordinate, then develop along it, uniting, and then begin to gradually spread to the center of the structure. In the 
presence of stiffeners, this process develops under higher loads than for unstiffened structures. 
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Fig. 6. Load – deflection dependence for a cylindrical panel (option 1, N = 16) with orthogonal grids of stiffeners 00, 88. 

 

  

Fig. 7. The von Mises criterion field (8) for the option 1 panel 
(N = 16, 00 grid of stiffeners) under load 0.2692 MPa 

Fig. 8. The von Mises criterion field (8) for the option 1 panel 
(N = 16, 88 grid of stiffeners) under load 0.4229 MPa 

 

4. Conclusion 

A study of the strength of thin-walled cylindrical panels, reinforced with stiffeners, was carried out. The analysis of approaches 
to the introduction of stiffeners has been carried out, which has shown that the proposed improved version of taking into account 
the stiffness characteristics gives a result close to the method of constructive anisotropy. In addition, the convergence of the 
constructive anisotropy method is shown with an increase in the number of reinforcing elements. Using it instead of discrete 
approaches to the introduction of edges can significantly reduce the calculation time. Shown are three-dimensional graphs of the 
strength criterion at a specific load value. The analysis of the extension of areas of non-fulfillment of strength conditions according 
to the Mises criterion for the structures under consideration is carried out. Their size is shown in the presence and absence of 
stiffeners for the same load values. The proposed format for presenting data on areas of non-fulfillment of strength conditions and 
graph of strength criterion is new and makes it possible to visually assess the state of the structure. 
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q, MPa Orthogonal grid of stiffeners 00 Orthogonal grid of stiffeners 88 

0.2693 

  

0.4576 

  

0.6272 

  

Fig. 9. Comparison of areas of non-fulfillment of strength conditions (when the value of the criterion Kr  1)  
for cylindrical panel 1 with stiffeners grid 00, 88 and with increasing load values 
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Nomenclature 

,A B  Lame parameters describing the shell geometry; , ,
x y

q P P  Load components; 

1 2
,E E  Elastic moduli; cr

q  Critical buckling load; 

s
E  Functional of full potential deformation energy of the 

shell structure; 

pr
q  Maximum permissible load (strength); 

0

s
E  Functional of full potential deformation energy of the 

skin; 

,
x y

Q Q  Transverse forces in the planes xOz and yOz; 

R

p
E  Potential deformation energy of the stiffeners; , ,U V W  Displacement functions; 

( )f z  Function describing the distribution of stresses xzτ and

yz
τ through the shell thickness; 

c
W  Deflection in the center of a structure; 

12 13 23
, ,G G G  Shear modules; 4W  Deflection in the quadrant of a structure; 

,
x y

k k  Main curvatures of the shell along the x and y axes; xy
γ  Shear deformation in the xOy plane; 

rK  Yield strength criterion; 1 2 12
, ,χ χ χ  Functions of curvature and torsional change; 

, , ,
x y xy yx

M M M M  Moments, occurring in the structure; ,
x y
Ψ Ψ  Functions of the normal rotation angles in the xOz 

and yOz planes, respectively; 

0 0 0 0, , ,
x y xy yx

M M M M  Moments, occurring in the skin; ,
x y
ε ε  Deformations of elongation along the x, y 

coordinates of the middle surface; 

, , ,R R R R

x y xy yx
M M M M  Forces and moments, occurring in the stiffeners; 12 21

,µ µ  Poisson's ratios; 

, , ,
x y xy yx

N N N N  Forces, occurring in the structure; ,
x y
σ σ  The normal stresses in the directions of axes x, y; 

0 0 0 0, , ,
x y xy yx

N N N N  Forces, occurring in the skin;  , ,
xy xz yz
τ τ τ  Shear stresses in the plane xOy, xOz and yOz; 

, , ,R R R R

x y xy yx
N N N N  Forces and moments, occurring in the stiffeners; iσ  Stress intensity; 

N  Number of terms in the expansion of Ritz method; Tσ  Material yield strength. 

References 

[1] Bischoff, M., Bletzinger, K.-U., Wall, W.A., Ramm, E., Models and Finite Elements for Thin-Walled Structures, In: Encyclopedia of Computational 
Mechanics, ed. Stein E., de Borst R., Hughes T.J.R. Chichester, UK: John Wiley & Sons, Ltd, 2004, 59–137. DOI: 10.1002/0470091355.ecm026. 
[2] Godoy, L.A., Thin-Walled Structures with Structural Imperfections, Elsevier, 1996. DOI: 10.1016/B978-0-08-042266-4.X5000-3. 
[3] Mamalis, A.G., Manolakos, D.E., Demosthenous, G.A., Ioannidis M.B., Crashworthiness of composite thin-walled structural components, Boca Raton; 
London; New York: CRC Press, Taylor & Francis Group, 2019. 
[4] Fragassa, C., Minak, G., Pavlovic, A., Measuring deformations in the telescopic boom under static and dynamic load conditions, Facta Universitatis-
Series Mechanical Engineering, 18(2), 2020, 315–328. DOI: 10.22190/FUME181201001F. 
[5] Jaunky, N., Knight, N.F., Ambur, D.R., Formulation of an improved smeared stiffener theory for buckling analysis of grid-stiffened composite panels, 
Composites Part B: Engineering, 27(5), 1996, 519–526. DOI: 10.1016/1359-8368(96)00032-7. 
[6] Kidane, S., Li, G., Helms, J., Pang, S.-S., Woldesenbet, E., Buckling load analysis of grid stiffened composite cylinders, Composites Part B: Engineering, 
34(1), 2003, 1–9. DOI: 10.1016/S1359-8368(02)00074-4. 
[7] Wang, J.T.-S., Hsu, T.-M., Discrete analysis of stiffened composite cylindrical shells, AIAA Journal, 23(11), 1985, 1753–1761. DOI: 10.2514/3.9162. 
[8] Meish, V.F., Meish, Yu.A., Pavlyuk, A.V., Dynamics of a Three-Layer Elliptic Cylindrical Shell Reinforced with Discrete Rings, International Applied 
Mechanics, 54(2), 2018, 172–179. DOI: 10.1007/s10778-018-0869-z. 
[9] Qu, Y., Wu, S., Chen, Y., Hua, H., Vibration analysis of ring-stiffened conical-cylindrical-spherical shells based on a modified variational approach, 
International Journal of Mechanical Sciences, 69, 2013, 72–84. DOI: 10.1016/j.ijmecsci.2013.01.026. 
[10] Sadeghifar, M., Bagheri, M., Jafari, A.A., Buckling analysis of stringer-stiffened laminated cylindrical shells with nonuniform eccentricity, Archive of 
Applied Mechanics, 81(7), 2011, 875–886. DOI: 10.1007/s00419-010-0457-0. 
[11] Talebitooti, M., Ghayour, M., Ziaei-Rad, S., Talebitooti, R., Free vibrations of rotating composite conical shells with stringer and ring stiffeners, 
Archive of Applied Mechanics, 80(3), 2010, 201–215. DOI: 10.1007/s00419-009-0311-4. 
[12] Troitsky, M.S., Stiffened plates: bending, stability, and vibrations, Elsevier Scientific Pub. Co., Amsterdam; New York, 1976. 
[13] Reddy, A.D., Valisetty, R., Rehfield, L.W., Continuous filament wound composite concepts for aircraft fuselage structures, Journal of Aircraft, 22(3), 
1985, 249–255. DOI: 10.2514/3.45115. 
[14] Dung, D.V., Chan, D.Q., Analytical investigation on mechanical buckling of FGM truncated conical shells reinforced by orthogonal stiffeners based 
on FSDT, Composite Structures, 159, 2017, 827–841. DOI: 10.1016/j.compstruct.2016.10.006. 
[15] Tu, T.M., Loi, N.V., Vibration Analysis of Rotating Functionally Graded Cylindrical Shells with Orthogonal Stiffeners, Latin American Journal of Solids 
and Structures, 13(15), 2016, 2952–2969. DOI: 10.1590/1679-78252934. 
[16] Lanzo, A.D., Garcea, G., Koiter’s analysis of thin-walled structures by a finite element approach, International Journal for Numerical Methods in 
Engineering, 39(17), 1996, 3007–3031. DOI: 10.1002/(SICI)1097-0207(19960915)39:17<3007::AID-NME991>3.0.CO;2-S. 
[17] Pinto, V.T., Oliveira Rocha, L.A., Fragassa, C., Domingues dos Santos, E., Isoldi, L.A., Multiobjective Geometric Analysis of Stiffened Plates under 
Bending through Constructal Design Method, Journal of Applied and Computational Mechanics, 6(SI), 2020, 1438–1449. DOI: 10.22055/jacm.2020.35248.2608. 
[18] Bai, X., Xu, W., Ren, H., Li, J., Analysis of the influence of stiffness reduction on the load carrying capacity of ring-stiffened cylindrical shell, Ocean 
Engineering, 135, 2017, 52–62. DOI: 10.1016/j.oceaneng.2017.02.034. 
[19] Chen, B., Liu, G., Kang, J., Li, Y., Design optimization of stiffened storage tank for spacecraft, Structural and Multidisciplinary Optimization, 36(1), 2008, 
83–92. DOI: 10.1007/s00158-007-0174-7. 
[20] Lene, F., Duvaut, G., Olivier-Mailhe, M., Ben Chaabane, S., Grihon, S., An advanced methodology for optimum design of a composite stiffened 
cylinder, Composite Structures, 91(4), 2009, 392–397. DOI: 10.1016/j.compstruct.2009.04.005. 
[21] Reza Ghasemi, A., Tabatabaeian, A., Hadi Hajmohammad, M., Tornabene, F., Multi-Step Buckling Optimization Analysis of Stiffened and Unstiffened 
Polymer Matrix Composite Shells: A New Experimentally Validated Method, Composite Structures, 273, 2021, 114280. DOI: 
10.1016/j.compstruct.2021.114280. 
[22] Hao, P., Wang, B., Tian, K., Liu, H., Wang, Y., Niu, F., Zeng, D., Simultaneous buckling design of stiffened shells with multiple cutouts, Engineering 
Optimization, 49(7), 2017, 1116–1132. DOI: 10.1080/0305215X.2016.1235328. 
[23] Wang, J., Li, Z.L., Yu, W., Structural similitude for the geometric nonlinear buckling of stiffened orthotropic shallow spherical shells by energy 
approach, Thin-Walled Structures, 138, 2019, 430–457. DOI: 10.1016/j.tws.2018.02.006. 
[24] Cho, S.-R., Muttaqie, T., Do, Q.T., Park, S.H., Kim, S.M., So, H.Y., Sohn, J.M., Experimental study on ultimate strength of steel-welded ring-stiffened 
conical shell under external hydrostatic pressure, Marine Structures, 67, 2019, 102634. DOI: 10.1016/j.marstruc.2019.102634. 
[25] Duarte, A.P.C., Díaz Sáez, A., Silvestre, N., Comparative study between XFEM and Hashin damage criterion applied to failure of composites, Thin-
Walled Structures, 115, 2017, 277–288. DOI: 10.1016/j.tws.2017.02.020. 



732 Alexey Semenov, Vol. 8, No. 2, 2022 
 

Journal of Applied and Computational Mechanics, Vol. 8, No. 2, (2022), 723-732   

[26] Brauns, J., Skadins, U., Semi-analytical postbuckling strength analysis of anisotropic shell structures, IOP Conference Series: Materials Science and 
Engineering, 251, 2017, 012096. DOI: 10.1088/1757-899X/251/1/012096. 
[27] Abrosimov, N.A., Novoseltseva, N.A., Computer Modeling of the Dynamic Strength of Metal-Plastic Cylindrical Shells Under Explosive Loading, 
Mechanics of Composite Materials, 53, 2017, 139–148. DOI: 10.1007/s11029-017-9648-x. 
[28] Semenov, A.A., Analysis of the strength of shell structures, made from modern materials, according to various strength criteria, Diagnostics, Resource 
and Mechanics of Materials and Structures, 2018, 16–33. DOI: 10.17804/2410-9908.2018.1.016-033. 
[29] Pavlovic, A., Sintoni, D., Fragassa, C., Minak, G., Multi-Objective Design Optimization of the Reinforced Composite Roof in a Solar Vehicle, Applied 
Sciences, 10(8), 2020, 2665. DOI: 10.3390/app10082665. 
[30] Karpov, V.V., Semenov, A.A., Refined model of stiffened shells, International Journal of Solids and Structures, 199, 2020, 43–56. DOI: 
10.1016/j.ijsolstr.2020.03.019. 
[31] Li, G., de Miguel, A.G., Pagani, A., Zappino, E., Carrera, E., Finite beam elements based on Legendre polynomial expansions and node-dependent 
kinematics for the global-local analysis of composite structures, European Journal of Mechanics – A/Solids, 74, 2019, 112–123. DOI: 
10.1016/j.euromechsol.2018.11.006. 
[32] Yshii, L.N., Santana, R.C., Monteiro, F.A.C., Lucena Neto, E., Buckling of Cylindrical Panels by a Ritz Scheme, Proceedings of the XXXVIII Iberian Latin-
American Congress on Computational Methods in Engineering, Brazil, 2017. DOI: 10.20906/CPS/CILAMCE2017-0613. 
[33] Feng, K., Xu, J., Buckling Analysis of Composite Cylindrical Shell Panels by Using Legendre Polynomials Hierarchical Finite-Strip Method, Journal of 
Engineering Mechanics, 143(4), 2017, 04016121. DOI: 10.1061/(ASCE)EM.1943-7889.0001181. 
[34] Qu, Y., Long, X., Wu, S., Meng, G., A unified formulation for vibration analysis of composite laminated shells of revolution including shear 
deformation and rotary inertia, Composite Structures, 98, 2013, 169–191. DOI: 10.1016/j.compstruct.2012.11.001. 
[35] Monge, J.C., Mantari, J.L., A quasi-exact solution for the analysis of smart multilayered simply supported shallow shell panels, Composite Structures, 
265, 2021, 113710. DOI: 10.1016/j.compstruct.2021.113710. 
[36] Qu, Y., Chen, Y., Long, X., Hua, H., Meng, G., A modified variational approach for vibration analysis of ring-stiffened conical-cylindrical shell 
combinations, European Journal of Mechanics – A/Solids, 37, 2013, 200–215. DOI: 10.1016/j.euromechsol.2012.06.006. 
[37] Kurylov, Ye., Amabili, M., Nonlinear vibrations of clamped-free circular cylindrical shells, Journal of Sound and Vibration, 330(22), 2011, 5363–5381. 
DOI: 10.1016/j.jsv.2011.05.037. 
[38] Bakusov, P.A., Semenov, A.A., Stability of Toroidal Shell Segments at Variation of a Deflection Angle, PNRPU Mechanics Bulletin, 3, 2017, 17–36. DOI: 
10.15593/perm.mech/2017.3.02. (in Russian) 
[39] Semenov, A., Buckling of Shell Panels Made of Fiberglass and Reinforced with an Orthogonal Grid of Stiffeners, Journal of Applied and Computational 
Mechanics, 7(3), 2021, 1856–1861. DOI: 10.22055/jacm.2021.37768.3078. 

ORCID iD 

Alexey Semenov  https://orcid.org/0000-0001-9490-7364 
 

© 2022 Shahid Chamran University of Ahvaz, Ahvaz, Iran. This article is an open access article distributed under 
the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 
license) (http://creativecommons.org/licenses/by-nc/4.0/). 

 

How to cite this article: Semenov A. Strength of Steel Shell Cylindrical Panels Reinforced with an Orthogonal Grid of 
Stiffeners, J. Appl. Comput. Mech., 8(2), 2022, 723–732. https://doi.org/10.22055/JACM.2022.38968.3317 

 
Publisher’s Note Shahid Chamran University of Ahvaz remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.   
 


