
تعداد نشریات | 31 |
تعداد شمارهها | 1,030 |
تعداد مقالات | 9,097 |
تعداد مشاهده مقاله | 10,335,765 |
تعداد دریافت فایل اصل مقاله | 8,569,730 |
Direct Transcription Approach to Dynamic Optimization Problems in Engineering | ||
Journal of Applied and Computational Mechanics | ||
دوره 8، شماره 2، تیر 2022، صفحه 605-616 اصل مقاله (823.89 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22055/jacm.2021.38081.3150 | ||
نویسندگان | ||
Hassan Mohamed Abdelalim Abdalla* ؛ Daniele Casagrande | ||
Polytechnic Department of Engineering and Architecture, University of Udine, Via delle Scienze 206, Udine, 33100 UD, Italy | ||
چکیده | ||
The direct transcription method that employs global collocation at Legendre-Gauss-Radau points is addressed and applied to infinite-dimensional dynamic optimization problems in engineering. The formulation of these latter is considered referring to a Bolza-type performance index. A reduced unconstrained form of it is particularly studied in the pseudospectral domain and the continuous-to-discrete conversion is thoroughly discussed. An equivalent finite-dimension nonlinear programming problem is therefore obtained and hints on its numerical implementation are given. Eventually, a few benchmark historical problems in engineering are revisited, stated, numerically solved and compared to literature. | ||
کلیدواژهها | ||
Direct methods؛ Continuous dynamic optimization؛ Orthogonal collocation method؛ Nonlinear programming | ||
مراجع | ||
[1] Rao, A.V., A survey of numerical methods for optimal control, AAS/AIAA Astrodynamics Specialist Conference, Pittsburgh, USA, AAS 09-334, 2009.
[2] Stoer, J., Burlisch, R., Introduction to Numerical Analysis, Springer-Verlag, New York, 1980.
[3] Grimm, W., Markl, A., Adjoint estimamtion from a multiple shooting method, Journal of Optimization Theory and Applications, 26, 2003, 185-189.
[4] Sagliano, M., Theil, S., Bergsma, M., D'Onofrio, V., Whittle, L., Viavattene, G., On the Radau pseudospectral method: theoretical and implementation advances, CEAS Space Journal, 9, 2017, 313-331.
[5] Vlassebroeck, J., Dooren, R.V.A., Chebyshev technique for solving nonlinear optimal control problems, IEEE Transactions on Automatic Control, 33(4), 1988, 333-340.
[6] Rao, A.V., Benson, D.A., Darby, C., Patterson, M.A., Francolin, C., Sanders, I., Huntington, G.T., Algorithm 902: GPOPS, a MATLAB software for solving multiphase optimal control problems using the Gauss pseudospectral method, ACM Transactions on Mathematical Software, 37(2), 2010, 1-39.
[7] Elnagar, G., Kazemi, M., Razzaghi, M., The pseudospectral Legendre method for discretizing optimal control problems, IEEE Transactions on Automatic Control, 40(10), 1995, 1793-1796.
[8] Garg, D., Patterson, M.A., Darby, C., Francolin, C., Huntington, G.T., Hager, W.W., Rao, A.V., Direct trajectory optimization and costate estimation of finite horizon and infinite horizon optimal control problems using a Radau pseudospectral method, Computational Optimization and Applications, 49, 2001, 335-358
[9] Garg, D., Advances in global pseudospectral methods for optimal control, Ph.D. Thesis, Department of Mechanical and Aerospace Engineering, University of Florida, Florida, FL, 2011.
[10] Vlassenbroeck, J. A., Chebyshev polynomial method for optimal control with state constraints, Automatica, 24(4), 1988, 499-506.
[11] Cichella, V., Kaminer, I., Walton, C., Hovakimyan, N., Pascoal, A.M., Consistent approximation of optimal control problems using Bernstein polynomials, 58th Conference on Decision and Control (CDC), Nice, France, 4292-4297, 2019.
[12] Cizniar, M., Salhi, D., Fikar, M., Latifi, M.A., A MATLAB package for orthogonal collocations on finite elements in dynamic optimisation, 15th International Conference Process Control, Strbske Pleso, Slovakia, 2005.
[13] Wang, Y., Zhu, Y., Jiang, X., Li, S., Comparison of LPM, GPM and RPM for Optimization of Low-Thrust Earth-Mars Rendezvous Trajectories, IEEE Chinese Guidance, Navigation and Control Conference, Yantai, China, 2014.
[14] Biegler, L.T., An overview of simultaneous strategies for dynamic optimization, Chemical Engineering and Processing, 46(11), 2007, 1043-1053.
[15] Trelat, E., Optimal Control and Applications to Aerospace: Some Results and Challenges, Journal of Optimization Theory and Applications, 154, 2012, 713-758.
[16] Biral, F., Bertolazzi, E., Bosetti, P. Notes on numerical methods for solving optimal control problems, IEEE Journal of Industry Applications, 5(2), 2016,154-166.
[17] Conway, B.A., A Survey of Methods Available for the Numerical Optimization of Continuous Dynamic Systems, Journal of Optimization Theory and Applications, 152, 2012, 271-306.
[18] Hildebrand, F.B., Introduction to Numerical Analysis, Dover Publications, New York, 1987.
[19] Abramowitz, M., Stegun, I., Handbook of mathematical functions with formulas, graphs and mathematical tables, Dover Publications, New York, 1965.
[20] Bliss, G.A., Lectures on the calculus of variations, Chicago University Press, Chicago, 1947.
[21] Garg, D., Patterson, M.A., Darby, C.L., Francolin, C., Huntington, G.T., Hager, W.W., Rao, A.V., Direct Trajectory Optimization and Costate Estimation of Finite-Horizon and Infinite-Horizon Optimal Control Problems Using a Radau Pseudospectral Method, Computational Optimization and Applications 49(2), 2011, 335-358.
[22] Fahroo, F., Ross, I. M., Pseudospectral Methods for Infinite-Horizon Nonlinear Optimal Control Problems, Journal of Guidance, Control, and Dynamics, 31(4), 2008, 927-936.
[23] Ross, I.M., Fahroo, F., Convergence of the Costates Does Not Imply Convergence of the Controls, Journal of Guidance, Control, and Dynamics, 31(5), 2008, 1492-1496.
[24] Benson, D.A., A Gauss pseudospectral transcription for optimal control, Ph.D. Thesis, Department of Aeronautics and Astronautics, MIT, Cambridge, MA, 2004.
[25] Bhati, M.A., Practical Optimization Methods with Mathematica Applications, Springer Verlag, New York, 2000.
[26] Polak, E., Computational Methods in Optimization, Academic Press, New York, 1971.
[27] Nocedal, J., Wright, S.J., Numerical Optimization, Springer, New York, 2006.
[28] Gill, P.E., Murray, W., Wright, M.H., Numerical Linear Algebra and Optimization-Volume 1, Addison Wesley, Boston, 1991.
[29] Boggs, P., Tolle, J.W., Sequential Quadratic Programming, Acta Numerica, 4(4), 1996, 1-51.
[30] Biggs, M.C., Recursive quadratic programming methods based on the augmented lagrangian, Computation Mathematical Programming, 31, 2009, 21-41.
[31] Williams, P., Hermite-Legendre-Gauss-Lobatto direct transcription in trajectory optimization, Journal of Guidance, Control, and Dynamics, 32(4), 2009, 1392-1395.
[32] Chandrasekhar, S., Newton's Principia for the common reader, Oxford University Press, London, 1995.
[33] Miele, A., Theory of optimum aerodynamic shapes, Academic Press, New York, 1965.
[34] Vujanovic, B.D., Atanackovic, T.M., An introduction to modern variational techniques in mechanics and engineering, Springer Science+Business Media, New York, 2004.
[35] Rao, S.S., Engineering optimization. Theory and practice, John Wiley & Sons, New Jersey, 2009.
[36] Clausen, T., Uber die form architektonischer Saulen, Bulletin de la Classe physico-mathématique de l'Académie impériale des sciences de Saint-Pétersbourg, 9, 1851, 369-380.
[37] Barnes, D.C., Buckling of columns and rearrangements of functions, Quarterly Journal of Applied Mathematics, 41, 1983, 169-180.
[38] Cox, S.J., Overton, M.L., On the optimal design of columns against buckling, SIAM Journal of Mathematical Analysis, 23(2), 1992, 287-325.
[39] Seyranian, A.P., A solution of a problem of Lagrange, Soviet Physics-Doklady, 28(7), 1983, 550-551.
[40] Spasic, D., Stability of a compressed and twisted linearly-elastic rod, Ph.D. Thesis, Department of Mechanics, University of Novi Sad, Novi Sad, NS, 1993.
[41] Aris, R., Amundson, N.R., An analysis of chemical reactor stability and control-II: The evolution of proportional control, Chemical Engineering Science, 7(3), 1958, 132-147.
[42] Luus, R., Lapidus, R., The Control of Nonlinear Systems. Part II: Convergence by Combined First and Second Variations, American Institute of Chemical Engineers Journal, 13(1), 1967, 108-113.
[43] Kirk, D.E., Optimal control theory: An introduction, Dover Publications, New York, 1970.
[44] Chen, T.W.C., Vassiliadis, V.S., Inequality path constraints in optimal control: A finite iteration e-convergent scheme based on pointwise discretization, Journal of Process Control, 15(3), 2005, 353-362.
[45] Fu, J., Faust, J.M.M., Chachuat, B., Mitsos, A., Local optimization of dynamic programs with guaranteed satisfaction of path constraints, Automatica, 62, 2015, 184-192.
[46] Wang, L., Yang, G., Li, Z., Xu, F., An efficient nonlinear interval uncertain optimization method using Legendre polynomial chaos expansion, Applied Soft Computing, 108, 2021, 107454.
[47] Wang, L., Yang, G., An interval uncertainty propagation method using polynomial chaos expansion and its application in complicated multibody dynamic systems, Nonlinear Dynamics, 105, 2021, 837-858.
[48] Wang, C.Y., Longest reach of a cantilever with a tip load, European Journal of Physics, 37, 2016, 012001.
[49] Plaut, R.H., Virgin, L.N., Furthest reach of a uniform cantilevered elastic, Mechanics Research Communications, 83, 2017, 18-21.
[50] Abdalla, H.M.A., Casagrande, D., On the longest reach problem in large deflection elastic rods, International Journal of Nonlinear Mechanics, 119, 2020, 103310.
[51] Le, M.Q., Tran, D.T., Bui, H.L., Optimal design of a torsional shaft system using Pontryagin's Maximum Principle, Meccanica, 47, 2012, 1197–1207.
[52] Atanackovic, T.M., Simic, S.S., On the optimal shape of a Pflüger column, European Journal of Mechanics A/Solids, 18(5), 1999, 903-913.
[53] Atanackovic, T.M., Novakovic, B.N., Optimal shape of an elastic column on elastic foundation, European Journal of Mechanics A/Solids, 25(1), 2006, 154-165.
[54] Janev, M., Vrcelj, Z., Atanackovic, T.M., Optimal shape of the rotating nano rod, International Journal of Non-linear Mechanics, 132, 2021, 103688.
[55] Abdalla, H.M.A., Casagrande, D., De Bona, F., A Dynamic Programming Setting for Functionally Graded Thick-Walled Cylinders, Materials, 13, 2021, 3988.
[56] Abdalla, H.M.A., Casagrande, D., An Intrinsic Material Tailoring Approach for Functionally Graded Axisymmetric Hollow Bodies Under Plane Elasticity, Journal of Elasticity, 144, 2021, 15-32. | ||
آمار تعداد مشاهده مقاله: 527 تعداد دریافت فایل اصل مقاله: 574 |