تعداد نشریات | 31 |
تعداد شمارهها | 1,003 |
تعداد مقالات | 8,914 |
تعداد مشاهده مقاله | 9,672,437 |
تعداد دریافت فایل اصل مقاله | 7,963,994 |
Mechanical Characterisation and Comparison of Hyperelastic Adhesives: Modelling and Experimental Validation | ||
Journal of Applied and Computational Mechanics | ||
مقاله 27، دوره 8، شماره 1، فروردین 2022، صفحه 359-369 اصل مقاله (1.76 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22055/jacm.2021.38119.3242 | ||
نویسندگان | ||
Francisco J. Simon Portillo* 1؛ Óscar Cuadrado Sempere2؛ Eduardo A.S. Marques2؛ Miguel Sánchez Lozano3؛ Lucas F.M. da Silva4 | ||
1Department of Mechanical and Energy Engineering, Universidad Miguel Hernández, Elche, 03202, Spain | ||
2Department of Mechanical and Energy Engineering, Universidad Miguel Hernández, Elche, 03202, Spain | ||
3Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), Porto, 4200-465, Portugal | ||
4Department of Mechanical Engineering, Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal | ||
چکیده | ||
This work focuses on the mechanical characterisation of adhesives with hyperelastic behaviour, and on the determination of the behavioural laws that best represent them, in order to be able to introduce them into simulation models. There are virtually no references to the characterisation of these materials in the literature, so it has been decided to use the methodologies commonly employed with other hyperelastic materials, such as rubber, whose behaviour is similar to that of highly flexible adhesives. Firstly, a test plan is carried out on simple specimens, uniaxial and planar configurations, designed to measure the non-linear behaviour of the adhesives in both tension and shear. Subsequently, using finite element models of the tested specimens, different behavioural laws from those usually used for the representation of hyperelastic materials are tested. Based on the experimental results, the parameters of the different laws proposed are adjusted, and the results are compared. In conclusion, it has been determined that the Mooney-Rivlin model is the one that allows the best fit, and therefore may be the most suitable to represent the behaviour of hyperelastic adhesives. For the adhesive used in this work, the obtained law has been validated by comparing the results of tests on single lap adhesive join (SLJ) specimens with the results predicted by the simulation. | ||
کلیدواژهها | ||
Flexible adhesive؛ Hyperelastic models؛ Mechanical characterisation؛ Finite element analysis | ||
مراجع | ||
[1] P. J. Winkler, Materials for transportation technology, Wiley, p. 372, 2000.
[2] B. Burchardt, Advances in polyurethane structural adhesives, in: Adv. Struct. Adhes. Bond., Woodhead Publishing, pp. 35–65, 2010.
[3] R. P. Campion, Engineering with Rubber: How to Design Rubber Components, Hanser, p. 434, 2001.
[4] A. L. Loureiro, L. F. M. Da Silva, C. Sato, and M. A. V. Figueiredo, Comparison of the mechanical behaviour between stiff and flexible adhesive joints for the automotive industry, J. Adhes., 86(7), 2010, 765–787.
[5] M. D. Banea and L. F. M. Da Silva, Adhesively bonded joints in composite materials: An overview, Proc. Inst. Mech. Eng. Pt. L J. Mat. Des. Appl., 223(1), 2009, 1–18.
[6] J. Mauricea, J. Y. Cognard, R. Creac’Hcadec, P. Davies, L. Sohier, and S. Mahdi, Characterization and modelling of the 3D elastic-plastic behaviour of an adhesively bonded joint under monotonic tension/compression-shear loads: Influence of three cure cycles, J. Adhes. Sci. Technol., 27(2), 2013, 165–181.
[7] I. Lubowiecka, M. Rodríguez, E. Rodríguez, and D. Martínez, Experimentation, material modelling and simulation of bonded joints with a flexible adhesive, Int. J. Adhes. Adhes., 37, 2012, 56–64.
[8] O. Hesebeck and A. Wulf, Hyperelastic constitutive modeling with exponential decay and application to a viscoelastic adhesive, Int. J. Solids Struct., 141–142, 2018, 60–72.
[9] V. Dias, C. Odenbreit, O. Hechler, F. Scholzen, and T. Ben Zineb, Development of a constitutive hyperelastic material law for numerical simulations of adhesive steel–glass connections using structural silicone, Int. J. Adhes. Adhes., 48, 2014, 194–209.
[10] R. D. S. G. Campilho, M. D. Banea, J. A. B. P. Neto, and L. F. M. Da Silva, Modelling adhesive joints with cohesive zone models: Effect of the cohesive law shape of the adhesive layer, Int. J. Adhes. Adhes., 44, 2013, 48–56.
[11] P. Boulanger and M. Hayes, Finite-Amplitude Waves in Mooney-Rivlin and Hadamard Materials, in Topics in Finite Elasticity, Springer, Vienna, 2001.
[12] M. Sasso, G. Palmieri, G. Chiappini, and D. Amodio, Characterization of hyperelastic rubber-like materials by biaxial and uniaxial stretching tests based on optical methods, Polym. Test., 27(8), 2008, 995–1004.
[13] Y. Xia, Y. Dong, Y. Xia, and W. Li, A novel planar tension test of rubber for evaluating the prediction ability of the modified eight-chain model under moderate finite deformation, Rubber Chem. Technol., 78(5), 2005, 879–892.
[14] A. Aidy, M. Hosseini, and B. B. Sahari, A Review of Constitutive Models for Rubber-Like Materials, Am. J. Eng. Appl. Sci., 3(1), 2010, 232–239.
[15] A. K. Bazkiaei, K. H. Shirazi, and M. Shishesaz, A framework for model base hyper-elastic material simulation, J. Rubber Res., 23(4), 2020, 287–299.
[16] G. Chagnon, G. Marckmann, and E. Verron, A comparison of the Hart-Smith model with Arruda-Boyce and Gent formulations for rubber elasticity, Rubber Chem. Technol., 77(4), 2004, 724–735.
[17] R. S. Rivlin, Large elastic deformations of isotropic materials IV. further developments of the general theory, Philos. Trans. R. Soc. London. Ser. A, Math. Phys. Sci., 241(835), 1948, 379–397.
[18] M. C. Boyce and E. M. Arruda, Constitutive models of rubber elasticity: A review, Rubber Chem. Technol., 73(3), 2000, 504–523.
[19] İ. D. Külcü, A hyperelastic constitutive model for rubber-like materials, Arch. Appl. Mech., 90(3), 2020, 615–622.
[20] Abaqus Analysis User’s Manual, Abaqus 6.12.
[21] D. J. Charlton, J. Yang, and K. K. Teh, Review of methods to characterize rubber elastic behavior for use in finite element analysis, Rubber Chem. Technol., 67(3), 1994, 481–503.
[22] M. Mooney, A theory of large elastic deformation, J. Appl. Phys., 11(9), 1940, 582–592.
[23] O. H. Yeoh, Some forms of the strain energy function for rubber, Rubber Chem. Technol., 66(5), 1993, 754–771.
[24] R. W. Ogden, Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids, Proc. R. Soc. London. A. Math. Phys. Sci., 326(1567), 1972, 565–584.
[25] L. E. Crocker, B. C. Duncan, R. G. Hughes, and J. M. Urquhart, Hyperelastic Modelling of Flexible Adhesives, 1999, 1–42.
[26] B. Kim et al., A comparison among Neo-Hookean model, Mooney-Rivlin model, and Ogden model for Chloroprene rubber, Int. J. Precis. Eng. Manuf., 13(5), 2012, 759–764.
[27] ISO 37:2011 - Rubber, vulcanized or thermoplastic — Determination of tensile stress-strain properties, 2011.
[28] D. Moreira, L. N.-P. Testing, Comparison of simple and pure shear for an incompressible isotropic hyperelastic material under large deformation, Elsevier, 2013.
[29] M. Shahzad, A. Kamran, M. Z. Siddiqui, and M. Farhan, Mechanical characterization and FE modelling of a hyperelastic material, Mater. Res., 18(5), 2015, 918–924.
[30] ASTM D1002-01., Standard Test Method for Apparent Shear Strength of Single-Lap-Joint Adhesively Bonded Metal Specimens by Tension Loading (Metal-to-Metal).
[31] UNE EN ISO 9664:1996 ADHESIVES. TEST METHODS FOR FATIGUE PROPERTIES OF STRUCTURAL ADHESIVES IN TENSILE SHEAR. | ||
آمار تعداد مشاهده مقاله: 699 تعداد دریافت فایل اصل مقاله: 934 |