تعداد نشریات | 31 |
تعداد شمارهها | 1,003 |
تعداد مقالات | 8,914 |
تعداد مشاهده مقاله | 9,672,459 |
تعداد دریافت فایل اصل مقاله | 7,964,006 |
Geometric Optimization of Jet Pump Used in Vacuum Distillation Applications under Different Operating Conditions using Genetic-algorithm Methods | ||
Journal of Applied and Computational Mechanics | ||
مقاله 26، دوره 8، شماره 1، فروردین 2022، صفحه 340-358 اصل مقاله (3.24 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22055/jacm.2021.38411.3228 | ||
نویسندگان | ||
William Orozco Murillo* 1؛ Iván D. Patiño Arcila* 2؛ José A. Palacio-Fernández* 2 | ||
1Grupo de Investigación e Innovación Ambiental, Facultad de Ingeniería, I.U. Pascual Bravo. Calle 73 # 73A – 226. 050034 Medellín, Colombia | ||
2Grupo de Investigación e Innovación Ambiental, Facultad de Ingeniería, I.U. Pascual Bravo. Calle 73 # 73A – 226. 050034 Medellín, Colombia | ||
چکیده | ||
Genetic-algorithm methods are used here for single-objective (SO) and multi-objective (MO) geometrical optimizations of jet pumps used in vacuum distillation of ethanol, an application not deeply studied in scientific literature. These devices are particularly suitable to allow the azeotrope-breaking below the atmospheric pressure at ambient temperature. Based on this, different working pressures (Pp), five non-dimensional geometrical parameters that can influence the jet pump operation, and three performance parameters (drag coefficient, pressure recovery ratio and energy efficiency) are considered in this work. Furthermore, using a central composite, face-centered, enhanced experimental design, 89 simulation experiments are run to obtain Response Surfaces (RS) by genetic aggregation, applying afterwards the SOGA and MOGA optimization methods. Also, Spearman Rank-order correlation matrix is employed as initial screening, finding strongly negative correlation of drag coefficient and efficiency with the working pressure, Pp. Computational Fluid Dynamic (CFD) model is validated with other numerical and experimental works, obtaining satisfactory results. Additionally, the change of the optimized input and output parameters with Pp is studied, along with the behavior of Mach number. It can be concluded that the optimal nozzle parameters evidently influenced by Pp for the SO optimization are: outlet diameter and length of divergent part, conicity of convergent part, and ratio of inlet to throat area. For the MO optimization, changes of optimized geometrical parameters with Pp are negligible. In contrast, performance parameters are importantly influenced by Pp for all optimizations. | ||
کلیدواژهها | ||
Computational Fluid Dynamics؛ jet pump performance؛ geometrical optimization؛ genetic-algorithm methods؛ working pressure | ||
مراجع | ||
[1] Dong, S., Zeng, C., Ariaratnam, S. T., Ma, B., Yan, X., Li, Z., Li, X. Experimental and performance analysis of reverse circulation reaming in horizontal directional drilling, Tunneling and Underground Space Technology, 95, 2019, 103128.
[2] Brendelberger, S., Von Storch, H., Bulfin, B., Sattler, C. Vacuum pumping options for application in solar thermochemical redox cycles – Assessment of mechanical-, jet- and thermochemical pumping systems, Sol. Energy, 141, 2017, 91–102.
[3] Xu, M., Ji, B., Zou, J., Long, X. Experimental investigation on the transport of different fish species in a jet fish pump, Aquac. Eng., 79, 2017, 42–48.
[4] Pellegrini, M., Preda, G., Saccani, C. Application of an innovative jet pump system for the sediment management in a port channel: Techno-economic assessment based on experimental measurements, J. Mar. Sci. Eng., 8, 2020, 686.
[5] Feng, J., Han, J., Hou, T., Peng, X. Performance analysis and parametric studies on the primary nozzle of ejectors in proton exchange membrane fuel cell systems, Energy Sources, Part A Recover. Util. Environ. Eff., 2020, 1–20, doi: 10.1080/15567036.2020.1804489.
[6] El-Sawaf, I.A., Halawa, M.A., Younes, M.A., Teaima, I.R. Study of the Different Parameters That Influence on the Performance of Water Jet Pump, Fifteenth Int. Water Technol. Conf. IWTC 15, 2011, 1–17.
[7] Zhu, Y., Jiang, P. Experimental and analytical studies on the shock wave length in convergent and convergent–divergent nozzle ejectors, Energy Conversion and Management, 88, 2014, 907–14.
[8] Chen, Z., Jin, X., Shimizu, A., Hihara, E., Dang, C. Effects of the nozzle configuration on solar-powered variable geometry ejectors, Solar Energy, 150, 2017, 75–86.
[9] Thongtip, T., Aphornratana S. An experimental analysis of the impact of primary nozzle geometries on the ejector performance used in R141b ejector. Refrigerator, Appl. Therm. Eng., 110, 2017, 89–101.
[10] Rao, S.M.V., Jagadeesh G. Novel supersonic nozzles for mixing enhancement in supersonic ejectors, Appl. Therm. Eng., 71, 2014, 62–71.
[11] Wang, L., Yan, J., Wang, C., Li, X. Numerical study on optimization of ejector primary nozzle geometries, International Journal of Refrigeration, 76, 2017, 219–229.
[12] Hakkaki-Fard, A., Aidoun, Z., Ouzzane, M. A computational methodology for ejector design and performance maximization, Energy Conversion Management, 105, 2015, 1291–1302.
[13] Hwang, J.C., Cho, W., Wu, C., Chiu, K., Lin, C. Numerical and experimental investigation into passive hydrogen recovery scheme using vacuum ejector, Journal of Power Sources, 275, 2015, 539–546.
[14] Wang, X., Xu, S., Xing, C. Numerical and experimental investigation on an ejector designed for an 80 Kw polymer electrolyte membrane fuel cell stack, Journal of Power Sources, 415, 2019, 25–32.
[15] Nikiforow, K., Koski, P., Karimäki, H., Ihonen, J., Alopaeus, V. Designing a hydrogen gas ejector for 5 kW stationary PEMFC system – CFD-modeling and experimental validation, International Journal of Hydrogen Energy, 41, 2016, 14952–14970.
[16] Orozco, W., Modelo matemático de una bomba chorro para la producción de 8 kPa que permita la destilación de etanol, MSc. Thesis, Instituto Tecnológico Metropolitano, Medellín, Colombia, 2013.
[17] Orozco, W., Destilación al vacío de etanol usando bomba chorro, TecnoLógicas, 25, 2010, 77–96.
[18] Orozco, W., Palacio, J.A., Patiño, I.D., Zapata, J.S., Hincapié, J.A. Analysis of a Jet Pump Performance under Different Primary Nozzle Positions and Inlet Pressures using two Approaches: One Dimensional Analytical Model and Three Dimensional CFD Simulations, J. Appl. Comput. Mech., 6, 2020, 1228-1244.
[19] Uyazán, A.M., Gil, I.D., Aguilar, J.L., Rodríguez, G., Caicedo, L.A., Deshidratación del etanol, Ing e Investig, 24, 2004, 49–59.
[20] Bianco, N., Iasiello, M., Mauro, G. M., Busiello, S. Finned heat sinks with phase change materials and metal foams: Pareto optimization to address cost and operation time, Applied Thermal Engineering, 197, 2021, 117436
[21] Bianco, N., Iasiello, M., Mauro, G.M., Pagano, L. Multi-objective optimization of finned metal foam heat sinks: Tradeoff between heat transfer and pressure drop, Applied Thermal Engineering, 182, 2021, 116058.
[22] Li, H., Xu, B., Lu, G., Du, C., Huang, N. Multi-objective optimization of PEM fuel cell by coupled significant variables recognition, surrogate models and a multi-objective genetic algorithm, Energy Conversion and Management, 236, 2021, 114-123.
[23] Chong, D., Hu, M., Chen, W., Wang, J., Liu, J., Yan, J. Experimental and numerical analysis of supersonic air ejector, Applied Energy, 130, 2014, 679–684.
[24] Hosseinzadeh, E., Rokni, M., Jabbari, M., Mortensen, H. Numerical analysis of transport phenomena for designing of ejector in PEM forklift system, International Journal of Hydrogen Energy, 39(12), 2014, 6664–6674.
[25] Mazzelli, F., Little, A.B., Garimella, S., Bartosiewicz, Y. Computational and experimental analysis of supersonic air ejector: Turbulence modeling and assessment of 3D effects, International Journal of Heat and Fluid Flow, 56, 2015, 305–316.
[26] Yin, Y., Fan M., Jiao K., Du Q., Qin Y. Numerical investigation of an ejector for anode recirculation in proton exchange membrane fuel cell system, Energy Conversion and Management, 126, 2016, 1106–1117.
[27] Shah, A., Chughtai, I.R., Inayat, M.H. Experimental and numerical analysis of steam jet pump, Int. J. Multiph. Flow, 37, 2011, 1305–1314.
[28] Song, X-G., Park, J-H., Kim, S-G., Park, Y-C. Performance comparison and erosion prediction of jet pumps by using a numerical method, Math. Comput. Model., 57, 2013, 245–253.
[29] Yapici, R., Aldas K. Optimization of water jet pumps using numerical simulation, Proc. Inst. Mech. Eng. Part A J. Power Energy, 227, 2013, 438–449.
[30] Zheng, P., Li, B., Qin, J. CFD simulation of two-phase ejector performance influenced by different operation conditions, Energy, 155, 2018, 1129–1145.
[31] Deng, X., Dong, J., Wang, Z., Tu, J. Numerical analysis of an annular water–air jet pump with self-induced oscillation mixing chamber, Journal of Computational Multiphase Flows, 9, 2017, 47-53.
[32] Momeni, H., Domagała, M. CFD simulation of transport solid particles by jet pumps, Czasopismo Techniczne, 7, 2016, 185-191.
[33] Fan, J., Eves, J., Thompson, H.M., Toropov, V.V., Kapur, N., Copley, D., et al. Computational fluid dynamic analysis and design optimization of jet pumps, Computers and Fluids, 46, 2011, 212–217.
[34] Wang, X.-D., Dong, J.-L., Numerical study on the performances of steam-jet vacuum pump at different operating conditions, Vacuum, 84, 2010, 1341– 1346.
[35] Wilcox, D. Turbulence Modeling for CFD, Third Edition, DCW Industries – California, 2006.
[36] Launder, B., Spalding, D.B. The Numerical Computation of Turbulent Flow Computer Methods, Computer Methods in Applied Mechanics and Engineering, 3(2), 1974, 269-289
[37] Varga, S., Oliveira, A.C., Ma, X., Omer, S.A., Zhang, W., Riffat, S.B. Experimental and numerical analysis of a variable area ratio steam ejector, Int. J. Refrig., 34, 2011, 1668–1675.
[38] Rusly, E., Aye, L., Charters, W.W.S., Ooi, A. CFD analysis of ejector in a combined ejector cooling system, Int. J. Refrig., 28, 2005, 1092–1101.
[39] Sriveerakul, T., Aphornratana, S., Chunnanond, K. Performance prediction of steam ejector using computational fluid dynamics: Part 1. Validation of the CFD result, Int. J. Therm. Sci., 46, 2007, 812–822.
[40] Huang, B.J., Chang, J.M. Empirical correlation for ejector design, Int. J. Refrig., 22, 1999, 379–388.
[41] Anaya, A., Gonzalez, E., Pérez, Ma., Robles, T., Pedro, E. Desarrollo de Tecnología de Diseño de Eyectores, Instituto Mexicano del Petróleo, 18, 1986, 65-77.
[42] Manrique, J. A., Termodinámica, Oxford University Press, Mexico, 2001.
[43] Huan, X., Li, M.J., He, Y.L., Tao, W.O. A graphical criterion for working fluid selection and thermodynamic system comparison in waste heat recovery, Applied Thermal Engineering, 89, 2015, 772-782.
[44] Alyssa, J.S., Stacy, M.N. Multi-objective optimization for coupled mechanics-dynamics analyses of composite structures, Sandia National Laboratories, Livermore, 73, 2018, 1-21.
[45] Aldas, K., Yapici, R. Investigation of effects of scale and surface roughness on efficiency of water jet pumps using CFD, Eng. Appl. Comput. Fluid Mech., 8, 2014, 14–25.
[46] Dong, J., Wang, X., Tu, J. Numerical research about the internal flow of steam-jet vacuum pump: evaluation of turbulence models and determination of the shock-mixing layer, Phys. Procedia, 32, 2012, 614–622.
[47] Masud, J., Imran, M. Turbulence Modeling for Realistic Computation of Internal Flow in Liquid Ejector Pumps, 54th AIAA Aerosp. Sci. Meet., Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016.
[48] Maharana, P.S. Efficient Multi-site Statistical Downscaling Model for Climate Change, Ph.D. Thesis, Motilal Nehru National institute of Technology Allahabad Prayagraj–211004, India, 2018.
[49] Cengel, Y. Mecánica de fluidos, Mc Graw Hill – México, 2006. | ||
آمار تعداد مشاهده مقاله: 550 تعداد دریافت فایل اصل مقاله: 743 |