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Abstract. The boundary element method is used to analyze the problem of dynamic loading acting inside a cubic cavity located in 
a partially saturated poroelastic halfspace. Defining relations of a Biot’s porous medium are used, which are written in Laplace 
representations for unknown functions of displacements of the skeleton and pore pressures of the fillers. Solutions in time are 
obtained using the stepped method of numerical inversion of Laplace transforms. Dynamic responses of displacements and pore 
pressures at points on the surface of the halfspace and the cavity have been constructed. The effect of the values of the saturation 
coefficient and of the depth of the location of the cavity on dynamic responses has been studied. 

Keywords: Poroelastic half-space, embedded cubic cavity, step load, boundary element method, Laplace transform. 

1. Introduction 

Processes determined by a dynamic effect from various perturbation sources on solid bodies containing cavities and 

inclusions represent a class of topical problems of modern mechanics, which have a wide scope of application and are highly 

important in engineering practice. For instance, in geomechanics and mining, when analyzing the stress-strain state of rocks near 

mining workings, the geometry of the mined-out space can be approximated by a spherical cavity. When analyzing such problems, 

the theory of deformation of rock masses or soils as a heterogeneous medium is normally used, their dynamics being described 

by the well-developed linear theory of propagation of elastic and viscoelastic waves. However, in a number of cases, a poroelastic 

medium model must be used that makes it possible to describe the filtration of the filler in the pores, in combination with a full-

scale mechanical model of the stress- strain state of the medium. Even with considerable simplifications, using a model of such a 

liquid-saturated porous material substantially complicates the computational scheme of the boundary-value problem, as 

compared with elastic or viscoelastic formulations, and calls for developing adequate mathematical and methodological tools 

and related software. Use of the boundary element method (BEM) in analyzing the class of problems in question is justified by its 

key advantages: its numerical- analytical nature, the relatively random geometry of boundary surfaces, automatic provision of the 

conditions of behavior over infinity in semi-infinite bodies. Scientific literature abounds in studies on modeling the dynamics of 

poroelastic bodies and media containing cavities and inclusions, in which analytical [1-5], semi-analytical [6-8] and numerical [9-

13] methods are applied. However, the results published in them pertain only to either two-dimensional problems [14] or to wave 

scattering problems [15], or were obtained using the model of a fully saturated poroelastic material. Fundamental solutions of the 

three-dimensional dynamic theory of partially saturated poroelastic media, required for implementing the boundary-element 

methodology, are presented in [16], but without the results of the analysis of the problem. Based on somewhat different dynamic 

equations of poroelastic media, [17] also derives fundamental solutions and analyzes problems of wave propagation as a result of 

a load acting on a half-space surface. Results of boundary-element modeling of wave processes in partially saturated poroelastic 

bodies are also given in [18, 19]. The present paper uses the boundary element method to analyze the problem of dynamic loading 

acting inside a cubic cavity located in a partially saturated poroelastic half-space. The effect of the value of the saturation 

coefficient and of the depth of the location of the cavity on dynamic responses is studied. 
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2. Governing Equations 

The mathematical model of the problem will be written following the approach of Schanz and Li [17]. A poroelastic medium is 
represented using the following mathematical model of a heterogeneous material: an elastic skeleton phase (s) and two filler 
phases – a liquid (w) and a gas (a) filling the pore system. The sealed pores are considered as part of the solid. All the three phases 
are assumed to be compressible. Temperature variations are neglected. Such a poroelastic material can be considered as partially 
saturated, and its model is called a three-phase model. The relative proportions of constituent volumes are characterized by its 
porosity ϕ  and saturation degrees Sf as 

vV

V
ϕ = , f

f

V
S

V
= , ( ; )f w a= , (1) 

where Vv is volume of interconnected pores in the specimen, V is total volume of the material, Vf is volume of the filler. This gives 
the average density of the mixture ρ  as: 

(1 )s w w a aS Sρ ρ ϕ ϕ ρ ϕ ρ= − + + , (2) 

where sρ , wρ  and aρ  are partial densities of each phase. Consider a case where the pores are completely filled: 

1a wS S+ = . (3) 

The following equation suggested by Bishop [20] for the effective stress in partially saturated porous media is used assuming 
the Bishop’s parameter is identical to the saturation degree Sw and also incorporating the Biot’s effective stress α : 

( )eff w a
w aij ij ij S p S pδ α= − +σ σ , (4) 

where eff
ijσ  is the effective stress, ijσ  represents the total stress, wp  is the pore water pressure, ap  denotes the pore air 

pressure and ijδ  is the Kronecker delta. The Biot’s coefficient α  is described by the relationship: 

1
s

K

K
α = − , (5) 

where K  is the bulk modulus of the porous media and sK  is the bulk modulus of the solid grains. The relation between stress 

and strain in the solid skeleton under assumption of its isotropic linear elastic behavior is given by: 

2
2

3
eff s s

kkij ijG K Gσ ε ε
 = + −   

, (6) 

where G  is the shear modulus. Assuming the small strain gradients the kinematic relation is given in the following form: 

( ), ,

1

2
s s s
ij i j j iu uε = + , (7) 

where s
iu  is the solid displacements. To construct equations of motion, constitutive equations must be combined with the 

related balance equations of momentum and balance equations of mass of each of the phases [17]. The linear momentum 

balance equation for each fluid phase results in the generalized Darcy equation for multiphase flow as: 

( ),
f f fs

w i f i f i f iS q k p u qϕ ρ ρ=− + + ɺɺɺ , ( );f w a= , (8) 

where f
iq  represents the Darcy velocity and fk  is the phase permeability. The phase permeability fk  is defined as: 

rf

f

f

K k
k

η
= , (9) 

where k  is the intrinsic permeability matrix of the poroelastic material, rfK  is the relative phase permeability, fη  is the 

viscosity of the filler. The relative permeability of the liquid phase rwK  and the gas phase raK  are obtained from: 

(2 3 )/ (2 )/2, (1 ) 1rw e ra e eK S K S Sθ θ θ θ+ + = = − −   , (10) 

in which θ  is the pore size distribution index and eS  is the effective liquid saturation given by 

w rw
e

ra rw

S S
S

S S

−
=

−
, (11) 

where rwS  is the residual liquid-saturation, raS  is the residual gas-saturation. 

In a partially saturated porous material containing two non-mixing fillers the interface surface between then is curved as a 

result of intermolecular interaction forces. The accompanying pressure difference in both of the interfacing phases is called 

capillary pressure cp . Capillary pressure can be represented as a function of the saturation degree as follows: 

1 /c a w d
ep p p p S θ−= − = , (12) 

where dp  is the gas pressure required for driving the liquid out of the pores. 
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Using a Laplace transform assuming vanishing initial conditions makes it possible to write down a precise form of the 

governing equations in Laplace transform domain in terms of spatial derivatives of solid displacements s
iu  as well as liquid and 

gas pressures wp  and ap . The final differential equations in the Laplace domain are arranged into matrix product form as 

follows: 

1 2 3 4

5 6 7

8 9 10

ˆˆ
ˆˆ

ˆ ˆ

iij i j i i i

w w
j

a a
j

FB B B B u

B B B p I

B B B p I

δ
 −   + ∂ ∂ ∂ ∂            ∂ = −          ∂    −     

, ∈Ωx , 3Ω⊂ R  (13) 

where 
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1 ( )w w a aB G S S sρ β ρ γ ρ= ∇ − − − , 2 3

G
B K= + , 3 ( ) wB Sα β=− − , (14) 
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( )ww w w rwS S S Sθ= − − , ( )aa a w rwS S S Sθ= + − . (19) 

In the Eq. (13) îF  denotes bulk body force per unit volume, ˆwI  and ˆaI  denote fluid source terms, and hat symbol denotes 

Laplace transform with complex variable s. 

A generalized displacement vector and a generalized force vector are additionally introduced as 

( ) ( )1 2 3 ˆ ˆˆ ˆ ˆ, , , , ,s s s w as u u u p p=u x , (20) 

( ) ( )1 2 3
ˆ ˆ ˆ ˆ ˆ, , , , ,s s s w as t t t q q= − −t x , (21) 

where ˆ ˆ effs
i ij jt nσ=  and ˆ ˆ ,f f

i iq q n=  in  are components of the vector of the normal to the boundary of region .Ω  

Equation (13), supplemented with boundary conditions: 

( ), , us = ∈Γu x u xɶ , (22) 

( ), ,s σ= ∈Γt x t xɶ , (23) 

where uΓ  is the Dirichlet’s boundary and σΓ  is the Neumann’s boundary, fully describe the boundary problem in the 
representations of the 3D isotropic dynamic theory of poroelasticity. 

3. Boundary Element Method Framework 

Boundary-value problem (13), (22), (23) is solved using the direct boundary element method, based on a combined use of 
integral Laplace transform and boundary integral equation (BIE) of the 3D isotropic theory of poroelasticity: 

( ) ( ), ( , , ) ( , ) ( , , ) ( , )s s s d s s d
Γ Γ

+ Γ = Γ∫ ∫C y u y T x y u y U x y t y , , ∈ Γx y , (24) 

where ( , , )sU x y  and ( , , )sT x y  are matrices of fundamental and singular solutions, respectively, x  is an integration point, y  is 

an observation point. The values of the coefficients of matrix C are defined by the geometry of boundary Γ . A procedure for 

obtaining BIE’s, based on the weighted residual method can be found in [21]. Some of the problems of the arising kernels of BIE’s 

are discussed in [22]. 

Equations (24) comprise singular integrals in the sense of Cauchy, which are quite difficult to compute. Use of the boundary 

properties of retarded potentials makes it possible, based on [23], to write down a regular representation of equation (18): 

( )0( , , ) ( , ) ( , , ) ( , ) ( , , ) ( , ) 0s s s s s s d
Γ

− − Γ =∫ T x y u x T x y u y U x y t x , , ∈ Γx y , (25) 

where 0( , , )sT x y  is singularity matrix. Using Equation (25), it is possible to construct a boundary-element solution of the BIE. 
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In the result of spatial discretization, boundary Γ  is represented with a set of EK  quadrangular eight-node boundary 

elements. The geometry of each element KE  is defined by biquadratic functions of form mN  and the global coordinates of nodes 
k
mx , related as [24] 

8

1

( ) ( ) , 1k
m m

m

N k Kξ ξ
=

= =∑x x … , (26) 

where ( ) ( )21 2, 1,1ξ ξ ξ= ∈ −  are local coordinates. According to correlated interpolation model [25], displacements are described 

using bilinear elements with the related bilinear functions of form ( )lR ξ , and surface generalized forces are described with 

constant boundary elements: 

4

1

( ) ( ) k
l l

l

Rξ ξ
=

=∑u u , (27) 

( ) kξ =t t , (28) 

where k
mu  and kt  are nodal values of displacements and tractions, respectively, over element .kE  

A discrete representation of BIE’s written at the nodes of the approximation of boundary functions iy , using the collocation 

method and accounting for (26)-(28), is of the following form: 

4

1 1 1

E EK K
k k k k

mmi i
k m k= = =

∆ = ∆∑∑ ∑T u U t , (29) 

( )
1

1

( , , ) ( )k k i k
i y s J dξ ξ ξ

−

∆ = ∫U U x , (30) 

1
0

1

( ) ( ( ), , ) ( ( ), ) ( )k k i k i k
mmi R s J dξ ξ ξ ξ ξ

−

 ∆ = − ⋅  ∫T T x y I T x y , (31) 

where I  is unit matrix, kJ  is Jacobian of the local coordinates into global ones. 

The elements of matrices k
i∆U , k

mi∆T  are computed using numerical integration schemes depending on the kind of integral 

(nonsingular or singular). Nonsingular integrals arise, when the collocation point does not belong to the element. Here, standard 

Gaussian-type formula is used in combination with a hierarchical subdivision of the elements [26]. Singular integrals arise, when 

the collocation point is situated on the element being integrated over. In this case, new local coordinates are introduced, making 

it possible to avoid a singularity in the integrand and to use Gaussian integration. 

4. Laplace Transform Inversion 

Consider a method based on the fundamental integration theorem – the stepped method of numerical inversion of Laplace 
transform. Consider the following integral: 

0

( ) ( )
t

y t f dτ τ= ∫ , (32) 

Integral (32) gives rise to Cauchy problem for an ordinary differential equation: 

( ) ( , )
d

x t sx t s C
dt

= + , ( )0 0x = . (33) 

Integral (32) is substituted for by a quadrature sum, weighting factors of which are determined using Laplace representation 

and the linear multistep method [27]. Further derivation is based on the results of this work. The traditional stepped method of 

integrating the original is that integral (32) is calculated using the following relation: 

(0) 0y = , 
1

( ) ( )
n

k
k

y n t tω
=

∆ = ∆∑ , 1,...n N= , (34) 

2 /1
2 /

0

(R )ˆ( )
il Ln L

inl L
n

l

eR
t f e

L t

π
πγ

ω
− −

−

=

  ∆ =    ∆ 
∑ , (35) 

where t∆  is time step, 2( ) 3 / 2 2 2z z zγ = − + , N  is number of time steps, R  is the parameter of the method. 

5. Numerical Results and Analysis 

Using the above methodology and the related software realized on its basis, a problem of a load acting inside a cubic cavity of 

edge 2m  embedded in a partially saturated poroelastic half-space is analyzed (Fig. 1). A load applied to the cavity surface linearly 

increases up to time 0.01s  and then acquires a constant value of 210000 /N m . 
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Fig. 1. Geometry of the problem. 

 

 

Fig. 2. Effect of d on u3 at point A. 

 

 

Fig. 3. Effect of d on u3 at point B. 

 
 

Zero boundary conditions for filler flows are also assigned over the cavity surface. The half-space surface is permeable and 

load-free. The material parameters of the poroelastic half-space are summarized in Table 1. Time history of unknown functions is 

examined for the following parameters of the stepped method: 0.997R= , 500N= , 0.00008st∆ = . Dynamic responses of the 

displacements and pore pressures at the points on the half-space surface situated directly above the cavity and at the center 

points of the cavity sides are constructed. 

The effect of the depth of the cavity on dynamic response has been analyzed for four different values of parameter d : 1m , 

2m , 3m , 4m . The saturation degree of the material is taken to be 0.9 . The results of the corresponding numerical analyses are 

presented in Figs. 2-7. 
 

Table 1. General material parameters. 

Parameter type Symbol Value Unit 

Porosity ϕ  0.23  - 

Density of the solid skeleton s
ρ  2650  3kg/m  

Density of the water w
ρ  997  3kg/m  

Density of the air a
ρ  1.1  3kg/m  

Drained bulk modulus of the mixture K  91.02 10⋅  2N/m  

Shear modulus of the mixture G  91.44 10⋅  2N/m  

Bulk modulus of the solid grains s
K  103.5 10⋅  2N/m  

Bulk modulus of the water w
K  92.25 10⋅  2N/m  

Bulk modulus of the air a
K  51.1 10⋅  2N/m  

Intrinsic permeability k  122.5 10−⋅  2m  

Viscosity of the water w
η  31.0 10−⋅  2N /ms⋅  

Viscosity of the air a
η  51.8 10−⋅  2N /ms⋅  

Gas entry pressure dp  45 10⋅  2N/m  

Residual water saturation rw
S  0  - 

Residual air saturation ra
S  1  - 

Pore size distribution index θ  1.5  - 
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Fig. 4. Effect of d on u3 at point C. 

 

 

Fig. 5. Effect of d on u1 at point D. 

 
 

 

Fig. 6. Time history of pw at points C and D for d = 4m. 

 

 

Fig. 7. Time history of pw at points C and D for d = 4m. 

 
 

It can be seen in Figs. 2-5 that the displacements at points A, B, C, D increase with the load and after a miner decrease become 

constant. At the same time, at points A, B, and C at a smaller depth, the displacements increase faster and acquire higher values 

than at bigger depths. Besides, the vertical displacements at point C are higher than those at points A and B for all values of d . At 

point D, an opposite trend is observed: at smaller depths, the horizontal displacements reach higher values faster than at smaller 

depths, and for 4d m=  become close in their values to the vertical displacements at point C at the same depth. 

Figures 6 and 7 show the dynamic responses of the pore pressure of the liquid at points C and D for 1d m=  and 4d m= . In 

both cases, the pore pressure demonstrates similar behavior in time with differences in the values. For 1d m= , at points C and D, 

it increases up to the value of 5 21.2 10 /N m⋅  almost at the same rate, after which, it decreases at point D but continues to 

increase up to 5 22.4 10 /N m⋅  at point C. Having reached its maximum, the pressures at both points drop down to zero almost at 

the same time, then acquire negative values, return again to the zero value and remain at this level the rest of the time. For 

4d m= , the pressures at points C and D, as in the first case, increase up to their maximal values almost at the same rate and then 

drop down to zero. However, the alteration of the pressure at point D occurs almost twice as fast as at point C. At the same time, 

the pressure at point D acquires a lower negative value than at point C, and, on the time interval considered, does not reach the 

constant zero value. Besides, the pressure amplitude for 4d m=  is higher than that for 1d m=  in both points. 

The effect of the saturation degree on the dynamic response has been analyzed for four different values of parameter 

0.5; 0.9; 0.95wS = , as well as the limiting value 1  corresponding to full saturation of the material. The cavity is assumed to be 

situated at the depth of 2m . The results of the corresponding numerical analyses are presented in Figs. 8-13. 

It can be seen in Figs. 8-11 that, for all the considered values of wS , the displacements at points A, B, C, D behave in the same 

way as was described earlier. However, for the values of wS  equal to 0.5 , 0.9  and 0.95 , the displacement curves are closer to 

one another and graphically are practically indiscernible. In the limiting case, the displacements increase more slowly and 

acquire smaller values than in the case of a partially saturated material. 

The effect of the saturation degree shows itself to its maximum on the dynamic response of pore pressure (Fig. 12 and Fig. 13). 

It is seen that, for 0.9; 0.95wS = , pressure behaves in the way described earlier. For 0.5wS = , pressure grows more slowly and 

with a smaller amplitude as compared with the other cases, and acquires only positive values on the considered time interval. In 

the limiting case, pressure grows faster and with a larger amplitude than in the other cases, and acquires only positive values. At 

the same time, the pressure at point C has a larger amplitude than that at point D, as in the case with 0.9wS =  and 2d m= . 
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Fig. 8. Effect of Sw on u3 at point A. 

 

 

Fig. 9. Effect of Sw on u3 at point B. 

 
 

 

Fig. 10. Effect of Sw on u3 at point C. 

 

 

Fig. 11. Effect of Sw on u1 at point D. 

 
 

 

Fig. 12. Effect of Sw on pw at point C. 

 

Fig. 13. Effect of Sw on pw at point D. 

6. Conclusion 

The boundary-element approach and the apparatus of Laplace transform have been used in the numerical parametric study 
of the analysis of the problem of a dynamic load acting inside a cubic cavity situated in a partially saturated poroelastic half-
space. The effect of the values of saturation degree and the depth of the position of the cavity on dynamic responses of 
displacements and pore pressures at points on the half-space and cavity surfaces has been analyzed. Based on the numerical 
analyses, the following conclusions have been drawn: 

 At the points on the half-space surface and on the upper surface of the cavity, vertical displacements grow faster and 
acquire higher values as depth decreases. At the depth of 4m, the vertical displacements at both points on the half-space 
surface acquire close values, whereas the vertical displacement at the point on the surface of the upper side of the 
cavity acquires a value close to the horizontal displacement at the point on the side surface. That is, for values over 4m, 
the effect of depth on the dynamic response of displacements on the cavity surface is less pronounced. 

 The increase of depth results in the increase of the horizontal displacement amplitude at the point on the side surface 
of the cavity but has almost no effect on the character of the behavior and amplitude of the vertical displacement at the 
point on the upper surface, which may be due to the relative proximity of the permeable interface of the half-space. 

 The increase in the saturation degree from 0.5 to 0.95 practically does not affect the dynamic response of displacements 
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but shows to its maximum on the pore pressure response. 
 Use of the model of a fully saturated material in this problem results in underestimating displacements and 

overestimating pore pressures. 
To get a deeper insight into the related effects, comprehensive studies with various types of dynamic loading and geometries 

are required. 
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