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Abstract. Topology optimization is a methodology widely used in the design phase that has gained space in engineering. On the 
other hand, uncertainty is present in material properties, loads, and boundary conditions in practically any design. The main goal 
for this paper lies in the coupling of the two subjects to account for uncertainties in the topology optimization. The Proportional 
Topology Optimization method renders the possibility of treating the stress constraints in a unified way. This allows topologies that 
at the same time preserve structural reliability and optimize costs. The Proportional Topology Optimization method under the 
reliability constraint is presented for isostatic and hyperstatic beam examples with stress and displacement LSF. 

Keywords: PTO; reliability analysis; uncertainty analysis; reliability-based topology optimization. 

1. Introduction 

In recent years, optimization methodologies have used metaheuristic algorithms to develop new structural solutions for 
mechanical problems. The purpose of improving an optimization process is to find the best and most suitable solutions (materials 
properties and sizes) for the structures as long as they are feasible and the overall objective is achievable in practice (Bekdas et al. 
[1]). 

According to Kongwat and Hasegawa [2], structural optimization is classified into three types: sizing optimization, shape 
optimization, and topological optimization. In sizing optimization, the structure is designed by adjusting the thickness/areas of 
each member within the structural design space. The geometry layout may not be preserved in shape optimization, like when the 
number of voids is maintained, but their dimensions are not. In topology optimization, the internal layout may freely vary. It starts 
with a defined design domain, and an ideal layout is achieved by redistributing and allocating the material. In other words, 
topological optimization is a computational process in which a surface or a volume of a structure, subjected to loads and boundaries 
conditions, changes its shape within that domain by allocating the material to attain some objective. Usually, the discretization of 
the computational domain is performed by the Finite Element Method. In this process, all finite elements become design variables 
of the problem due to a value they receive, called density. The attributed value for the design variables changes along with iterations 
(as densities). It is redistributed according to the pre-established objectives, for instance, maximizing stiffness, maximizing 
structural strength, maximizing dynamic behavior, etc., without disregarding constraints like the mechanical strength of the 
material. 

In most studies that address topology optimization (Wang et al. [3], Zhang et al. [4], and Zhang and Yanagimoto [5]), the used 
design variables are treated as deterministic. In actual engineering problems, the exact values of many parameters can be unknown 
or have uncertainties since they cannot be measured accurately or even controlled. A deterministic topology optimization approach 
can lead to a sub-optimal or non-optimal actual design by neglecting the natural uncertainty present in the material's 
manufacturing process or even in the system’s operating conditions (Gan and Wang [6]; da Silva et al. [7]). 

The uncertainties of the stochastic variables can be considered in the topologic optimization by replacing the uncertain 
quantities with their higher-order statistics. This is performed in Robust Design Optimization (RDO) and Reliability-based Design 
Optimization (RBDO). For the RDO case, the objective is to minimize uncertainties, such as variance in the cost and constraint 
functions. Typically, statistical moments for objective function and constraints are obtained by Monte Carlo Simulation or 
perturbation techniques that use Taylor series expansions. In RBDO, constraints are imposed on the probability of failure for 
expected performance. These constraints are usually approximated, like in First Order Reliability Method (FORM, Hasofer and Lind 
[8]) or Second-Order Reliability Method (SORM, Breitung [9]) that are based on first-order or second-order Taylor series expansions, 
respectively, of the performance functions (Ang and Tang [10]). 
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A novel algorithm to deal with robust topology optimization (RTO) under material and loading uncertainties is proposed in 
Rostami et al. [11]. As the first paper to use XFEM formulation in robust topology optimization, they use a truncated Gaussian 
random field for the random uncertainty analysis of the material property and load angle distribution. The robust optimization 
takes into account the mean value and standard variation of the compliance. Still, it considers neither the distribution type nor 
reliability index (failure probability), differentiating RTO problems from RBDO problems. 

In this paper, reliability analyses with the displacement and stress limit state functions (LSF) based on FORM to quantify the 
uncertainties and determine the new optimized topologies by the Proportional Topology Optimization (PTO) method are presented. 
The novelty relies on the framework of including the RBDO in the topology optimization in a double loop scheme. The reliability 
analysis is an inner loop of the Topology optimization outer loop. Beams are analyzed with the PTO method (based on the 
Bidirectional Evolutionary Structural Optimization, BESO). The reason for adopting the PTO method is that the formulation allows 
the designer to develop topologies without providing a constraint volume or evaluating an objective function gradient. Besides, a 
PTO algorithm generally yields topologies with lower stresses than topologies obtained by traditional compliance-based algorithms 
(Biyikli and To [12]). In addition, it has been proven the equivalence in strain energy and stress criterion-based approaches in terms 
of obtained final topology and compliance, with the advantage the second deals directly with stress constraints (Li et al. [13]). 
Furthermore, a sensitivity analysis is carried out to assist in the design decisions of topologically optimized structures, revealing 
the uncertain variables' relative importance in the final reliability. The failure probability and the corresponding reliability index � 
of optimized geometries are obtained in numerical examples for a simply supported beam and a double-clamped beam. The results 
show the importance of taking into account this reliability constraint in the final topology to assure a safe and cost-effective design. 

The paper is organized as follows: a brief literature review on topology optimization that considers uncertainties is performed. 
Then, the basis for the Proportional Topology Optimization is presented, followed by the main concepts and algorithm used for 
reliability analysis. Lastly, two numerical examples are presented regarding the use of the proposed methodology. 

2. Literature Review 

Among the works that address topological optimization with uncertainties in the material variables, design variables, or applied 
load, Kharmanda et al. [14] proposed a new methodology to integrate reliability constraints into a topology optimization problem. 
The study demonstrated that structures optimized with these new constraints were more reliable than those obtained by 
deterministic optimization. Besides, the study made it possible to generate different topologies under different reliability levels 
with this new approach. 

Jung and Cho [15] presented the topology optimization of three-dimensional Mindlin plate structures using the RBDO framework. 
For the reliable topology design, uncertainties of the material property and the external loads were considered. The numerical 
examples for the topology design show that the RBDO could handle the design uncertainty more effectively than any other approach, 
such as the safety factor and the worst-case approaches. 

Tootkaboni et al. [16] presented a robust topology optimization algorithm for continuum structures in the presence of 
uncertainties. The optimized process under constraints considered combinations of the mean and the standard deviation of 
structural response. Also, it was used a deterministic topology optimization method in combination with a spectral stochastic 
approach, based on Polynomial Chaos Expansion and Stochastic Galerkin methods to represent and quantify structural stiffness 
uncertainties. The results demonstrated that this new methodology is most appropriate for highly correlated uncertainties. Weakly 
correlated or uncorrelated random fields would require higher dimensional Polynomial Chaos Expansion. 

Similarly, Ghasemi et al. [17] proposed an uncertainty propagation and use of metamodel to optimize composites with 
nanotubes (CNT) using stochastic multi-scale modeling. This study considered CNT waviness, agglomeration, applied load, and 
finite element discretization as random fields. Besides, a reliability constraint evaluated by the First Order method is applied, but 
no topology optimization is performed. 

A methodology for topology optimization of multi-material-based of flexoelectric composites was proposed by Ghasemi et al. 
[18]. It adopted a deterministic multiphase vector level-set model, which copes with various phases, and efficiently satisfies 
multiple constraints. The numerical examples showed the capabilities of the model to design two, three, and four-phase micro-
sensors with the optimal electromechanical coupling coefficient (ECC). They report the normalized ECC resulted 2.5 times larger 
than that obtained from a beam made purely from the active material. 

An approach based on level-set topology optimization (another topology optimization method that incorporates an implicit 
representation of the boundary, commonly as a signed distance function) was presented by Guo et al. [19]. The uncertainty was 
present in the structural boundary conditions. To make the optimal designs less sensitive to the possible boundary variations, the 
compliance and fundamental frequency of structure enduring the worst-case perturbation as the objective function was chosen. 
The obtained optimal structure was found to have better robustness when it was compared to their deterministic counterparts. 

Luo et al. [20] proposed an effective method for stress-constrained topology optimization problems under load and material 
uncertainties. This study demonstrated that the optimal topologies obtained by the proposed RBDO approach were distinctly 
different from the deterministic design, providing, in this way, initial guidance for a safer design. Besides, the simultaneous 
consideration of the -relaxation (Cheng and Guo [21]) and a new reduction strategy on the target reliability index have shown 
avoiding the singularity of reliability-based stress constraints. 

A classical stress-based topology optimization problem considering uncertainties on Young’s modulus by the RDO was described 
in da Silva and Cardoso [22]. The deterministic and the robust discretized optimization problems were solved using an augmented 
Lagrangian algorithm due to many stress constraints. It was shown that the structures obtained by the robust approach were 
heavier when compared to the deterministic ones. 

António and Hoffbauer [23] proposed the RBDO of beam reinforced composite structures considering geometric nonlinear 
behavior. The proposed approach is a union of buckling and first-ply failure analysis of laminated reinforced beams. This study 
assumed the homogeneous orthotropic material mechanical properties of laminates as random, i.e., with uncertainties. The 
optimization could be addressed as a weight/cost minimization problem under safety constraints for buckling and first ply failure. 
The results demonstrated that the coefficients of variation of central point displacement and load factor have an asymptotic 
increase in the neighborhood of the buckling point. 

A new method to incorporate constraints on the first-passage probability into topology reliability-based optimization of 
structural designs was proposed by Chun et al. [24]. This approach decouples a nested reliability analysis loop from the optimization 
loop by solving the sub-optimization problem based on simulation results. The numerical examples showed that the topology 
optimization framework could provide an efficient way for structural engineers to obtain cost-effective design solutions that satisfy 
probabilistic constraints on the stochastic response in the conceptual (and schematic) design process. 

A generic framework for integrating Gaussian Processes with risk-based structural optimization was introduced by 
Keshavarzzadeh et al. [25]. The work demonstrated robust and reliability-based design problems in the context of stress-based 
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topology optimization under imperfections in geometry, material properties, and loading variability. The study revealed that it is 
possible to approximate a non-trivial quantity such as maximum von Mises stress and its sensitivity based on parametric samples. 

Contrarily, a non-probabilistic reliability-based topology optimization algorithm was proposed by Liu et al. [26]. Local material 
uncertainties were considering in additive manufacturing. The effects of local material uncertainties for the design of structures 
should embody the variation ranges of material properties and the spatial occurrence frequency of the extreme material properties. 
Comparing the results with deterministic designs, a more significant volume fraction is achieved to ensure a more reliable design 
due to the consideration of local extreme values due to material uncertainties. 

Gomez et al. [27] proposed an efficient topology optimization framework for buildings subjected to stochastic ground motions 
based on SIMP (Solid Isotropic Material with Penalization). This study considered more realistic details in the topology optimization 
for aleatory excited buildings such as additional floor masses, additional gravity loads, diaphragm constraints, and models for 
ground motion. An envelope approach was adopted to deal with uncertainty and a newly adapted smooth objective and constraints 
functions. Interstory drifts were minimized using the braced systems obtained by topology optimization. The results demonstrated 
the efficiency of the proposed approach for topology optimization in buildings excited by ground motions, which offers a helpful 
tool for designers to explore new braced structural patterns for earthquake-prone areas. 

3. Theoretical Basis 

The optimization of a function, also known as a mathematical programming problem (in terms of minimization), can generally 
be written as follows (Rao [28]): 

���� � �	
, 	�, … , 	���, �ℎ�� ��������� �(�) 
������� �  !"(�) ≤ 0, � = 1, … , �      ���     '((�) = 0, � = 1, … , ) 

(1) 

where � is called a vector of design variables, �(*)is the objective function, !"(*) are the � inequality constraints, and '((*) are 
the ) equality constraints. The existing and most adequate methods to solve this problem depend mainly on the types of design 
variables (integer, real, mixed), the difficulty in calculating gradients of the objective function, the number and types of constraints 
(and also the difficulty in their evaluation), and in the landscape of the objective function. 

In this context, topological optimization is a methodology implemented in the Finite Element Method to better allocate material 
from a structure, under boundary and load conditions, to maximize or minimize predefined objective functions such as mass, 
natural frequencies, buckling load, etc. In this sense, it differs from parametric and shape optimization since the final structure can 
take any form within the original working space (volume). 

3.1 Deterministic Proportional Topology Optimization 

There are several approaches to address the topological optimization problem, such as Evolutionary Structural Optimization 
(ESO), Bidirectional Evolutionary Structural Optimization (BESO), Solid Isotropic Material Penalization (SIMP), Level-set, etc. For 
example, in the SIMP method (Bendsøe [29]), the domain is discretized into finite elements, and a density-based approach is used 
to represent the partial presence of material in the space region. Each finite element has an associated density 	+ (design variables) 
that defines the stiffness of the element by its modulus of elasticity (isotropic material) ,+ = ,-"� + 	+/(,0 − ,-"�) with 	+ ∈ [0,1], and 
a penalty factor ) (ranging from 1 to 3), with ,0 and ,-"� being the material's modulus of elasticity and a minimum value to avoid 
total element removal, loss of mesh connectivity, and uniqueness of the inverse of the stiffness matrix. A fraction of the total 
volume of the structure = 5� ∑ 5" , where 5" is the volume of each element, and 5� is the final volume fraction defined by the 
designer in the range [0,1] (usually treated as the constraint of the optimization problem). 

In the BESO method, the associated densities 	+ are discrete variables that can only assume values 0 or 1, or in a practical way 
	-"� and 1, with 	-"� being a small value (in this work 1 × 1089). In stress optimization problems, to avoid singularity issues in the 
elemental stress calculation of elements that have been removed, in the context of BESO and SIMP, the concept of -relaxation is 
employed during the calculation process. In this way, it will relax the condition 0 and 1 for a state of intermediate densities (Le et 
al. [30]), returning to the condition of binary densities later. Thus, the topological optimization problem for minimum compliance 
(twice the elastic strain energy) with volume constraint can be posed as: 

:�������  ; = <�=<   
������� � : ? 	" 5" − 5�  @0 = 0, =< = A ,     	-"� ≤ 	" ≤ 1 

(2) 

So, the obtained structure should comply with the minimum strain energy for the fixed final constraint volume, which can be 
seen as a material allocation problem. 

 Whereas the problem of topological optimization with stress constraint can be stated as: 

:�������   @ = ? 	"
�+B+-
"C


5"    
������� � :    =< = A,   ��D (E"F-) ≤ EB"- ,     	-"� ≤ 	" ≤ 1 

(3) 

Problem (3), unlike (2), is non-convex and highly nonlinear (Biyikli and To [12]). It is noticed that in the second case, a target 
volume fraction is not defined. In this way, the value 5� will no longer be a constraint of the problem but a result of the optimization 
once the process is finished and the stress constraint is met. The initial conditions of the problem (initial workspace, boundary 
conditions, and loads) must generate the structure that meets the stress constraint (from a feasible initial design) no matter the 
final volume attained. Obviously, in the second case, depending on EB"- and external loads, there may be no solution. 

In the context of BESO, 	" = 	-"� or 	" = 1. The total volume of the target material (TM) to be reached in each iteration is given 
by @"G
 = @"(1 ± ,I), where ,I is the evolutionary rate (percentage of material that will be removed or added at each iteration), and 
the signal will depend on whether the stress criterion is violated or not (− if not violated and + if violated). In the next step, the 
algorithm distributes the amount of target material @"G
  to the elements according to the stress ratio J"K�LM- of each element or 
according to the sensitivity of each element J"N. This explanation will be provided later. The target material must be distributed 
iteratively and weighted by the proportions of stress or by the strain energies. Then, solid elements (	" = 1) that have a sensitivity 
lower than the limit sensitivity are removed from the design domain. Similarly, null elements (	" = 	-"�) that have a sensitivity 
greater than the limit sensitivity are added to the design domain. The limit sensitivity is defined based on the total volume of the 
target material (TM). Here a density model for the elastic modulus of the material is used , (	") = 	"

/,
, where ,
 denotes the 
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modulus of elasticity of a solid element and ) penalizes the design variables in the direction of intermediate densities close to the 
D-"� and close to 1 (extreme).  

For a bi-dimensional isotropic linear structure, von Mises stresses are defined as: 

E"F- = OEPP� − EPP� EQQ� + EQQ� + 3SPQ�  (4) 

here E" = (EPP EQQ   SPQ )� is the elemental stress tensor of element � in the vector form. In the Finite Element Analysis, the element 
stress can be evaluated from the displacement at nodes �", the constitutive matrix T, and the matrix that relates displacements 
and strains U for each finite element �, as E" = TU�".  In the SIMP method, the stress constraint is approximated since the real 
stress constraint is defined as ��D(E"F-) − EB"- ≤ 0 that is a non-differentiable function. The q-norm, adopted in this study, for the 
sensitivity analysis, evaluate the stresses weights in the elements (with empirical exponent V) so that the constraint can be 
formulated in a smooth way as [∑ (E"F-)W]
/W�+B+-"C
 ≤ EB"-. 

When the density interpolation scheme is employed, the stress on an element � is calculated as E" = 	+/TU�" (assuming that 
the stress is located at the geometric center of the element) which is applied to Equation (5) and result in E"F- = 	"

/E"0F- where the 
index E"0F- represents the von Mises stress in the solid element � (	" = 1) and a weighting factor. The sensitivity of finite element 
stresses to design variables 	" is defined as: 

J" = E"F-
	"

= 	"
/8
E"0F- (5) 

The sensitivity will indicate the preference for distribution (removal/addition) of elements in the finite element mesh. Obviously, 
for finite elements with 	" = 1, J" = E"0F- and for elements with 	" = 	-"�, J" = 	-"�

/8
E"0F- that for ) ≫ 1, it will result in JZ = 0. This 
study uses the degree of a proportion of von Mises stress, following the definition given by Biyikli and To [12]. 

J"�LM- = (E"F-)W5"
∑ (E"F-)W5"�+B+-"C


 (6) 

where 5" is the volume of the finite element �, V is an exponent of proportionality, and ��'�� is the number of elements in the 
structure. 

Most of the literature works with a slightly different objective function from the degree of a proportion, the compliance, although 
the equivalence has been proven (Li et al. [9]). In this case, the objective function to be optimized is half the compliance, as defined 
according to Huang and Xie [31] as the total elastic strain energy of a structure or half the work done by the external forces: 

; = 1
2 \�< = 1

2 <]=< (7) 

When a solid element is removed from the structure, the change in the total elastic strain energy is equal to the elastic strain 
energy of the removed element. Thus, the sensitivity for each finite element � can be defined as: 

J" = 1
2 �"� "̂�" (8) 

where �" are the degrees of freedom associated with the finite element �, and "̂ is the elemental stiffness for the element �. 
Equation (8) indicates that the decrease in compliance due to the removal of an element � is equal to the deformation energy of 
the element itself. This definition is called hard-kill BESO and is a particular case of the soft-kill BESO method, where the elastic 
strain energy of the element is not entirely removed but penalized. The soft-kill method incorporates a penalized material model 
for the elastic properties such that , (	") = 	"

/,
, with 	" being the density of the finite element � ∈ [	-"� 1] and ) is a penalization 
factor. Therefore, the sensitivity number that defines the relative ranking of an individual finite element to be removed or added is 
defined as: 

J" = 	/8

2 �"� "̂0�" (9) 

where "̂0 is the stiffness matrix of the solid element, and ) is a penalty factor. For 	" = 1, the above equation turns to the previous 
equation (8). Note that when ) tends to infinity, the stiffness and sensitivity of elements with intermediate densities tend to zero, 
bringing design variable values closer to the extremes 	-"� and 1. 

In topological optimization works, it is usual to use sensitivity filters to avoid edges in the final topology to prevent the 
phenomenon of the checkboard pattern and mesh dependency. A simple linear filter is used in this paper and can be defined as: 

J" = ∑ _( "̀()J(�a(C

∑ _( "̀()a(C


 (10) 

where b is the number of nodes that are neighbors (at a distance less than or equal to -̀"�) of element �, "̀( is the distance 

between the center of the element � and node �, _( "̀() are linear weighting factors _c "̀(d = -̀"� − "̀( for ���� (�, �) < -̀"� and _"( =
0 or ���� (�, �) ≥ -̀"� and J(� is the sensitivity of the nodes within the neighborhood radius -̀"� with center at the finite element 
�. Equation (10) is applied to the sensitivity values of each element, resulting in smoothed values as a function of the neighboring 
values of that element. The final optimized structure will present truss-like members that have size cross-sections that depend on 

-̀"� and on the user’s defined volume fraction 5� (in compliance optimization problems) or user’s defined limit stress EB"- (in 
stress limited optimization problems). The reference Huang and Xie [31] is suggested for the filter scheme explanation for the 
reader's interest. 

The sensitivity values defined in the previous sections for compliance or proportional stress can be weighted with the values 
of previous iterations to stabilize the method, for instance, (g�LM-)hG
 = i(g�LM-)h + (1 − i)(g�LM-)hG
, using the stress proportion or 
(gN)hG
 = i(gN)h + (1 − i)(gN)hG
 using the compliance, where g = �J
, … , J"�� is the vector of sensitivity numbers, j is the iteration 
counter, and i is a moment factor (usually 0.5). 

3.2 Reliability Analysis 

Uncertainty is always present in nature. Two main types of uncertainties can be categorized as aleatory and epistemic 
uncertainties. The first one is related to the natural randomness found in material properties, unpredictable loads, boundary 
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conditions, or the modeling phase. The second one, also known as systematic uncertainty, comes from the lack of knowledge on 
underlying fundamental or total ignorance of the system behavior, lack of measurement, or its inaccuracy. This uncertainty can be 
reduced, but the first cannot. Once defined the requirement for the design's performance, the project's failure can be defined as 
not attaining this expected performance (maybe due to randomness), not necessarily to the catastrophic failure of the structure. 
For the determination of the probabilistic characteristics, a performance function should be declared. This function, called Limit 
State Function (LSF) and exposed in Eq. (11), will indicate when some expected performance is violated. 

k(l, m) = I − � (11) 

where l is the vector of random variables, m is the vector or deterministic parameters, I is the resistance variable, and � is the 
demand variable. A safety condition is defined as the state where the LSF is positive (k(l, m) > 0) otherwise, it is defined as the 
failure condition. (k(l, m) < 0). The probability that a failure condition is attained (op(l, m)) is defined by: 

op(l, m) = q q �r(`)KsM

8t
�u(�)�`��

t

8t
= q �r(D)�u(D)�D = o[G(l, m) ≤ 0]

t

8t
 (12) 

where �u(�) is the probability density function of the load, and �r(`) is the cumulative probability density function of the resistance 
(Ang and Tang [7]). The assumption that � exceeds I corresponds to the overlapping area between �u(�) and �r(`) (i.e., failure 
region), which represents the quantitative measure of failure probability. Figure 1 explains this. 

In Figure 1, juEu = �a represents an increased value for load actions and jrEr = Ia is a reduced value for the resistance, which 
accounts for uncertainties. An outdated measure of reliability used to be defined as a safety factor �� = Ia/�a, being values greater 
than 1.0 considered reliable designs. This measure has several drawbacks and has been discredited. Besides, the performance 
function cannot be written in a simple linear form. Equation (12) can rarely be applied, so numerical procedures are used to give an 
approximation of the failure probability, such as simulation-based methods (Monte Carlo simulations and their variants) or First- 
and Second-Order Reliability Methods (FORM and SORM). The simulation methods usually demand high computational costs 
despite the high accuracy they can provide. 

On the other hand, First and Second-Order Methods takes advantage of the Most Probable Point (MPP) contribution to the 
hypervolume of the failure domain in Equation (12). Since this point is the closest one, in the uncorrelated standard space, from the 
origin to the LSF, it is obtained by solving the following optimization problem: 

� = ��� wx�x = y|x|y               ������� �  k(l, m) = 0 (13) 

where x is the vector of uncorrelated standard variables (usually a probabilistic transformation of the actual random vector l to 
an uncorrelated normalized Gaussian space, x = {8
(| − µ+W ) where cov(X,X)=L LT and µ+W  is the equivalent vector of Gaussian 
mean values. For a particular random variable �,µ+W," = D" − �+W,"Φ8
[�|"(D")] and �+W," = ��Φ8
[�|"(D")]�/�|"(D"), where �|" stands for 
cumulative distribution, �|Z means probability density function, Φ8
 is the inverse cumulative normal distribution and � is the 
standard probability density function). 

3.3 First Order Reliability Method 

Using an iterative method (Hasofer and Lind [8]), the iterative equation for the solution of the problem in Equation (13) is given 
by: 

xhG
 = [(��
�x

�)�x�8(��
�x

�)�

(��
�x

�)�(��
�x)� ](��

�x)h    and   � hG
 = w(x�)hG
 xhG
 (14) 

A stopping criterion for iterations may be formulated based on the convergence of x, β, and k(l, �) = 0. The measure of 
importance (sensitivity) of each random variable to the reliability index β can be evaluated by: 

� = − (�k�x
�)h

O(�k�x
�)h (�k�x)h

 (15) 

Considering the main contribution for the Most Probable Point (MPP) to the failure probability, an approximate relation (for 
linear LSF) between Failure Probability and the reliability index uses the definition of the standard cumulative distribution function 
(�) and is given by: 

op = �(−�) = 1 − �(�) (16) 

 
 

Fig. 1. The probability density function for load actions and resistance effects. 
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4. Numerical Examples 

4.1 Reliability Analysis with Stress Limit State Function 

The first example concerns the reliability of a simply supported beam subject to a vertical force applied at the midspan. The 
beam has a rectangular cross-section and is made of steel. A stress LSF is defined as !(�) = σF�,B"- − max (σF�(�)). Here, the max of 
the function assures that any point in the beam will be considered in the constraint equation. Six variables are chosen as random 
variables based on observed experimental variability and experimental data. The distribution type, mean values, and standard 
deviation for each of these random variables are: (i) yield strength based on the von Mises stress limit σF�,B"-(o�) 
 b: (3 × 10�; 1.2 × 10�) , (ii) the applied vertical load �(N)  b: (4 × 10�, 4 × 10�), (iii) Modulus of Elasticity , (o�) b: (2.1 × 10

, 2.1 × 10
0), 
(iv) beam’s height ℎ (�), b: (0.5, 0.025), (v) beam’s width �(�) , b: (0.15, 2.25 × 1089), and (vi) the beam’s span � (�), b: (1, 0.01). The 
vector of random variables is defined as � = (σF�,B"-, �, ,, ℎ, �, �)�. The Poisson coefficient, � = 0.3, is assumed deterministic because 
of the low coefficient of variation of this elastic property, as reported by Kuhinek et al. [32]. All the random variables are considered 
non-correlated. Besides, the Modulus of Elasticity and the yield strength limit are assumed constant within the finite element 
(evaluated at the element’s center), and they take the same value in the whole design domain. 

Four-node isoparametric finite elements are used to discretize the model with a structured mesh. The parameters adopted for 
the PTO method are: the final volume fraction 5� = 0.3, the penalization for the proportional optimization ) = 3, the number of 
elements in D direction ��'D = 200, the number of elements in 	 direction ��'	 is obtained using the actual height ℎ of the beam 
and the size of the mesh �D (half of the total length �/2 divided by ��'D, since the finite elements have equal edges), the evolutive 
ratio is assumed as ,I = 0.05 and -̀"� = 3.5 finite elements. It is adopted a moment factor of i = 0.5 for stabilization of the 
topology optimization process. Since the LSF is based on local stresses, the applied load and the beam’s support are equally applied 
over three adjacent nodes at the midspan to avoid stress concentration. Figure 2 shows the design domain and the adopted random 
variables. 

Initially, a deterministic analysis is performed with the mean values of the random variables, and the final topology of the 
optimized structure and the corresponding compliance was evaluated. Figure 3 shows the final topology superimposed to the 
corresponding maximum von Mises stress and the values for compliance and maximum von Mises stress along with iterations. As 
expected, the maximum values occur near the point of application of the load and the beam’s support (2.1534 × 10� Pa). The final 
compliance is � = 142.0 Nm. So, there is a Safety Factor for the yield strength of  �� = 1.39. 

The next step is to consider just one random variable, the von Mises yield stress limit (σF�,B"-). This was meant to check the 

reliability evaluation steps since, in this case, the reliability can be easily evaluated in a closed-form: op = ϕ ��.
�9�×
0�89.0×
0�

.�×
0  ¡ =

8.6300 × 108
9. The corresponding reliability index is � = −ϕ8
(op) = 7.055. When using the FORM method coupled with the finite 
element code, the obtained results are respectively, op = 8.5588 × 108
9 and � = 7.0562, which shows that the code for the reliability 
analysis and stress evaluation with finite elements is working well. The algorithm took 4 iteration steps to evaluate the reliability 
index and 8 LSF evaluations. Figure 4 shows the numerical results for this analysis. 

 
 

 
 

Fig. 2. Design domain for topology optimization and adopted random variables. 

 
 

   

                                        (a)                                                          (b) 

Fig. 3. (a) Final topology with von Mises stresses. (b) Compliance and maximum stress along with iterations. 
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 as random variables 
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Fig. 4. Probability of Failure op and reliability index � convergence. Case of only yield stress limit as a random variable. 

  

                                           (a)                                                             (b) 

Fig. 5. Probability of Failure op and reliability index � convergence for six random variables case. (b) Sensitivity for each of the random variables. 

 
The final step in this analysis is to consider more random variables. All six random variables are taken in the analysis. There is 

no closed-form solution for this case, so Figure 5 shows the numerical results obtained with the FORM algorithm coupled with the 
finite element code. 

The results are respectively, op = 1.4779 × 1089 and � = 2.97. The algorithm took 6 steps and 42 LSF evaluations. The load � (D� 
in Figure) presents the highest sensitivity to the reliability of the structure (�� = −0.76) among the random variables, followed by 
the beam’s width � (�� = 0.51). The negative value of �� means it inversely affects the reliability index. As expected for isostatic 
structures, like this simply supported beam, the modulus of elasticity does not affect the stresses, and so the structural reliability 
is �9 = 0. The beam’s height random variable ℎ resulted in no sensitivity (�� = 0), which is not a common-sense result since height 
may influence bending stiffness and thus the maximum stress. This would be true in a regular full rectangular cross-section beam, 
but in the case of a topologically optimized structure, this seems to have no effect. In such structures, the stresses tend to uniformly 
distribute on the resulted truss-like members, decreasing the height influence on the reliability. The beam’s length played a minor 
role (�¥ = 0.05), due to the low standard deviation for the length in this example. 

4.2 Reliability-based Topology Optimization with Displacement Limit State Function 

The second numerical example has the same material, design variables, random variables, boundary conditions and is exposed 
to a vertical load � as the previous example. However, in this case, a displacement LSF was considered. A maximum allowed 
displacement value of ¦B"- = 6.60 × 108� �  was assumed. Besides, a target �  will be adopted for this problem  �§¨§ = 3.1 , as 
suggested by ISO 2394:2015 standard. Thus, making the volume fraction no longer a constraint of the problem, but a natural result 
from the reliability constraint, i.e., the situation becomes a Reliability-Based Topology Optimization (RBTO). It should be in mind 
that for a simply supported beam and small variations in the beam section and loads, the optimized structure will present 
maximum stress values very close to those from a non-optimized structure. This is the reason the LSF in this example is chosen to 
be mid-spam displacement. 

The results of these simulations are presented in Fig. 6. In this case, the final topology resulted in 59.26% of the initial material 
volume, and it took 11 iterations to converge, as can be observed in Fig. 6 (b). Regarding maximum displacements and structural 
strength, the optimized topology demonstrated a maximum displacement ¦-©P of 4.0755 × 108� m, a maximum von Mises stress 
σF�,-©P of 2.1486 × 10� Pa. A final value of Compliance � = 80.88 Nm was attained. So, there is a Safety Factor for the maximum 
structural displacements of �� = 1.61, and in the case of the material strength, �� = 1.39. 
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                                   (a)                                                                 (b) 

 

(c) 

Fig. 6. (a) Final topology in deflected form. (b) Compliance and volumetric fraction along with iterations. (c) Sensitivity for each of the random 
variables. 

 

Fig. 7. Design domain for topology optimization of a double-clamped beam. 

The final topology using the displacement LSF resulted in � = 3.05 and op = 1.1630 × 1089. The stochastic variable that presents 
the higher sensitivity in this analysis is the modulus of elasticity , (D9 in Figure 6(c)) with �9 = 0.79, followed by the load � (D� in 
Figure 6(c)) with �� = −0.52. Unlike the previous analysis on stress LSF with only material strength as a random variable, in this 
example, the modulus of elasticity , presented a more significant sensitivity to the reliability because it is directly related to 
structural displacement. 

4.3 Reliability-based Topology Optimization with Stress Limit State Function 

The last example concerns an RBTO with the stress LSF of a double-clamped beam subjected to a vertical force applied at the 
midspan (Fig. 7). This example was intentionally modified from the previous one because this structure is more susceptible to 
maximum stress variations due to topology optimization. In this problem, the distribution type, mean values, and standard 
deviation for each of these random variables are: (i) yield strength based on the von Mises stress limit σF�,B"- (Pa) 
b: (3 × 10�; 1.2 × 10�), (ii) the reference applied vertical load �r (N) b: (6 × 10�, 6 × 10�) , (iii) Modulus of Elasticity , (Pa) b: (2.1 ×
10

, 2.1 × 10
0) , (iv) beam’s height ℎ (m)  b: (0.3, 0.015) , (v) beam’s width �(m)  b: (0.20, 0.01) , and (vi) the beam’s span � (m) 
b: (3, 0.015). So, the vector of random variables is defined as � = (σF�,B"-, �, ,, ℎ, �, �)� . The Poisson coefficient � = 0.3 is assumed 
deterministic, as the first and previous example, and all the random variables are considered non-correlated. The parameters 
adopted for the PTO method are the same adopted in the previous examples. Again, the volume fraction is not a constraint of the 
optimization problem since the reliability index for stress will rule the final volume fraction and is the criterion for stopping the 
topology optimization.  

:�������   @ = ? 	"
�+B+-
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Fig. 8. Final topology for a target reliability index for structural elements of agricultural buildings with a reference life span of (a) 50 years (� = 3.37) 
and (b) 1 year (� = 4.28). 

 

 
 

Fig. 9. Final topology for a target reliability index for structural elements of residential buildings with a reference life span of (a) 50 years (� = 3.86) 
and (b) 1 year (� = 4.73). 

 

 
 

Fig. 10. Final topology for a target reliability index for structural elements of civil buildings with a reference life span of (a) 50 years (� = 4.29) and (b) 
1 year (� = 5.20). 

The first analysis performed in this section is optimizing this structure according to reliability target values from EN 1990. The 
recommended reliability index must be around 3.3 ≤ � ≤ 4.3 for a reference service life of 50 years, and 4.2 ≤ � ≤ 5.2 for a service 
life of 1 year, so that the lowest value refers to agricultural structural elements, the mean value for each interval (3.8 and 4.7) refers 
to residential structures and the highest value, to civil structures. These target reliability values will be used as reliability constraints 
for the topology optimization. The results are presented in Figs. 8, 9, and 10. 

The structures with a reference life of 1 year presented a high level of safety due to the low value of the von Mises stress found 
in the simulations. That is, this value resulted in 169.19 × 10¥ ≤ σF� ≤ 188.15 × 10¥ Pa. In addition, it was observed that for the 
reliability in structural elements for residential buildings, Fig. 9 (b) presented the heavier structure (higher volume fraction of 
retained material), the final topology resulted in 44.49% of volume fraction. The structure with the highest reliability index, Fig. 10 
(b), resulting in 39.04% of volume fraction. Besides, it was noted that in the case of structural elements of residential buildings, the 
final structure presented a higher concentration of stress than the other solutions. This is explained by the cases � = 4.29 and � =
5.20 for showing a better stress distribution within the remaining material. 

Regarding the structures with a reference service life of 50 years, the von Mises stress value found in the simulations varied 
from 186.19 × 10¥ ≤ σF� ≤ 205.24 × 10¥  Pa, which represents a strength Safety Factor of   1.46 ≤ �� ≤ 1.61 . As occurred for the 
reference of 1-year service life, the intermediate reliability index, Fig. 9 (a), presented the heavier structure since the final topology 
resulted in 37.14% of volume fraction and the structure with the lowest reliability index, Fig. 8 (a), resulted in 34.18% of volume 
fraction (the topology that removed more material). Unlike the structures with a reference service life of 1 year, all the structures 
showed an excellent stress distribution throughout their remaining material. However, the locations where loads and supports 
were applied still show the highest concentration for stress states. 

von Mises (Pa)                                    von Mises (Pa) 
 

(a)                                                      (b)                                                 

von Mises (Pa)                                   von Mises (Pa) 
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Fig. 11. Variation of reliability indexes � and the applied load. 

 

 

 

 
Fig. 12. Variation of: (a) von Mises stress and (b) displacement related to the retained material for an RBTO with stress LSF. 

 
Finally, an analysis of the variation of the load on this structure will be developed. The objective here is to determine the 

minimum and maximum values of the reliability index � for each nominal load value adopted. For this, a reference load �r = 6 ×
10� N will be used as the basis for the other loads considered, as seen in Fig. 11. Besides that, graphics were plotted relating the 
structural stiffness and strength of the structure to the volume fraction of retained material obtained with the RBDO with stress 
LSF (Fig 12 (a) and (b)). 

In Fig. 11, for each �/�r ratio, it was set increasing reliability indexes, and the corresponding final volume fraction was obtained. 
In the case of Fig. 12, the maximum von Mises stress and displacement for the same cases of Figure 11 are plotted against the final 
volume fraction. 

The results in Fig. 11 indicate that the addressed problem can support a 25% higher load than the reference load �r and even 
attain some of the required target reliability described in EN 1990. For example, if one considers a vertical load of � = 7.5 × 10� N 
(�/�r = 1.25), the reliability index of the topologically optimized double-clamped beam is around 1.0 ≤ � ≤ 5.0 as indicated by Fig. 
11, making it possible to assume that this structural element is complying with the target reliability for structural elements in 
agricultural and residential buildings. Furthermore, using topology optimization, it is feasible to remove 60.96% of the material for 
a reliability index of � = 3.1 and remove 11.07% for a reliability index of � = 5.0. Yet, for this case, it was observed that the von 
Mises stress varied from 173.94 × 10¥ ≤ σF� ≤ 211.49 × 10¥ or 257.98 × 10¥ Pa (if EN 1990 is disregarded, resulting � ≤ 3.3). For the 
maximum displacements, it varied from 3.1771 × 1089 (if EN 1990 is disregarded) or 2.4976 × 1089  ≤ ¦-©P ≤ 1.3053 × 1089 m (Fig. 12). 

Concerning the load case � = 9.0 × 10� N (�/�r = 1.50), in Fig. 11, the reliability index of the double-clamped beam is about 
1.35 ≤ � ≤ 3.3, thus, making the problem unfeasible to the parameters required by EN 1990 standard. In the case of �/�r = 0.75, the 
structural element has high reliability, which implies the possibility of retaining less material and obtaining a lighter structure. 

5. Conclusions 

This study presents numerical examples of topologically optimized beams by the PTO method when considering reliability 
analysis with uncertainty in material properties, applied load, and geometric parameters. Also, a sensitivity analysis of the variables 
is done to determine how much they affect the process of topology optimization with uncertainties using the FORM. In this way, 
the paper emphasizes the importance of considering uncertainties in the design phase, especially when taking into account the 
structural optimization process of the PTO (Proportional Topology Optimization) method (based on BESO). 

The first example dealt with a reliability analysis of a simply supported beam when considering a stress LSF. The sensitivity 
analysis of the variables related to the material, applied load and the geometrical dimensions showed that for isostatic problems, 
the applied load has a more significant influence on the result, followed by the thickness considered for the beam. 

Using the same numerical beam model but now considering a displacement LSF, the second example turned the problem into 
a Reliability-Based Topology Optimization (RBTO). In other words, a target reliability index � was stipulated as a constraint for the 
presented problem, and the volume fraction is no longer a constraint. So, the higher the �, the earlier the material removal process 
will be interrupted, giving a chance to truss-like members to remain in the final optimized structure. In addition, as occurred in the 
previous example, random variables' influence was evaluated, demonstrating a more significant effect of the modulus of elasticity 
because it is directly related to displacements. 

For the last example, an RBTO analysis was performed in a double-clamped beam with a stress LSF. First, a qualitative 
assessment of topologies that met target reliability indexes prescribed in EN 1990 was presented. In this step, it is demonstrated 
that optimized topologies with reliability constraints show thicker and heavier structural elements than those topologically 
optimized deterministic beams. Moreover, it is proved that the final topologies better distribute the stress throughout the remaining 

(a)                                                      (b)                                                          
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material. However, there are stress concentration points at the supports and the location of the applied load. The other analysis 
carried out in this example aimed to demonstrate the reliability indexes' limits when varying the applied load's nominal value and 
relate the stiffness and structural strength with the material volume fraction. Here, it was presented that the topologically 
optimized structures would support a load 25% higher than the load initially stipulated, respecting the target reliability indexes 
from EN 1990 in the case of structural members of agricultural and residential buildings. 
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