
تعداد نشریات | 31 |
تعداد شمارهها | 1,030 |
تعداد مقالات | 9,108 |
تعداد مشاهده مقاله | 10,334,658 |
تعداد دریافت فایل اصل مقاله | 8,559,986 |
کاربرد مدلسازی فرکتالی و دگرسانیهای گرمابی در تفکیک آنومالیهای Zn، Pb، Cu و Ba در برگه 1:100000 ورچه (جنوب اراک) | ||
زمین شناسی کاربردی پیشرفته | ||
مقاله 18، دوره 12، شماره 4، بهمن 1401، صفحه 945-963 اصل مقاله (3.2 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22055/aag.2021.37471.2224 | ||
نویسندگان | ||
طاهر فرهادی نژاد* 1؛ فرزانه میر2؛ سیدوحید شاهرخی3 | ||
1ستادیار پژوهشی بخش تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان لرستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، خرم آباد، ایران | ||
2گروه زمین شناسی دانشکده علوم دانشگاه لرستان | ||
3گروه زمین شناسی، واحد خرم آباد، دانشگاه آزاد اسلامی، خرم آباد، ایران | ||
چکیده | ||
دلسازی فراکتال یک روش مفید برای طبقهبندی پدیدههای مختلف طبیعی است. روشهاى فرکتالى روابط بین همه پارامترها مانند دادههای ژئوشیمیایی و توزیع فضایی آنها را بدون هیچگونه بهنجارسازی دادهها ارزیابی میکند به همین دلیل مدلی دقیقتر است. در این مقاله 1292 نمونه رسوبات آبراههای ورقه زمینشناسی 1:100000 ورچه در جنوب اراک، جهت اکتشافات ژئوشیمایی برداشت شده و به روش ICP-MS برای 15 عنصر تجزیه شدهاند. بررسی ﭘﺎراﻣﺘﺮﻫﺎی آﻣﺎری ﻋﻨﺎﺻﺮ Zn، Pb، Cu و Ba و ﺗﺮﺳﻴﻢ ﻫﻴﺴﺘﻮﮔﺮام این ﻋﻨاصر نشان میدهد که دارای چولکی به راست هستند، که در این حالت روش فرکتالی یکی از بهترین روشهای جداسازی آنومالی از زمینه میباشد. دادههای عناصر با استفاده از روش فرکتال غلظت– تعداد (C-N) مورد تجزیه و تحلیل قرار گرفتند و با پهنههای دگرسانی و گسلهای ترسیم شده با استفاده از تصاویر ماهوارهای سنجنده استر جهت اکتشاف مواد معدنی مطابقت داده شدند. نمودار ﻓﺮﻛﺘﺎل ﻋﻴﺎر- ﺗﻌﺪاد ﺑﺮای ﻋﻨﺎﺻﺮ Zn، Pb، Cu و Ba ترسیم شده که شدیدترین محدوده ناهنجاری این عناصر بترتیب دارای عیار بیشتر از ppm 8/524 ، 3/794 ، 9/223 ، 1/944 میباشند. تلفیق نقشههای ناهنجاری عناصر Zn، Pb، Cu و Ba با آلتراسیونهای اکسید آهن، پروپلیتیک، آرژیلیک و سیلیسی و نقشه گسلها و شکستگیهای منطقه با نقشه موقعیت معادن و اندیس-های معدنی منطقه نشان میدهد که معادن فلزی عمدتاً در مناطق با تراکم گسلها رخ دادهاند. آنومالیهای تفکیک شده سرب و روی همخوانی بسیار خوبی با هم داشته و ارتباط بالایی با دگرسانی سیلیسی منطقه دارند. | ||
کلیدواژهها | ||
فراکتال؛ غلظت- تعداد؛ دگرسانی؛ استر؛ ورچه؛ اراک | ||
مراجع | ||
Afzal, P., Alghalandis, Y.F., Khakzad, A., Moarefvand, P., Omran, N.R., 2011. Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling. Journal of Geochemical Exploration 108(3), 220–232. https://doi.org/10.1016/j.gexplo.2011.03.005 Afzal, P., Heidari, S.M., Ghaderi, M., Yasrebi, A.B., 2017. Determination of mineralization stages using correlation between geochemical fractal modeling and geological data in Arabshah sedimentary rock-hosted epithermal gold deposit, NW Iran. Ore Geology Reviews 91, 278–295. https://doi.org/10.1016/j.oregeorev.2017.09.021 Afzal, P., Mirzaei, M., Yousefi, M., Adib, A., Khalajmasoumi, M., Zarifi, A.Z., Foster, P., Yasrebi, A.B., 2016. Delineation of geochemical anomalies based on stream sediment data utilizing fractal modeling and staged factor analysis. Journal of African Earth Sciences 119, 139–149. https://doi.org/10.1016/j.jafrearsci.2016.03.009 Afzal, P., Harati, H., Fadakar Alghalandis, Y., Yasrebi, A.B., 2013. Application of Spectrum-Area Fractal Model to Identify of Geochemical Anomalies Based on Soil Data in Kahang Porphyry-Type Cu Deposit, Iran. Geochemistry 73(4), 533–543. https://doi.org/10.1016/j.chemer.2013.08.001 Afzal, P., Jebeli, M., Pourkermani, M., Jafari Rad, A., 2018. Correlation between rock types and Copper mineralization using fractal modeling in Kushk-e-Bahram deposit, Central Iran. Geopersia 8, 131–141. https://doi.org/10.22059/geope.2017.237332.648334 Agterberg, F.P., 1995. Multifractal modeling of the sizes and grades of giant and supergiant deposits. International Geology Review 37, 1–8. https://doi.org/10.1080/00206819509465388 Agterberg, F.P., Cheng, Q., Wright, D.F., 1993. Fractal modeling of mineral deposits. In: Elbrond J, Tang, X (Eds.). 24th APCOM symposium proceeding, Montreal, Canada, 43–53. Ahmadfaraj, M., Mirmohammadi, M., Afzal, P., 2016. Application of fractal modeling and PCA method for hydrothermal alteration mapping in the Saveh area (Central Iran) based on ASTER multispectral data. International Journal of Mining and Geo-Engineering 50, 37–48. https://doi.org/10.22059/ijmge.2016.57307 Ahrens, L.H., 1954. The lognormal distribution of the elements (a fundamental law of geochemistry and its subsidiary). Geochimica et Cosmochimica Acta 5, 49–73. https://doi.org/10.1016/0016-7037(54)90040-X Ali, A., Pour, A., 2014. Lithological mapping and hydrothermal alteration using Landsat 8 data: A case study in Ariab mining district, red sea hills, Sudan. International Journal of Basic Applied Sciences 3, 199–208. https://doi.org/10.14419/ijbas.v3i3.2821 Bai, J., Porwal, A., Hart, C., Ford, A., Yu, L., 2010. Mapping geochemical singularity using multifractal analysis: Application to anomaly definition on stream sediments data from Funin Sheet, Yunnan, China. Journal of Geochemical Exploration 104, 1–11. https://doi.org/10.1016/j.gexplo.2009.09.002 Pour, A.B., Hashim, M., 2012. The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits.Ore Geology Review. 44, 1–9. https://doi.org/10.1016/j.oregeorev.2011.09.009 Carranza, E.J.M., 2009. Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features. Ore Geology Reviews 35, 383–400. https://doi.org/10.1016/j.oregeorev.2009.01.001 Carranza, E.J.M., 2010. From predictive mapping of mineral prospectivity to quantitative estimation of number of undiscovered prospects. Resource Geology 61, 30–51. https://doi.org/10.1111/j.1751-3928.2010.00146.x Carranza, E.J.M., Owusu, E., Hale, M., 2009. Mapping of prospectivity and estimation of number of undiscovered prospects for lode-gold, southwestern Ashanti Belt, Ghana. Mineralium Deposita 44, 915–938. https://doi.org/10.1007/s00126-009-0250-6 Carranza E.J.M., Sadeghi M., 2010. Predictive mapping of prospectivity and quantitative estimation of undiscovered VMS deposits in Skellefte district (Sweden). Ore Geology Reviews 38, 219–241. https://doi.org/10.1016/j.oregeorev.2010.02.003 Carranza, E.J.M., 2008. Geochemical Anomaly and Mineral Prospectivity Mapping in GIS. Handbook of Exploration and Environmental Geochemistry, Vol. 11, Elsevier, Amsterdam, 351 p. Cheng, Q., Agterberg, F.P., 1996 Multifractal modeling and spatial statistics. Mathematical Geology 28, 1–16. https://doi.org/10.1007/BF02273520 Ciampalini, A., Garfagnoli, F., Antonielli, B., Moretti, S., Righini, G., 2013. Remote sensing techniques using Landsat ETM+ applied to the detection of iron ore deposits in Western Africa. Arabian Journal Geosciences 6, 4529–4546. https://doi.org/10.1007/s12517-012-0725-0 Cox, D.P., Singer, D.A., 1986. Mineral deposit models. U.S. Geological Survey Bulletin 1693, 1-10. https://doi.org/10.3133/b1693 Daneshfar, B., Desrochers, A., Budkewitsch, P., 2006. Mineral-potential mapping for MVT deposits with limited data sets using Landsat data and geological evidence in the Borden basin, Northern Baffin Island, Nunavut, Canada. Natural Resources Research 15, 129–149. https://doi.org/10.1007/s11053-006-9020-7 Daneshvar Saein, L., 2017. Delineation of enriched zones of Mo, Cu and Re by concentration-volume fractal model in Nowchun Mo-Cu porphyry deposit, SE Iran. Iranian Journal of Earth Sciences 9, 64–72. Deng, J., Wang, Q., Yang, L., Wang, Y., Gong, Q., Liu, H., 2010. Delineation and explanation of geochemical anomalies using fractal models in the Heqing area, Yunnan Province, China. Journal of Geochemical Exploration 105, 95–105. https://doi.org/10.1016/j.gexplo.2010.04.005 Di Tommaso, I., Rubinstein, N., 2007. Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina. Ore Geology Reviews 32(1), 275–90. https://doi.org/10.1016/j.oregeorev.2006.05.004 Drury, S., 2001. Image interpretation in geology. Cheltenham Malden: Nelson Thornes Blackwell Science, 290 p. Ducart, D.F., Silva, A.M., Toledo, C.L.B., Assis, L.M.d., 2016. Mapping iron oxides with Landsat-8/OLI and EO-1/Hyperion imagery from the Serra Norte iron deposits in the Carajás Mineral Province. Brazilian Journal of Geology 46, 331–349. https://doi.org/10.1590/2317-4889201620160023 Farahmandfar, Z., Jafari, M.R., Afzal, P., Ashja Ardalan, A., 2020. Description of gold and copper anomalies using fractal and stepwise factor analysis according to stream sediments in NW Iran. Geopersia 10(1), 135–148. https://doi.org/10.22059/geope.2019.265535.648413 Gahlan, H., Ghrefat, H., 2018. Detection of gossan zones in arid regions using Landsat 8 OLI data: Implication for mineral exploration in the eastern Arabian shield, Saudi Arabia. Natural Resources Research 27, 109–124. https://doi.org/10.1007/s11053-017-9341-8 Hassanpour, S., Afzal, P., 2013. Application of concentration-number (C-N) multifractal modelling for geochemical anomaly separation in Haftcheshmeh porphyry system, NW Iran. Arabian Journal of Geosciences 6, 957–970. https://doi.org/10.1007/s12517-011-0396-2 Hawkes, H. E., Webb, J. S., 1979. Geochemistry in mineral exploration, 2end eds. Academic Press, New York 657 p. Heidari, M., Ghaderi, M., Afzal, P., 2013. Delineating mineralized phases based on lithogeochemical data using multifractal model in Touzlar epithermal Au-Ag (Cu) deposit, NW Iran. Applied Geochemistry 31, 119–132. https://doi.org/10.1016/j.apgeochem.2012.12.014 Hitzman, M.W., Oreskes, N., and Einaudi, M.T., 1992. Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-LREE) deposits: Precambrian Research 58, 241–287. https://doi.org/10.1016/0301-9268(92)90121-4 Hassani, S.A., 2013. Lithogeochemical, stream sediments and hydrogeochemical studies using classical and fractal statistical methods in Alut 1:100000 sheet (Kurdistan). M.Sc. thesis. University of Islamic Azad University, Khoramabad (in Persian with English abstract). Hosseini, S.A., Afzal, P., Sadeghi, B., Sharmad, T., Shahrokhi, S.V., Farhadinejad, T., 2015. Prospection of Au mineralization based on stream sediments and lithogeo-chemical data using multifractal modeling in Alut 1:100,000 sheet, NW Iran. Arabian Journal of Geoscience 8, 3867–3879. https://doi.org/10.1007/s12517-014-1436-5 Jaafari, M.A., Kananian, A., Nazarpour, A., 2019. Discrimination of Pb and Zn metals geochemical anomalies using classical statistical (Mean+nSTEV), singularity index, remote sensing and structural factors method in Khondob 1:100000 sheet, northern part of Malayer-Aligoudarz-Esfahan Zone. Journal of Advanced Applied Geology 9(3), 341–56. https://doi.org/10.22055/aag.2019.28425.1937 Afzal, P., Jebeli, M., Pourkermani, M., Jafari Rad, A., 2018. Correlation between rock types and Copper mineralization using fractal modeling in Kushk-e-Bahram deposit, Central Iran. Geopersia 8, 131–141. https://doi.org/10.22059/geope.2017.237332.648334 Kan, H., London, S.J., Chen, G., Zhang, Y., Song, G., Zhao, N., Jiang, L., Chen, B., 2007. Differentiating the effects of fine and coarse particles on daily mortality in shanghai, China. Environment International. 33, 376-384. https://doi.org/10.1016/j.envint.2006.12.001 Karimpour, M.H., Malekzadeh, A., Haidarian, M.R., 2012. Ore deposit exploration, geology, geochemistry, satellite and geophysics models, 2end edition, Ferdowsi University of Mashhad p. 632(in Persian). Khalili, H., Afzal, P., 2018. Application of spectrum-volume fractal modeling for detection of mineralized zones. Journal of Mining and Environment 9, 371–378. https://doi.org/10.22044/jme.2018.6285.1451 Kholghi, M., 2004. Geological map of the Varcheh 1:100000 sheet. Geological Survey and Mineral Exploration of Iran. Kouhestani, H., Ghaderi, M., Afzal, P., Zaw, K., 2020. Classification of pyrite types using fractal and stepwise factor analyses in the Chah zard gold-silver epithermal deposit, Central Iran. Geochemistry: Exploration, Environment, Analysis 20, 496–508. https://doi.org/10.1144/geochem2020-031 Li, C., Ma, T., Shi, J., 2003. Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background. Journal of Geochemical Exploration, 77, 167–175. https://doi.org/10.1016/S0375-6742(02)00276-5 Lima, A., De Vivo, B., Cicchella, D., Cortini, M., Albanese, S., 2003. Multifractal IDW interpolation and fractal filtering method in environmental studies: An application on regional stream sediments of (Italy), Campania region, Applied Geochemistry 18, 1853-1865. https://doi.org/10.1016/S0883-2927(03)00083-0 Mandelbrot, B.B., 1983. The Fractal Geometry of Nature. W.H. Freeman, New York 468 p. Monecke, T., Monecke, J., Herzig, P.M., Gemmell, J.B., Monch, W., 2005. Truncated fractal frequency distribution of element abundance data: a dynamic model for the metasomatic enrichment of base and precious metals, Earth and Planetary Science Letters 232, 363–378. https://doi.org /10.1016/j.epsl.2005.01.033 Moradi, R., Boomeri, M., 2017. Remote sensing detection of altered zones associated with Cu-Mo mineralization in north of Zahedan, SE Iran using Landsat-8 data. Yerbilimleri 38(3), 275–294. https://dergipark.org.tr/en/pub/yerbilimleri/issue/39251/462194 Mirhosseini Moosavi, S., Almasian, M., 2012. Application of different image processing techniques on ETM+ images for study of Zendan-Minab fault system. Journal of Earth 24, 107–123 (in Persian with English abstract). Nazarpour, A., 2018. Application of C-A fractal model and exploratory data analysis (EDA) to delineate geochemical anomalies in the: Takab 1:25,000 geochemical sheet, NW Iran. Iranian Journal of Earth Sciences 10, 173-180. Nazarpour, A., Sadeghi, B., Sadeghi, M., 2015. Application of fractal models to characterization and evaluation of vertical distribution of geochemical data in Zarshuran gold deposit, NW Iran. Journal of Geochemical Exploration 148, 60-70. https://doi.org/10.1016/j.gexplo.2014.08.007 Rahmati, A., Afzal, P., Abrishamifar, S.A., Sadeghi, B., 2015. Application of concentration–number and concentration–volume fractal models to delineate mineralized zones in the Sheytoor iron deposit, Central Iran. Arabian Journal of Geosciences 8(5), 2953–2965. https://doi.org/10.1007/s12517-014-1330-1 Ranjbar, H., Honarmand, M., and Moezifar, Z., 2004. Application of the Crosta technique for porphyry copper alteration mapping, using ETM+ data in the southern part of the Iranian volcanic sedimentary belt. Journal of Asian Earth Sciences 24, 237–243. https://doi.org/10.1016/j.jseaes.2003.11.001 Rowan, L.C., Goetz, A.F.H., Ashley, R.P., 1977. Discrimination of hydrothermally altered and unaltered rocks in visible and near infrared multispectral images. Geophysics 42(3), 522–535. https://doi.org/10.1190/1.1440723 Saadati, H., Afzal, P., Torshizian, H., Solgi, A., 2020. Geochemical exploration for lithium in NE Iran using the geochemical mapping prospectivity index, staged factor analysis, and a fractal model. Geochemistry: Exploration, Environment, Analysis 20(4), 461. https://doi.org/10.1144/geochem2020-020 Sabins, F.F., 1999. Remote sensing for mineral exploration. Ore Geology Reviews 14, 157–183. https://doi.org/10.1016/S0169-1368(99)00007-4 Sabins, F.F., 1997. Remote Sensing-Principles and Interpretation, third ed. W.H. Freeman and Co, New York. 361p. Sadeghi B., Khalajmasoumi, M., Afzal, P., Moarefvand, P., Yasrebi, A.B., Wetherelt, A., Foster, P., Ziazarifi, A., 2013. Using ETM+ and ASTER sensors to identify iron occurrences in the Esfordi 1:100000 mapping sheet of Central Iran. Journal of African Earth Sciences 85, 103–114. Sadeghi, B., Moarefvand, P., Afzal, P., Yasrebi, A.B., Saein, L.D., 2012. Application of fractal models to outline mineralized zones in the Zaghia iron ore deposit, Central Iran. Journal of Geochemical Exploration 122, 9–19. https://doi.org/10.1016/j.gexplo.2012.04.011 Shamseddin Meigoony, M., Afzal, P., Gholinejad, M., Yasrebi, A.B., Sadeghi, B., 2014. Delineation of geochemical anomalies using factor analysis and multifractal modeling based on stream sediments data in Sarajeh 1:100,000 sheet, Central Iran. Arabian Journal of Geosciences 7, 5333–5343. https://doi.org/10.1007/s12517-013-1074-3 Sharokhi, S.V., Zarei sahamieh, R., 2013. Geochemical and mineral chemistry study of granitoids north of Aligudarz, Astaneh and north of Boroujerd (west of Iran). Journal of Earth 8, 30. (in Persian with English abstract). Shayestehfar, M.R., Zarrabi, A., Sharafi, A., Yazdi, A., 2006. Petrology, petrography and mineralographical studies of “Choghart Iron Ore Mine”, Bafgh area, Iran. Geochimica et Cosmochimica Acta 70, A578. https://doi.org/10.1016/j.gca.2006.06.1072 Stöcklin, J., 1968. Structural history and tectonics of Iran: A review. American Association of Petroleum Geologists Bulletin 52, 1229–1258. Turcotte, D.L., 1997. Fractals and chaos in geology and geophysics. Cambridge University Press, Cambridge 398 p. Wang, G., Zhang, S., Yan, C., Song, Y., Sun, Y., Li, D., Xu, F., 2011. Mineral potential targeting and resource assessment based on 3D geological modeling in Luanchuan region, China. Computers & Geosciences 37, 1976–1988. https://doi.org/10.1016/j.cageo.2011.05.007 Yasrebi, A.B., Hezarkhani, A., 2019. Resources classification using fractal modelling in Eastern Kahang Cu-Mo porphyry deposit, Central Iran. Iranian Journal of Earth Sciences 11, 56–67. https://doi.org/10.30495/ijes.2019.544596 Zhang, D., Cheng, Q., Agterberg, F., Chen, Z., 2016. An improved solution of local window parameters setting for local singularity analysis based on Excel VBA batch processing technology. Computers and Geosciences 88, 54–66. https://doi.org/10.1016/j.cageo.2015.12.012 Zuo, R., Wang, J., 2020. ArcFractal: An ArcGIS Add-In for Processing Geoscience Data Using Fractal/Multifractal Models. Natural Resources Research 29, 3–12. https://doi.org/10.1007/s11053-019-09513-5 Zuo, R., Agterberg, F.P., Cheng, Q., Yao, L., 2009b. Fractal characterization of the spatial distribution of geological point processes. International Journal of Applied Earth Observation and Geoinformation 11(6): 394–402. https://doi.org/10.1016/j.jag.2009.07.001 Zuo, R., Cheng, Q., Xia, Q., 2009a. Application of fractal models to characterization of vertical distribution of geochemical element concentration. Journal of Geochemical Exploration 102(1), 37–43. https://doi.org/10.1016/j.gexplo.2008.11.020 | ||
آمار تعداد مشاهده مقاله: 484 تعداد دریافت فایل اصل مقاله: 367 |