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Abstract. In this work, the axisymmetric-vibrational behavior of a size-dependent circular nano-plate with functionally graded 
material with different types of boundary conditions was investigated. The analysis was performed based on the Stress-driven 
model (SDM) and Strain-gradient theory (SGT) in conjunction with classical plate theory. The governing equations of motion and 
their corresponding equations for boundary conditions were obtained based on Hamilton’s principle and solved using the 
generalized differential quadrature rule. Results show that this method is applicable to the vibrational analysis of such structures 
with a fast convergence rate; as N approaches 6 for the first mode, and 10 for the second as well as the third and fourth modes, 
regardless of the type of boundary condition. In both models, the influences of various parameters such as size-effect parameter 
Lc, material heterogeneity index n, and types of boundary conditions were obtained on the first four modes and compared with 
each other. Results indicate that the natural frequencies in these modes increase with an increase in the heterogeneity index n, 
and size-effect parameter Lc. Additionally, these parameters appear to have a stiffening effect on the nano-plate vibrational 
behavior. However, for a nano-plate resting on a knife or simply supported edge, in the first mode, the SDM shows a more stiffening 
effect on the plate behavior as compared with the SGT. Nonetheless, for the clamped and free edge boundary conditions, both 
models predicted the same behavior. The SGT showed a higher-stiffening effect only in the fourth mode, for all types of considered 
boundary conditions. 

Keywords: Vibrational response, functionally graded material, circular nano-plate, stress-driven model, strain gradient theory. 

1. Introduction 

Humans are always looking for better ways to live. One of the newest solutions to reach this goal is the use of nano-technology. 
Due to the severe need for high technology in engineering and medical sciences, there is a special focus on the development of 
nano-science, as well as the introduction of proper models for the prediction of their behaviors (i.e., the development of special 
tools and drugs for special applications). Nanomedicine and nano-delivery systems show a bright horizon for treating incurable 
diseases. Another important application of nano-drugs and nanostructures is in the timely detection of diseases. Engineers have 
played an important and undeniable role in this regard. Many diagnostic devices and effective drugs in the treatment process are 
designed and built by engineers. Drugs made using nano-technology are so precise that their side effects are very low for patients.  

It is now well known that the behavior of materials at the nano-scale is quite different from those at the macro-scale level, if 
not being contradictory. Therefore, scientists cannot study nano-structures based on the usual theories available on macro-scale 
materials. To this end, a few non-classical theories capable of studying nano-materials and nanostructures have been proposed and 
developed. Among these theories, one can point out the nonlocal elasticity theory [1], strain gradient theory [2-4], surface effect 
elasticity, couple stress theory, and stress-driven model [5-9].  

When the feature size of a structure is reduced to the nano-scale, classical mechanics will break down firstly at the thickness 
dimensions due to the simple fact that the plate’s thickness dimension is far smaller than its length dimension, as illustratively 
shown in [10]. This in turn implies that the thickness effect is likely to play a dominant role in the contribution of size dependence. 
This fact has been also pointed out by molecular dynamics simulations [11]. Jiang et al. [12] investigated the elastic buckling of Euler-
Bernoulli and Timoshenko beams under different boundary conditions using the stress-driven model. Barretta et al. [13] studied the 
buckling behavior of Bernoulli-Euler size-dependent beams by a stress-driven model. Free flexural vibrations of nano-beams were 
studied using a stress-driven model and Euler-Bernoulli kinematics by Luciano et al. [14]. Pinnola et al. [15] described the random 
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vibration behavior of Bernoulli–Euler nano-beams with external damping in the frameworks of the stress-driven model. Bending 
and buckling of Timoshenko nano-beams were studied by Luciano et al. [16] using a non-local stress-driven model. He et al. [17] 
utilized the stress-driven model to study the free vibration of Euler–Bernoulli and Timoshenko size-dependent beams. The bending 
behavior of Timoshenko nano-beams made of functionally graded materials was analyzed by Roghani and Rouhi [18] in the 
frameworks of integral (original) formulation of Eringen’s nonlocal theory. Romano and Barretta [19] proposed an integral type 
nonlocal elasticity model for the bending of small-scale beams. Apuzzo et al. [20] studied the free vibration behavior of small-scale 
beams using an integral form of nonlocal theory. Other researchers have also studied nano-mechanics and nanostructures utilizing 
other nonlocal models [21-45]. 

Zarei et. al [46] studied the vibrational and buckling properties of circular nano-plate with variable thickness and in-plane forces. 
Linear thickness variation in the radial direction and the nonlocal elasticity theory were used to model the size-dependent effects. 
Additionally, differential transform and Raleigh-Ritz methods were used to obtain the frequency equations for the clamped and 
simply supported boundary conditions. In this article, the effect of mode number, nonlocal, and taper parameters on the natural 
frequency were investigated. Results showed that increasing the taper parameter causes an increase in buckling load and natural 
frequencies. Using the stress-driven model and Kirchhoff plate theory, R. Barretta et. al [47] studied the behavior of an axisymmetric 
circular/ annular nano-plate and compared the results with those of the strain gradient model of elasticity generated by Reissner’s 
variational principle. Shishesaz et. al [48] studied the small-scale effect on the linear free-field vibration of a nano-circular plate 
using classical plate theory, nonlocal elasticity theory, and the Adomian decomposition method. The first five axisymmetric natural 
frequencies and displacements of the nano-circular plate were obtained and numerical results were deduced to illustrate the 
influence of nonlocal parameters on the natural frequencies and displacements of the structure in question. Shariati et. al [49] 
investigated the nonlinear free vibration of a circular nano-plate considering small scale effects by using the nonlocal elasticity 
theory and variational iteration method. Li et. al [50] proposed a size-dependent nonlinear theory for the bending behavior of an 
axisymmetric thin circular plate. They used the Zhou strain gradient theory, the von Kármán geometric nonlinearity, and the 
principle of minimum potential energy to analyze the nonlinear axisymmetric bending of the plate. Al-Furjan et. al [51] studied the 
vibrational behavior of a viscoelastic composite annular micro-plate resting on a viscoelastic foundation based on the Kelvin-Voight 
model and the modified couple stress theory. The effects of the length scale parameter, radius ratio, circumferential and radial 
mode numbers, geometry of the laminated layer, and boundary conditions were studied on the frequency responses of the annular 
microplate, based on the generalized differential quadrature method (GDQM), for various boundary conditions.  

On the other hand, micro-structures with functionally graded materials (FGMs), in which the properties vary from one material 
to another across the thickness, are not prone to be adequately modeled by employing the classical continuum mechanics alone. 
However, using the non-classical continuum mechanics, with spatial variations in material properties, will produce more accurate 
results, especially in vibrational problems [42, 52]. In such cases, it is also possible to allow for variations of elastic properties in t
he plate platform, as considered in [53, 54]. The transverse free vibrational behavior of an axisymmetric functionally graded 
circular nano-plate with radial loads was studied by Luo et. al [55]. They used the nonlocal strain gradient approach and Mindlin 
plate theory to model the problem and solved the equation of motion using the differential quadrature method. They showed that 
the natural frequencies of the circular nanoplates decrease with an increase in the radial compressive load while increase with the 
increase in the radial tensile load. They also showed that the first-mode natural frequency reduces to zero under a certain radial 
compressive load, resulting in dynamic instability. Pourabdy et. al [56], studied the linear vibrational behavior of functionally graded 
circular nano-plates based on the integral form of the nonlocal strain gradient theory, generalized differential quadrature rule, and 
Galerkin weighted residual method. The dynamic behavior of the structure in question was studied under different types of 
boundary conditions. Free vibration behavior of functionally graded nano-beam was investigated by Barretta et al. [57] based on 
strain gradient theory and stress-driven model. Zhang and Qing [58] employed a stress-driven model to study the buckling behavior 
of functionally graded curved sandwich microbeams. Penna et al. [59] utilized a stress-driven model to study the nonlinear free 
vibrations analysis of geometrically imperfect Bernoulli-Euler functionally graded nano-beams subjected to different boundary 
conditions. 

A comprehensive survey of the literature reveals that there is a lack of published data on the nano-plate vibrational behavior, 
based on the stress-driven model. So far, most of the studies performed by other researchers have focused on the vibrational 
behavior of beam structures. Therefore, the authors have tried to focus on the linear vibrational behavior of a functionally graded 
circular nano-plate using the stress-driven model, based on four types of commonly used clamped, simply supported, free, and 
knife-edge boundary conditions. The method used in this research can overcome any pitfalls that can exist in the dynamic behavior 
of circular nano-plate under different types of boundary conditions if other nonlocal theories are used instead. Additionally, the 
results of this work can initiate a set point for the study of vibrational behavior of the circular nano-plates, using SDM. In this study, 
the process of applying different theories (models) to achieve the governing equations and their solutions are well described in 
subsequent sections 2 and 3. The generalized differential quadrature rule (GDQR) is used to find a solution. Validation of the 
solution procedure and its corresponding results is discussed in section 4. 

2. Problem Formulation, Equation of Motion Based on Stress Resultants 

A circular nano-plate of thickness h and radius R is shown in Fig. 1. To study the vibrational behavior of this plate, the strain-
driven nonlocal integral elasticity model (SDM) is used in conjunction with the classical plate theory (CLPT). The equilibrium 
equations are deduced using an axisymmetric cylindrical coordinate system (r, z). 

 

Fig. 1. Coordinate system and configuration of the nano-plate. 
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As mentioned in the "Introduction" section, generally a functionally graded material, FGM, has varying material properties. For 
simplicity, the selected FGM material used for the nano-plate is composed of two isotropic materials, namely, ceramic and metal. In 
this case, the material properties, namely Young’s modulus E, and mass density ρ are assumed to vary across the thickness 
according to Eq. (1), while for simplicity the Poisson’s ratio ν is assumed to be constant in the thickness direction.  

(1)  ( ) ( ) ( ) ( ) ( ) ., , , ,1   ,   ,1   ,   ,ρ ρ ρ ν ν+= − =+ =−n n n n
c m c mE r z t E r z t rV zE tV V V

 

The subscripts m and c refer to the metal and ceramic constituents, respectively; n is the gradient index, and V is the volume 
fraction of the ceramic material, that is assumed to follow the power-law distribution as: 
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Based on the Kirchhoff assumption for the thin plates, the shear deformation and rotary inertia can be omitted. Moreover, the 
component of displacement field in the radial r-direction ur and the transverse z-direction uz are assumed to vary as follows [60]; 
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where u0 and w0 are the displacement components of the mid-plane surface in the radial and transverse directions, respectively. 
On the other hand, based on the strain-displacement relationships, the non-zero strain components are given by [60]; 
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where 0εrr and 0
θθε are the normal radial and hoop local elastic strains associated with the mid-plane surface and κrr and κθθ are the 

principal curvatures of the deflected surface.  
Using Hamilton's principle, the differential equations of motion and boundary conditions, based on Kirchhoff’s plate model, are 
expressed as [60]: 
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where, Qr is the transverse shearing force, and the stress resultants Nrr, Nθθ, Mrr, and Mθθ, as well as the mass moments of inertias 
I0, I1, and I2, are defined as: 
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2.1. Equations of motion based on stress-driven model (SDM)  

Based on the classical plate theory, the strain components are written in terms of stress components as: 
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Using Eq. (4), (6-a), and (7) one can obtain: 
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where the parameters (A, B, and D) are the stiffness coefficients and are defined as follows: 
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On using Eq. (8-a),ε��
� and κrr can be obtained as: 
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Fig. 2. Plot of bi-exponential kernel function, Eq. (12), for L=0.1, 0.2 and 0.5 [9]. 

The SDM proposed by Romano and Barretta for the nano-beams is used to capture the size effects in the axisymmetric nano-
plat. Based on this model, assuming the non-local elasticity only for the radial strain of the mid-plane surface,ε��

� , and its 
corresponding radial curvature κrr [61], one can write; 
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In Eq. (11), L is the characteristic length that describes the size effects and φL is the averaging kernel with the following 
properties: 
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where f is any continuous test field [61]. 
In this study, the type of bi-exponential kernel function used for the analysis is expressed by Eq. (12) and plotted in Fig. 2 for L 

= 0.1, 0.2, and 0.5. One can easily prove that this function fulfils all the necessary properties given by the set of Eqs. (11). 
Using this special kernel function, the nonlocal integral convolution, Eq. (10), can be reformed to the following SDM differential 

equation, Eq. (13-a), with the constitutive boundary conditions given in Eq. (13-b) such that: 
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On using Eqs. (8-b), and (13), Eq. (8-a) can be recast as Eqs. (14-a, b) such that: 
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Solving the Eqs. (14-a, b) gives; 
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(15-b)  
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Using Eqs. (4) and (15-a, b), the stress resultant and shear force Qr can be written in the following form: 

(16)  

3 2 4
2 20 0 0 0 0 0

2 3 2 2 4

3 2 4
2 20 0 0 0 0

2 3 2 2 4

1
,

1 1

1 1θθ

ν ν
ν ν

ν ν
ν ν

         ∂ ∂ ∂ ∂ ∂      = − + − − +           − ∂ ∂ − ∂ ∂ ∂         
     ∂ ∂ ∂ ∂  = − + − −     − ∂ ∂ − ∂ ∂    

rr

u u u w w wA B
N L L

r r r r r r r

u u u w wA B
N L L

r r r r r
0

3 2 4
2 20 0 0 0 0 0

2 3 2 2 4

3
20 0 0

2 3

1
,

1
,

1 1

1 1θθ

ν ν
ν ν

ν
ν

  ∂ +  ∂  
         ∂ ∂ ∂ ∂ ∂      = − + − − +           − ∂ ∂ − ∂ ∂ ∂         
   ∂ ∂   = − + −   − ∂ ∂   

rr

w

r r

u u u w w wB D
M L L

r r r r r r r

u u uB D
M L

r r r

2 4
20 0 0

2 2 4

2 4 3
20 0 0 0

02 2 2 4 3

3 2
20 0 0

2 3 2 2

1
,

1 1 1
1

1 1
                                 

1

ν
ν

ν

ν

ν

   ∂ ∂ ∂  − +   − ∂ ∂ ∂   
  ∂ ∂ ∂ ∂−   = + − − −    − ∂ ∂ ∂ ∂  

∂ ∂ ∂
− + − −

− ∂ ∂ ∂

r

w w w
L

r r r r

u u u uB
Q u L

r r r r r r r

w w wD
L

r r r r r

5 4
0 0

5 4

1
0.

ν  ∂ ∂−    − =     ∂ ∂  

w w

r r r

 

Additionally, substituting Eq. (16) into Eq. (5-a) gives the equations of motion for the annular nano-plate based on SDM. The 
resulting equations are expressed as Eqs. (17-a, b) and are written as;  

(17-a)  

3 2 4
2 20 0 0 0 0 0

2 3 2 2 4

3
20 0 0

2 3

1 1
1 1

         
1

ν ν
ν ν

ν
ν

            ∂ ∂ ∂ ∂ ∂∂            − + − − +                ∂ − ∂ ∂ − ∂ ∂ ∂            
   ∂ ∂   − − +   − ∂ ∂   

u u u w w wAr Br
L L

r r r r r r r r r

u u uA
L

r r r

2 4 2 22
20 0 0 0 0 0

0 12 2 4 2 2 2

1 1
1

ν
ν

      ∂ ∂ ∂ ∂ ∂ ∂∂    − − + = − +       − ∂ ∂ ∂ ∂ ∂ ∂ ∂     

w w w w w wB
L I I

r r r r t t r r r

 

(17-b)  

3 2 42
2 20 0 0 0 0 0

2 2 3 2 2 4

3
20 0 0

2 3

1 1
1 1

       
1

ν ν
ν ν

ν
ν

            ∂ ∂ ∂ ∂ ∂∂            − + − − +                ∂ − ∂ ∂ − ∂ ∂ ∂            
   ∂ ∂∂   − − +  ∂ − ∂ ∂ 

u u u w w wBr Dr
L L

r r r r r r r r r

u u uB
L

r r r r

( )

2 4
20 0 0

2 2 4

2 2 2
0 0

0 1 0 22 2 2

1
1

1 1
                                                    

ν
ν

     ∂ ∂ ∂      − − +       − ∂ ∂ ∂         
  ∂ ∂∂ ∂ ∂ ∂  = + −       ∂ ∂ ∂ ∂ ∂ ∂

w w wD
L

r r r r

w w
I I ru I r

t t r r t r r r

     

 

Equations (17-a, b) can be simplified into a newer form as;  

Additionally, substituting Eq. (4-a) into the Eq. (13-b), the constitutive boundary condition can be obtained as follows: 

(19)  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2
0 0 0 0

2 2

3 2 3 2
0 0 0 0

3 2 3 2

1 1
0, 0, 0           ,     , , 0,

1 1
0, 0, 0       ,     , , 0.

∂ ∂ ∂ ∂
− = + =

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

− = + =
∂ ∂ ∂ ∂

u u u u
t t R t R t

r L r r L r

w w w w
t t R t R t

r L r r L r

 

According to Eq. (18-a, b), it can be observed that by setting the parameter L equal to zero, the equation of motion for a plate 
based on the local classical plate theory can be achieved. 
Using Eqs. (5-b) and 16), the boundary condition can be obtained. The associated mathematical relations for different cases are 
given in Table 1. 

 

(18-a)  

2 4 3
20 0 0 0
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3 2 5 4 2
20 0 0 0 0 0
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       ∂ ∂ ∂ ∂−     + − − −       − ∂ ∂ ∂ ∂       
       ∂ ∂ ∂ ∂ ∂ ∂−    − + − − − =       − ∂ ∂ ∂ ∂ ∂ ∂       

u u u uA
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r r r r r r r
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L I
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(18-b)  
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20 0 0 0 0 0
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       ∂ ∂ ∂ ∂ ∂−     + − + − −       − ∂ ∂ ∂ ∂ ∂       
    ∂ ∂ ∂ ∂ ∂ ∂−  − + − + − −    − ∂ ∂ ∂ ∂ ∂ ∂   

u u u u uB
u L

r r r r r r r r r

w w w w w wD
L

r r r r r r r r r r
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1 1
                                                           

      
  ∂ ∂ ∂ ∂∂ ∂  = + + − +    ∂ ∂ ∂ ∂ ∂ ∂ 

w u w w
I I u I
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Table 1. Boundary conditions and their mathematical relations. 

Associated Mathematical relations B. Cs Location 

0 0 0′= = =
r

u w Q  Center of plate r=0 

0 0 0= 0′= =u w w  Clamped 

r=R 
0 0 0= = =

rr
u w M  Knife-edge support 

0 0= = =
rrw N M  Simply supported 

0= = =
r r r

Q N M  Free 

To obtain the appropriate solutions for u0(r, t) and w0(r, t), the oscillating responses were assumed to be: 

(20)  ( ) ( ){ } ( ) ( ){ }0 0,   ,  ,    ,   ω= ni tu r t w r t u r w r e  

where ωn is the natural frequency of the vibrating nano-plate. On using Eq. (20), Eqs. (18-a, b) and Eq. (19) can be recast into the 
following forms: 

(21-a)  

2 4 3
2

2 2 2 4 3

3 2 5 4
2 0

1 02 3 2 2 5 4

1 1 1
1

1 1 1
           

1

ν

ν

ν

ν

       −     + − − −       −        
        −     − + − − − = −        −        

A d u du d u d u
u L

dr r dr r dr r dr

dwB d w d w dw d w d w
L I I u
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(21-b)  
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1
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ν

ν

ν

       −     + − + − −       −        
      −   − + − + − −      −       

B d u d u du d u d u
u L

dr r dr r dr r dr r dr

D d w d w d w dw d w d w
L

dr r dr r dr r dr dr r dr

2
2

2 1 02

1 1
                                                                  ω

  
        = + − + −          

n

d w dw du
I I u I w

dr r dr dr r

 

(21-c)  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

2 2

3 2 3 2

3 2 3 2

1 1
0          ,     0.

1 1
0     ,     0.

− = + =

− = + =

d u du d u du
a a b b

dr L dr dr L dr

d w d w d w d w
a a b b

dr L dr dr L dr

 

To help to analyze the influence of effective parameters on the natural frequencies of the plate, the non-dimensional 
variables are defined as: 

(22)  

( ) ( ) ( )

( ) ( )

2

0 0 0

4
2 2 20 01 2

0 1 2 2
00 00 00

1
, , , , , , , ,         ,        , , , ,

, , ,            ,             1 ν ω

  = =    
  = Ω = −   

c

n n

AR BR D
s U W h L r u w h L A B D

R D D D

I I RI I
I I I

I I R I R D

 

where Do and Ioo are defined as:  

(23)  

3

0 00   ,    .
12

ρ= =m
m

E h
D I h  

Substituting Eq. (22) into Eqs. (21-a, b, c), the non-dimensional governing equations and the corresponding constitutive 
boundary conditions are obtained as follows: 

(24-a)  

2 4 3
2

2 2 4 3

3 2 5 4
2 2

1 03 2 2 5 4

1 1 1

1 1 1
       

ν

ν

       −     + − − −              
         −     − + − − − = − Ω                 

B

c

c n

d U dU d U d U
A U L

ds s ds s ds s ds

d W d W dW d W d W dW
L I I U

ds s ds s ds ds s ds ds

 

(24-b)  

3 2 5 4
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3 2 2 3 5 4

24 3 6 5
20 0

4 3 2 2 3 6 5

2 1 1 2

2 1 1 2
               

ν

ν

       −     + − + − −              
       −   − + − + − −            

c
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d U d U dU d U d U
B U L

ds s ds s ds s dr s ds
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D L
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

        = + − + − Ω          
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d W dW dU
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Table 2. Boundary conditions and their associated mathematical relations, based on the SDM. 

Location B. Cs. Associated Mathematical relations 

s=0 Center of plate 

( )
2 4 3 5

2 2

2 2 4 2 3 5

(1),(2) :  0,

(3) : 0 0 0 0.
1 1ν ν

= =

= ⇒ = ⇒ − − − =
− −

             r r c c

dW
U

dr

B d U d U D d W d W
Q Q L L

ds ds ds ds

 

s=1 

Clamped (1),(2),(3) :  = 0= =
dW

U W
dr

 

Knifed support 3 2 4
2 2

2 3 2 2 4

(1) ,(2) :  0,

(3): 0 0.
1 1

ν ν

ν ν

= =

= ⇒ + − − + − =
− −

             rr c c

U W

B dU d U D d W dW d W
M U L L

ds s ds ds s ds ds

 

Simply supported 
( )

( ) ( )3 2 4
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2 3 2 2 4
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, ,
(2) ,(3) : , 0 0,

1 1

ν ν

ν ν

=

= ⇒ + − − + − =
− −

             rr rr c c
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A B B DdU d U d W dW d W
N M U L L

ds s ds ds s ds ds

 

Free 
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, ,
(1) ,(2) : , 0 0,

1 1

1 1 1
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1

                       

ν ν

ν ν

ν
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= ⇒ + − − + − =
− −

−
= ⇒ + − − −

−

             
           

rr rr
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(24-c)  
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Also, on using Eq. (16) and Eq. (22), the boundary conditions given in Table 1 can be recast in a non-dimensional form as in 
Table 2, based on the clamped, knife-edge, simply supported and free edges, respectively.  

2.2. Equations of motion based on the strain-gradient theory (SGT)  

To check and verify the versatility of the SDM for modeling and analyzing the vibrational behavior of the annular nano-plate, 
in this section, the governing equations of motion based on the SGT are derived. Using the strain-gradient theory, SGT, and 
Kirchhoff’s plate model, the stress components are given by [62]; 

(26)  

( ) ( ) ( ) ( ) ( )( ){ }
( ) ( ) ( ) ( )( ){ }

0 1 1 1 1

0 1 1 1

1
,

1
2 .

θθ θθ

θθ θθ θθ θθ θθ

σ σ σ σ σ σ

σ σ σ σ σ

∂
= − + − +

∂
∂

= − + +
∂

rr rr rrr rrr r r

r r r

r r

r r

 

In Eq. (26), the superscript (0) and (1) denote the zero and first order of stress tensor in the SGT. Also, the non-zero component 
of these tensors are as follows: 

(27)  
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where, L is the material length-scale, and the strain components as well as the strain gradient tensors are defined as follows: 

(28)  
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Using Eq. (4), Eqs. (26-28), the stress and moment resultant can be written as: 

(29)  
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(29-cont.)  
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Substituting Eqs. (29) into the Eq. (5-a) and using Eqs. (20) and (22-23), the equations of motion for the circular FGM nano-plate 
based on the SGT are derived as: 
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Table 3. Mathematical relations in the frequency domain for the B. Cs of the nanoplate based on the SGT. 

Associated Mathematical relations B. Cs. Location 
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Also, using the concepts on Ref. [61], and Eqs. (20) and (22), the higher-order boundary conditions are: 
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On using Eq. (22), the boundary conditions given in Table 1 can be recast in a non-dimensional form in the frequency domain 
as in Table 3, based on the clamped, knife-edge, simply supported, and free edges, respectively.  

3. Solution Procedure using the Generalized Differential Quadrature Rule (GDQR) 

The GDQR has been used as a general numerical method to solve the high-order differential equations related to the Euler 
beam and plate fourth-order differential equations [63]. In the present work, the free vibration of the circular FGM nano-plate is 
governed by a set of sixth-order differential equations, that is constrained by five boundary conditions on each edge. 

According to this method, the nth order derivatives of functions U(s) and W(s) at any discrete point in a domain are 
approximated by the weighted linear sum of the function values at all other discrete points s = si (i =1, 2,…, N) [63] such that: 
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where 
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Moreover, the weighting coefficients in Eqs. (32-a) and (32-b) are defined as follows: 
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(34-c)  
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In Eq. (34-c), L(x) is a Lagrange interpolation function with the following properties [63]; 

(35)  ( )  1     =

  0    

=  ≠
i j

i j
L x

i j
 

Note that the first and second derivatives of the Lagrange interpolation function have been explicitly obtained in [64, 65]. 

3.1. Discretization of the motion equations based on the SDM using the GDQR method  

Using Eq. (31), the equation of motion and the constitutive boundary conditions, Eq. (24-a, b, c) can be written into the 
following forms: 
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(36-b)  
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Using Eq. (31) and Table 2, the corresponding associated mathematical relations for the boundary conditions are obtained and 
listed in Table 4, based on the SDM. 

3.2. Discretization of the motion equations based on the SGT using the GDQR method 

Using Eq. (31), the equations of motion, Eq. (30-a,b) and higher boundary conditions, Eq. (31-a, b), can be written as: 
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Also, using Eq. (31) and Table 3, the corresponding associated mathematical relations for the boundary conditions based on 
the SDM are obtained and listed in Table 4.  
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Table 4. Mathematical relations for the B. Cs of the nanoplate, based on SDM. 

Associated Mathematical relations B. Cs. Location 
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Table 5. Mathematical relations for the B. Cs of the nanoplate, based on SGT. 

Associated Mathematical relations B. Cs. Location 
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3.3. Solutions of the discretized equations of motion based on the SDM and SGT 

Rearranging Eqs. (36-a,b, and c) and Table 4 (related to SDM) or Eqs. (37)-(38) and Table 5 (related to SGT), their assembled 
form can be presented in a similar form as shown in Refs. [66, 67] as follows: 
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(40-a)  
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Applying the matrix sub-structuring method, Eq. (39) can be written into the following generalized eigenvalue equation: 

(41)  [ ] [ ]( ){ } { }2 0−Ω =n dS Q U  

where the matrices S and Q are defined as: 

(42)  [ ] [ ] [ ][ ] [ ] [ ] [ ] [ ][ ] [ ]1 1
    ,        

− −= − = −dd db bb bd dd db bb bdS S S S S Q Q Q S S  

The non-dimensional frequencies of the nano-plate, Ωn, can be obtained by solving Eq. (41). 

4. Validation of the Solution Procedure and Discussion of Results 

4.1. Validation of the solution procedure 

Since there are no pre-published results in the literature for the vibrational behavior of the FGM circular nano-plate based on 
the integral form of the SDM, then, the obtained results were compared with the vibrational behavior of a regular circular nano-
plate in Ref. [48], based on the SGT. In this reference, the influences of the non-dimensional scale parameter e0a/R on the 
axisymmetric natural frequencies were evaluated using the classical plate theory and the nonlocal elasticity, for simply supported 
and clamped edge B. Cs, using the Adomian decomposition method. Table 5 shows a comparison between the results of the first 
two axisymmetric frequencies for this structure, based on the non-dimensional scale parameters of e0/R=0.05, 0.10, 0.15, and 0.20. 
A different number of discrete grid points N along r direction was selected in the GDQR method to compare the deduced results 
with their counterpart values in Ref. [47]. In this case, the selected value of the Poisson's ratio was equal to 0.33. A comparison of 
these results confirms the accuracy of the proposed procedure in this analysis. 

Additionally, Figs. 3 to 6, exhibit the convergence behavior of the first four axisymmetrical dimensionless frequencies of the 
circular nano-plate that are based on the present work for SDM and SGT, as the magnitude of N was increased. Here, the 
heterogeneity index n has been assumed to be equal to 2 while the value of Poisson’s ratio ν was assumed to be 0.33. As observed, 
The GDQR method is well applicable to the vibrational analysis of this structure, with a fast convergence in both models, rate as N 
approaches 6 for the first mode and 10 for the second, third, and fourth modes, regardless of the type of boundary conditions 
imposed on the problem. 

4.2. Discussion of results 

According to the equations of motion deduced based on the nonlocal SDM and SGT, there are a few parameters that influence 
the vibrational behavior of the nano-plate. These parameters can be grouped as the material and geometry-related factors; namely 
the size parameter Lc, heterogeneity index n, and the boundary conditions. To investigate the effects of size parameter and 
boundary conditions on the vibrational behavior of the nanoplate, different values of frequency ratios (Ri =Ωi, nonlocal /Ωi, local), were 
plotted versus Lc, as shown in Figs. 7 to 10, for the first four axisymmetric modes. This ratio designates the ratio of the 
axisymmetrical natural frequency obtained from the local model to its counterpart value obtained from the SDM /SGT, for clamped, 
knife, simply supported, and free edge boundary conditions. These results are based on the values of 0.33 and 10 selected for the 
Poisson's ratio, and the number of plate divisions in the radial direction, in the GDQR procedure, respectively. additionally, to 
investigate the effect of heterogeneity index n, the first four axisymmetrical frequencies were plotted versus the heterogeneity 
indices n, in Fig. 11 to 14. These figures are generated based on the size parameters of Lc=0.05 and 0.2.  

 

Table 6. Comparison of the first two dimensionless natural frequencies of the circular nano-plate obtained from Ref.[48] and GDQR procedure for the 
non-dimensional scale parameter of e0/R and different grid points in the radial direction. 

B. Cs 
Mode 

number 
Results 

2

0
/ ωΩ =

n n
R I D  

e0/R =0.05 e0/R =0.10 e0/R =0.15 e0/R =0.20 

Clamped 

n=1 
GDQR 

N=4 10.1303 9.8805 9.5015 9.0361 

N=6 10.1289 9.8793 9.5005 9.0354 

N=8 10.1285 9.8789 9.5003 9.0352 

N=10 10.1285 9.8789 9.5003 9.0352 

Ref.[48] 10.1288 9.8788 9.5003 9.0352 

n=2 
GDQR 

N=4 39.8771 38.0346 33.8556 29.2315 

N=6 39.8112 38.0125 33.8517 29.1947 

N=8 39.7711 38.0046 33.8496 29.1926 

N=10 39.7711 38.0047 33.8496 29.1926 

Ref.[48] 39.7711 38.0047 33.8497 29.1927 

Simply 
supported 

n=1 
GDQR 

N=4 4.9234 4.8011 4.81223 4.6546 

N=6 4.9212 4.7995 4.6921 4.5657 

N=8 4.9001 4.7983 4.6412 4.4456 

N=10 4.9001 4.7983 4.6412 4.4456 

Ref.[48] 4.9000 4.7982 4.6412 4.4458 

n=2 
GDQR 

N=4 28.9877 26.3366 23.2212 20.1991 

N=6 28.9215 26.2904 23.1555 20.1887 

N=8 28.8796 26.2561 23.1262 20.1754 

N=10 28.8796 26.2561 23.1262 20.1754 

Ref.[48] 28.8795 26.2564 23.1263 20.1755 
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Fig. 3. Evaluating the convergence rate of the first axisymmetrical dimensionless frequency in the nano-plate according to the SDM and SGT, based on 
the two size parameters Lc=0.05, and 0.1, for (a) clamped (b) knife, (c) simply supported, and (d) free edge boundary conditions; the FGM heterogeneity 

index is n=2. 

 

Fig. 4. Evaluating the convergence rate of the second axisymmetrical dimensionless frequency in the nano-plate according to the SDM and SGT, based 
on the two size parameters Lc=0.05, and 0.1, for (a) clamped (b) knife, (c) simply supported, and (d) free edge boundary conditions; the FGM 

heterogeneity index is n=2. 

 

Fig. 5. Evaluating the convergence rate of the third axisymmetrical dimensionless frequency in the nano-plate according to the SDM and SGT, based 
on the two size parameters Lc=0.05, and 0.1, for (a) clamped (b) knife, (c) simply supported, and (d) free edge boundary conditions; the FGM 

heterogeneity index is n=2. 
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Fig. 6. Evaluating the convergence rate of the fourth axisymmetrical dimensionless frequency in the nano-plate according to the SDM and SGT, based 
on the two size parameters Lc=0.05, and 0.1, for (a) clamped (b) knife, (c) simply supported, and (d) free edge boundary conditions; the FGM 

heterogeneity index is n=2. 

 

Fig. 7. The effect of size parameter on the first axisymmetric mode of the circular nano-plate with (a) clamped, (b) knife-edge, (c) simply supported, 
and (d) free edge boundary conditions and FGM heterogeneity index of n=1. 

 

Fig. 8. The effect of size parameter on the second axisymmetric mode of the circular nano-plate with (a) clamped, (b) knife-edge, (c) simply 
supported, and (d) free edge boundary conditions and FGM heterogeneity index of n=1. 



976 Mojtaba Shariati et al., Vol. 8, No. 3, 2022 
 

Journal of Applied and Computational Mechanics, Vol. 8, No. 3, (2022), 962-980   

 

Fig. 9. The effect of size parameter on the third axisymmetric mode of the circular nano-plate with (a) clamped, (b) knife-edge, (c) simply, and (d) 
free edge boundary conditions and FGM heterogeneity index of n=1. 

 

Fig. 10. The effect of size parameter on the four axisymmetric mode of the circular nano-plate with (a) clamped, (b) knife-edge, (c) simply, and (d) 
free edge boundary conditions and FGM heterogeneity index of n=1. 

 

Fig. 11. The effect of heterogeneity index n, nonlocal models, and boundary conditions on the first axisymmetric mode of the circular nano-
plate with (a) clamped, (b) knife-edge, (c) simply supported, and (d) free edge boundary conditions for different values of size parameters. 
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Fig. 12. The effect of heterogeneity index n, nonlocal models, and boundary conditions on the second axisymmetric mode of the circular nano-
plate with (a) clamped, (b) knife-edge, (c) simply supported, and (d) free edge boundary conditions for different values of size parameters. 

 

Fig. 13. The effect of heterogeneity index n, nonlocal models, and boundary conditions on the third axisymmetric mode of the circular nano-
plate with (a) clamped, (b) knife-edge, (c) simply supported, and (d) free edge boundary conditions for different values of size parameters. 

 

Fig. 14. The effect of heterogeneity index n, nonlocal models, and boundary conditions on the fourth axisymmetric mode of the circular nano-
plate with (a) clamped, (b) knife-edge, (c) simply supported, and (d) free edge boundary conditions for different values of size parameters. 
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4.2.1. The effect of size parameter Lc and boundary conditions on the vibrational behavior  

As shown in Figs. 7 to 10, with an increase in size parameter Lc, the frequency ratio for both nonlocal SDM and SGT increases 
for all types of boundary conditions and vibrational modes. This indicates that the use of both nonlocal models leads to the 
stiffening behavior for the nanoplate, and thus the value of natural frequency increases compared with the classical local model.  

Figures 7(b, and c) indicate that for the knife and simply supported edge boundary conditions, the SDM model predicts a higher 
rate of increase in values of frequency ratio in the first mode of vibration while showing more sensitivity to all values of Lc; and 
hence, it appears to be a more reliable model for the prediction of the vibrational behavior of the nano-plate. However, similar 
behaviors were observed for clamped and free edge boundary conditions, as shown in Figs. 7(a, and d).  

According to Figure 8, both the SDM and SGT appear to be good models for the prediction of the second mode of vibrational 
behavior of the nano-plate for all types of considered boundary conditions. However, the SDM model shows a minute stiffer 
behavior in the vibrational behavior of the nanoplate, compared with the SGT model, for values of Lc less than 0.4 for the clamped 
edge, 0.6 for the knife as well as the simply supported edges, and 0.5 for the free edge boundary condition. Additionally, as shown 
in Figs. 9 and 10, both the SDM and SGT appear to be good models for the prediction of the third and the fourth vibrational mode, 
for all types of boundary conditions. Based on these figures, the difference between the two models appears to be very small.  

 
4.2.2. The effect of heterogeneity index n and boundary conditions 

The effect of heterogeneity index n on the first four axisymmetrical modes of vibration for the circular nano-plate is shown in 
Figs. 11 to 14. As shown, increasing the material index n increases the value of natural frequency obtained by SDM and SGT. 
However, in this structure, for the knife and simply supported edges, the two aforementioned nonlocal models predict almost the 
same value for Ωi, as n is increased. Moreover, for the size parameters Lc=0.05 and 0.2, although the SDT predicts higher values of 
Ωi for any specific value of n, yet, all models show similar sensitivities to the index number n as its value is altered.  

5. Conclusions 

The vibrational behavior of a circular nano-plate was analyzed using the nonlocal SDM and SGT. Different possible boundary 
conditions were imposed on the nano-plate to examine their effect on the vibrational frequency. To get the solution, the deduced 
equilibrium equations of motion were solved using the general differential quadrature rule (GDQR). Examination of the obtained 
results revealed the influence of various parameters such as size-effect parameter Lc, material heterogeneity index n, and their 
corresponding boundary conditions on the first four symmetrical frequencies. 

 According to the findings, the stress-driven model appears to be a good model for the prediction of vibrational behavior of the 
nano-plate due to its simplicity in; 
 Derivation of the required equations of motion; 
 Adaptively of the equations to model the nano-plate based on different types of boundary conditions imposed on the edges; 
 Its versatility to the application of GDQR numerical solution; 

    Additionally, it was found that; 
 In all modes of vibration, the increase in size parameter Lc, increases the frequency ratio in both SDM and SGT nonlocal 

models, for all types of boundary conditions. This is interpreted as the use of both nonlocal models leads to stiffening behavior 
in this structure, and thus, the value of natural frequency increases compared with the classical local model.  

 For the knife and simply supported boundary conditions, the SDM model predicts a higher rate of increase in values of 
frequency ratio in the first mode of vibration, while showing more sensitivity to all values of Lc; and hence, it appears to be a 
more reliable model for the prediction of the first mode of vibrational behavior of the nano-plate.  

 SDM and SGT appear to be good models for the prediction of the second, third and fourth modes of vibration, for all postulated 
types of boundary conditions.  

 In the second mode of vibration, the SDM shows a minute stiffer behavior in the vibrational behavior of the nanoplate, 
compared with the SGT model, for values of Lc less than 0.4 for the clamped edge, 0.6 for the knife as well as the simply 
supported edges, and 0.5 for the free edge boundary condition. A similar trend appears to exists for the third mode, while in 
the fourth mode, this behavior is observed for the values of Lc less than 0.4, for all types of boundary conditions.  
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