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Abstract. Nonlinear oscillators with geometric stiffness terms can be used to model a range of structural elements such as cables, 
beams and plates. In particular, single-degree-of-freedom (SDOF) systems are commonly studied in the literature by means of 
different approximate analytical methods. In this work, an analytical study of nonlinear oscillators with different combinations of 
geometric polynomial stiffness nonlinearities is presented. To do this, the method of direct normal forms (DNF) is applied 
symbolically using Maple software. Closed form (approximate) expressions of the corresponding frequency-amplitude relationships 
(or backbone curves) are obtained for both  and 2 expansions, and a general pattern for  truncation is presented in the case of 
odd nonlinear terms. This is extended to a system of two degrees-of-freedom, where linear and nonlinear cubic and quintic coupling 
terms exist. Considering the non-resonant case, an example is shown to demonstrate how the single mode backbone curves of the 
two degree-of-freedom system can be computed in an analogous manner to the approach used for the SDOF analysis. Numerical 
verifications are also presented using COCO numerical continuation toolbox in Matlab for the SDOF examples.             

Keywords: Nonlinear, Mechanical Vibrations, Direct Normal Forms, Backbone curves, Symbolic computations. 

1. Introduction 

The analysis of single-degree-of-freedom (SDOF) nonlinear oscillators has been widely studied in the nonlinear dynamics 
literature, especially for oscillators that have just one geometric polynomial nonlinear stiffness term. Due to the historic 
development of the topic, and the richness of the dynamics exhibited by these oscillators many studies have focused on quadratic 
and cubic nonlinearities, while higher order nonlinearities are much less widely studied. That said, there have been a number of 
studies where the analysis is extended to involve two combinations of different nonlinear stiffness terms, typically limited to low 
polynomial orders - see for example [4,5,7,12,13,16,19] and references therein.  

In this paper, nonlinear oscillators with different combinations of geometric nonlinear stiffness terms are studied using the 
direct normal form (DNF) method developed by Neild and Wagg [14], and used to obtain approximate analytical solutions for the 
(conservative) backbone curves (e.g. frequency-amplitude curves) of both SDOF and a two-degree-of-freedom nonlinear system. 
One objective of this is to consider the larger amplitude response of these types of oscillators, for which higher order terms become 
significant. 

The DNF method is an approximate method for analyzing weakly nonlinear systems with typically smooth nonlinearities. Like 
other normal form methods, it is based on the development of a linear homological equation which enables resonant and non-
resonant cases to be analyzed. Once the homological equation has been solved to provide a nonlinear near-identity normal form 
transformation, approximate analytical frequency-amplitude relationships, otherwise known as conservative backbone curves can 
be obtained. The relationship between the DNF and a selection of other approximate mathematical methods is discussed in 
Alexander et al. [8].  

The step-by-step nature of the direct normal form method means that it can readily be implemented using symbolic 
computation techniques. This approach can help mitigate the algebraic complexity that tends to occur as more nonlinear terms, 
and/or degrees-of-freedom are added. The main focus here is to use symbolic computation software (Maple in this case), to study 
higher order geometric nonlinear terms that appear in the equations of motion in the form of polynomial stiffness terms, in the 
literature, Maple has been used in the field of nonlinear dynamics in a number of conducted works, for instance, refer to [2,20,21]. 
The traditional analysis of the DNF method depends on hand manipulations to generate the desired backbone curve relations, and 
then numerical or experimental verifications are performed in order to validate the analytical results. Despite being effective in 
some relatively simple cases, this traditional method becomes increasingly difficult, if not impossible, as the complexity increases, 
such as the case when higher orders of nonlinear terms are added to the equations of motion.  

In the field of nonlinear dynamics, the DNF technique has been used to conduct a number of research works. For instance, Xin 
et al. [1], studied SDOF nonlinear oscillators of polynomial-type nonlinearities. In their work, an extensive study of velocities and 
displacements associated with nonlinear system is presented, and the resulting resonance response functions (RRFs) were used for 
illustrating the contributions of the several polynomial nonlinearities appearing in the system. Another related work was conducted 



1168 Ayman Nasir, Neil Sims and David Wagg. Vol. 7, No. SI, 2021 

 

Journal of Applied and Computational Mechanics, Vol. 7, No. SI, (2021), 1167-1182   

by Shaw et al. [4], in which the authors explored the performance of nonlinear vibration isolators using the DNF method. The system 
was modelled by a SDOF oscillator and estimations of a group of conservative backbone curves were obtained. 

In the wider literature, the analysis of SDOF nonlinear oscillators with high orders of geometric polynomial nonlinearities is 
restricted to a few cases where the application of approximate analytical methods is achievable. In respect to the order of the 
nonlinear terms, one of the most complicated systems studied is the cubic-quintic oscillator. This type of oscillator was studied in 
detail by Nayfeh using the method of renormalization (RN or uniformization), [16], where an approximate backbone curve relation 
under the assumption of small amplitudes is obtained. Another study of the cubic-quintic oscillator using approximate techniques 
was carried out Suleman and Wu [6]. Here the authors introduced a set of backbone curves of such an oscillator based on the 
condition of small amplitudes of vibrations, and then used several methods for the analysis including an energy balance method 
(EBM), the modified homotopy perturbation method (modified HPM) and the global error minimization method. The results were 
compared to show that the modified HPM method leads to the most accurate results for that study. In this work, for verification 
purposes, the generated results for nonlinear cubic-quintic conservative oscillator using DNF are compared to the results of Nayfeh 
(RN method) and the Homotopy method. All of these results are also compared with numerical results generated using a Runge-
Kutta method. 

In the literature, some other combined methods of solution, mostly perturbation based, are found; for instance, Razzak [7] used 
a combined technique of homotopy perturbation along with variational formulation to obtain approximations for the nonlinear 
frequency of the cubic-quintic oscillator and this method yields accurate results for both weak and strong nonlinearities. However, 
in different homotopy methods, the trial solutions are arbitrarily chosen such that the resulting solution converges to acceptable 
levels of accuracy, and as a result the trial solution needs to be adjusted in terms of the type and order of the nonlinear terms. One 
of the advantages of the DNF technique is the consistency of the solution, and the generality of the assumed solution; the 
consecutive steps of the solution lead to the possibility of investigating various systems regardless of the trial solution shape and 
accuracy.    

In order to generalize the applications of DNF method for SDOF nonlinear oscillators with a different number and/or order of 
polynomial stiffness nonlinear terms, a system containing four types of nonlinearities, including both odd and even orders, is 
studied in detail, and backbone curves of both � and ��  accuracies are generated. This is followed by a general closed-form 
expression of � accuracy, and a discussion of the effectiveness of extending the analysis to higher order accuracies. 

In the final part of the paper, an analysis of a two degree-of-freedom system is presented. In this example, the methodology 
presented for SDOF systems is extended to two degrees-of-freedom, and for the non-resonant case, expressions for backbone curves 
are obtained. This example helps to demonstrate how the analysis can potentially be extended to other multi-degree-of-freedom 
systems that include higher order polynomial nonlinear terms. 

2. Methodology 

The direct normal forms technique involves the application of linear and nonlinear transformations (or near-identity 
transformations) to the equation of motion, in order to identify the resonant terms and get approximate analytical solutions for 
the system. The complete analysis of this method is discussed in detail in [14], in this Section, a summary of the essential steps is 
shown. For the case of undamped, unforced vibrating systems, the technique is applied using four main consecutive steps: 

Step 1: Decoupling linear terms using linear modal transformation. 
Step 2: Derivation of the homological equation for the nonlinear near-identity transformation. 
Step 3: Applying the near-identity transformation to the transformed equation of motion from Step 2. 
Step 4: Finally, solving the resulting normal forms equation (or set of equations) to obtain backbone curve relationships. 
Moreover, systems that are externally forced require an additional transformation, due to the presence of the forcing term. The 

forcing transformation involves the removal of any non-resonant forcing terms. In practice, viscous damping is usually included in 
with the nonlinear terms (see [14] for details). A more detailed mathematical description of the DNF for analyzing conservative 
SDOF systems is given in Appendix 1, while the analysis of higher orders accuracy is shown in Appendix 2. 

3. Analysis of cubic-quintic SDOF oscillator  

In this Section, the analysis of different types of nonlinear oscillators is briefly discussed. The first example illustrates the 
conservative (undamped and unforced) cubic-quintic oscillator, which has been previously studied by a range of other researchers 
and so the results of DNF can be compared to their work. For instance, in ref. [10], Lai et al. have implemented a           
Newton-harmonic balancing approach to obtain first, second, and third-order approximations to the frequency-amplitude 
relationship for this type of SDOF oscillators. The interested reader can also find some other related works that study this system, 
see for example [6, 7 and 16].  

The conservative cubic-quintic oscillator, as shown schematically in Fig. (1-a), is governed by the following equation of motion 

������ + 
���� + ������� + ����� = 0  ⇒   �� ��� + ������� + �������� + ������� = 0, (1) 

where an over dot represents the derivative with respect to time, � represents the physical displacement, � is the mass of the 
oscillator, and the linear, cubic and quintic stiffnesses are 
, �� and �, respectively, the subscripts are chosen to reflect the order 
of the nonlinearity (this can be helpful when studying multi-degree-of-freedom systems, as will be discussed in Section 5). Moreover, �� is the natural frequency of the system, ��� and ��� are (assumed to be small) coefficients for the cubic and quintic nonlinear 
terms, respectively, in this work we use � as a bookkeeping parameter (assumed to be unity here and will appear during the analysis 
of the DNF method to denote the level of accuracy). Firstly, by applying the linear modal transformation, the transformation is unity 
so � = �, and this is applicable for any SDOF system, then 

�� + �� + ����� = 0, (2) 

where � = ���  and ����� = ���� + ��� . The second step is the near-identity transformation, and for �  accuracy, rewriting the 
nonlinear terms using �, in view of Eq. (A.12) in Appendix 1, one should obtain ����� = ����� + ����, thus 

������� = �∗�∗�� , �!� = ��"� + �!#� + ��"� + �!#
 (3) 

By expanding Eq. (3), ������� will contain many terms (ten terms in this case), these terms have to be primarily decomposed 
into coefficients and nonlinear functions vectors �∗and �∗, respectively. For this example 
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�∗ = $�� �� �� �� 3�� 5�� 3�� 10�� 10�� 5��( (4a) 

�∗ = )�!� �! � � �  � �!� � �!* � ��! � ��!� � ��!� � *�!+,
 (4b) 

The crucial step in this solution is solving the homological equation by finding the -∗ matrix (refer to Eqs. (A.14) and (A.15) in 
Appendix 1). To proceed, the polynomial term indices (defined by .  and .!) in the vector �∗ need to be found.  

In the present study, the above analysis has been implemented symbolically, and in principle this approach can be extended to 
any finite number of terms in Eq. (4). The next step defines the transformed nonlinear terms (��,/∗ ) and harmonics (0/∗) matrices, 
(refer to Eq. (A.16) in Appendix 1). In practice, in Maple, this is performed by applying several iterative loops for each element in -∗. 
For this example system, Table 1 shows all the terms in Eq. (4b) and the corresponding . , .! and -∗. It is noteworthy to mention 
that traditional hand calculations are performed by generating matrices (or tables) similar to Table 1, which quickly becomes 
impractical for more complex systems, on the other hand, the proposed symbolic computation method automatically generates all 
of these matrices, thus eliminates the chance of any mathematical errors, reduces the time and effort of computation and enables 
the study of more complex systems (within the constraint of the available computing power).  

If the truncated solution is limited to � order, the final step is rewriting the transformed equation of motion. For the non-
resonant terms to � accuracy, the equation of motion in the �-transformed coordinate system becomes 

�� + �� + ��∗ �∗ = 0,  (5) 

which can be written as  

�� + ���� + 3��"� �!� + � ��!# + 10��"� ��!� + � ��!� # = 0, (6) 

and the near identity transformation is written as 

� = � + 0∗�∗, (7) 

which leads to 

� = � + 18�2� 3��"� � + �!� # + ��3 "�  + �! # + 5��"� *�! + � �!* #4 (8) 

In order to generate a time domain solution of the system, one can easily substitute the assumed solution, (Eq. (A.12) in 
Appendix 1) in Eq. (8). Nevertheless, the focus in this work is to study the frequency amplitude relationship for the conservative (i.e. 
undamped) system, or the so-called conservative backbone curve. This can be also obtained by substituting in the assumed solution 
and solving the positive (or negative) complex exponential terms using exact harmonic balancing. Finally, using this approach the 
backbone curve, truncated to � accuracy, is expressed as 

�2� = ��� + 34 ��6� + 58 ��6* (9) 

This form of � order backbone curve will be adopted for analyzing the nonlinear frequency of the cubic-quintic oscillator, 
however, the results of Eq. (9) will also be compared to �� solution, as will be discussed in the next Section.  

3.1 Higher order accuracy 

A direct normal form analysis of �� expansion for the same cubic-quintic oscillator is to be discussed in this section. The 
solution is based on the results of � accuracy, hence, it is possible to write 

 
 

Table 1. DNF matrix results for the cubic-quintic oscillator computed to � accuracy, if -/∗ = 0, a resonance is indicated, otherwise the term is 
considered to be a non-resonant term. �/∗ .  .! -/∗ ��,/∗  0/∗ �!�  0 3 8�2� 0 

��8�2� 

�!  0 5 24�2� 0 
��24�2� 

� � 3 0 8�2� 0 
��8�2� 

�  5 0 24�2� 0 
��24�2� 

� �!�  1 2 0 3�� 0 

� �!*  1 4 8�2� 0 
5��8�2� 

� ��! 2 1 0 3�� 0 � ��!�  2 3 0 10�� 0 � ��!�  3 2 0 10�� 0 

� *�! 4 1 8�2� 0 
5��8�2� 
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�8 = ��∗ �∗ = 3��"� �!� + � ��!# + 10��"� ��!� + � ��!� # 

(10) 0∗�∗ = 18�2� 3��"� � + �!� # + ��3 "�  + �! # + 5��"� *�! + � �!* #4 

moreover, ����� = ���� + ��� and its Jacobian is 
998 :�����; = 3���� + 5���*. Now, the pre-transformed nonlinear term, �<�, is given 

by 

�<���� = 14�2� =��4 + ��12 + 5��4 > "���� − �2�� + �3���� + 5���*�# (11) 

Herein, it is important to notice that no �� related terms appear in the original EOM, and so �� = 0. To complete the analysis, 
Eq. (11) needs to be expanded and the same previous procedure is repeated, with more terms appearing in the expansion compared 
to � accuracy (26 terms compared to 10 terms), due to the large number of terms, only the key results are to be shown here, detailed 
results are shown in Table A1 (Appendix 3). The equation of motion in the �-transformed coordinate system becomes 

�� + �� + ��∗ �∗ + ��@�@ = 0, 
(12) �� + ���� + 3��"� �!� + � ��!# + 10��"� ��!� + � ��!� # = 0, 

and the near identity transformation is written as 

� = � + 0∗�∗ + 0@�@, (13) 

which leads to 

� = � + �ABCD =��"� � + �!� # + ED� "�  + �! # + 5��"� *�! + � �!* #>  (14) 

The conservative backbone curve, truncated to ��, can be obtained by substituting in the assumed solution Eq. (14), and solving 
the positive (or negative) complex exponential terms using exact balancing, primarily, we get the following form 

�2� = ��� + 34 ��6� + 58 ��6* + 3128�2� ���6* + 564�2� ����6G + 951536�2� ���6A (15) 

In Eq. (15), the effect of �� can be interpreted as a type of frequency correction parameter. While most of the researchers using 
direct normal forms are only considering � accuracy in the solution, it has previously been noticed that in some cases extending 
the analyses to include �� accuracy can effectively enhance the results - refer to [11] as an example. In order to verify the accuracy 
of the solution, we will compare both � and �� solutions with the numerical solution obtained using a 4th order Runge-Kutta 
computation in Matlab, and sample results are shown in Fig. (1). In Fig. (1)(b-c), both steady state response of the oscillator and 
phase portrait plots are shown for � and �� along with the numerical solution. Overall, results in Fig. (1) show excellent agreement 
between the approximate DNF solutions and the numerical solution. 

 

 

  

(a) (b) (c) 

Fig. 1. DNF results compared to numerical results: (a) Schematic diagram of the cubic-quintic oscillator shown in Eq. (1), (b) Steady state response, (c) 
Phase portrait. The dashed blue curve and dash-dotted lines are computed from the analytical DNF solution for both � and ��, respectively, while 

the solid black curves are the numerical solutions computed using 4th order Runge-Kutta computation in Matlab.  
Parameter values are: �� = 1 rad/s, �� = �� = 0.1. 
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(a) (b) 

Fig. 2. Comparison between DNF results and other methods for the cubic-quintic oscillator: (a) �-order DNF and the method of Renormalization (RN 
method), (b) ��-order DNF and the modified homotopy method (Modified HPM). Parameter values are: �� = 1 rad/s, �� = 0.2 and �� = 0.1. 

3.2 Comparisons with other methods 

In order to verify the results of both � and �� accuracies, it is possible to compare with some previous results in the literature. 
For � accuracy, Nayfeh’s approximation for small amplitudes [16] has the following form  

�2 = 1 + =38 �� + 516 ��6�> 6� (16) 

Hence, the � DNF solution given by Eq. (9) can be compared to Eq. (16) for primary verification of the validity of the DNF solution. 
Eq. (16) is valid for small amplitudes; thus Fig. (2)(a) shows a comparison between both solutions for the following numerical values: �� = 0.2, �� = 0.1. This figure shows good agreement between the two approximations, specifically when the forcing frequency is 
close to the linear frequency, while at higher frequencies the two methods diverge.  

Furthermore, in the literature, some researchers studied the cubic quintic oscillator to �� accuracy. For instance, Suleman and 
Wu [6] used a modified homotopy method (modified HPM) to derive the backbone curve of this oscillator in the form 

�2 = O12 P1 + 34 ��6� + Q3=1 + 34 ��6�>� + 154 ���6* + 35144 ���6*4R (17) 

For verification purposes, the results of DNF for �� accuracy, Eq. (15), can be compared to Eq. (17), in addition to the numerical 
solution of the cubic-quintic oscillator, as will be shown in Tables 2-4. However, as a primary comparison, Fig. (2)(b) shows a 
comparison between the approximated backbone curves from both techniques. The two curves in Fig. (2)(b) show identical behavior 
at low amplitude, but the curves diverge as amplitudes of vibration increase, particularly for amplitude values above one. Further 
details regarding the accuracy of the two solutions will be shown in the next Sections. 

 
3.4 Numerical investigation of the frequency-amplitude relationship 

In order to verify the results of the analytical approximate methods previously described, some numerical techniques can be 
used. Specifically, Runge-Kutta methods can be used to find the steady-state frequency response of Eq. (1) for any given parameter 
values, and compared with the results of RN, HPM and DNF (� and ��) in order to compare the accuracy of these methods. For 
numerical verification purposes, the numerical solution is generated using ODE45 in Matlab with step size of 10-6, additionally, the 
numerical results are compared with the elliptical function solution of Duffing oscillator which already exists in the literature. 

Based on the Jacobi elliptic functions, the elliptical function solution (EPS) of Duffing oscillator has been studied by several 
authors, and the results are summarized by Kovacic and Brennan [22]. This work is to be adopted for validating the numerical 
solution. By setting �� = 0 in Eq. (1), we get the equation of the conservative Duffing oscillator, which is 

�� ��� + ������� + ������� = 0  (18) 

According to Kovacic and Brennan [22], the nonlinear frequency of this oscillator is  

�2� = ���� + ��6�� S1 − ��6�4��� 31 − ��6�4 4T + ⋯ (19) 

For verification purposes, the numerical solution used in this work is applied to the Duffing oscillator, Eq. (18) and the numerical 
results of the nonlinear frequency are compared to the results of Kovacic and Brennan [29]. Sample results of this comparison can 
be found in Fig. (3), in which both the EPS and the numerically obtained backbone curves are plotted for �� = 0.1. From this figure 
it can be seen that numerical solution has acceptable levels of accuracy at frequencies that are close to the natural frequency of the 
system while the accuracy decreases at higher values of the dimensionless nonlinear frequency. 
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Fig. 3. Comparison between elliptical functions (EPS) and numerical backbone curves for the Duffing oscillator.  
Parameter values used are: �� = 1 rad/s and �� = 0.2.  

  

3.5 Comparing analytical results with numerical results for the cubic-quintic oscillator 

Tables 2-3 show comparisons between Nayfeh’s results (denoted by RN method), Suleman and Wu results (denoted by Modified 
HPM) and the proposed method using DNF for both � and ��, all compared to the numerical Runge-Kutta results (as a reference 
for comparison). The comparison is carried out for different selected amplitude values in order to evaluate the nonlinear amplitude-
frequency response of the system while the linear natural frequency is assumed to be unity in all cases. Absolute error relative to 
the numerical solution is also shown as a percentage underneath each of the relevant entries in the Table. In Table 2, the values 
selected for comparison are �� = 0.2 and �� = 0.1 in order to represent weak nonlinear terms in comparison to the linear term. 
While in Table 3, the effect of larger nonlinear terms is shown using the numerical values of �� = 1 and �� = 1. 

The results in Tables 2-3 show the accuracy of direct normal forms method compared to some other well established 
approximate methods that already exist in the literature. It is clear that, in terms of accuracy, the DNF method gives acceptable 
approximation of the frequency shift due to the presence of nonlinear terms in the equations of motion. The DNF method has been 
classified into two approaches � and ��, and in terms of the series expansion, and this should correlate to lower and higher 
accuracies, respectively. However, the higher order accuracy does not always show a reduction in error compared to the � approach. 
A potential reason for this is due to the fact that only odd nonlinear terms are present, further explanation of this point is given in 
Section 4. 

From another point of view, in order to explore the effect of changing the nonlinear coefficients, �� and ��, on the nonlinear 
frequency of the system, it is possible to make a parametric study of the resulting backbone curve equations. For instance, using 
the amplitude of 6= 0.2, the nonlinear frequency of the system, truncated to � accuracy, can be computed when the nonlinear 
coefficients are changing steadily from -1.0 to 1.0, results of this sample study are found in Table 4.  

 
Table 2. DNF method results compared with other methods for �� = 0.2, �� = 0.1, the natural frequency chosen is �V = 1 rad/s 

Amplitude 6 Numerical RN method Modified HPM � DNF �� DNF 

0.05 1.000283 
1.000188 
0.002 % 

1.000188 
0.009 % 

1.000187 
0.009 % 

1.000187 
0.009 % 

0.2 1.003119 
1.003050 
0.171 % 

1.003026 
0.009 % 

1.003045 
0.007 % 

1.003045 
0.007 % 

0.5 1.020481 
1.020703 
0.022 % 

1.019777 
0.491 % 

1.020493 
0.421 % 

1.020543 
0.416 % 

1.0 1.104164 
1.106250 
0.189 % 

1.090601 
1.228 % 

1.101136 
0.274 % 

1.101986 
0.197 % 

2.0 1.595567 
1.800000 
12.813 % 

1.509942 
5.366 % 

1.612451 
1.058 % 

1.633491 
2.377 % 

5.0 6.098712 
22.406250 
267.39 % 

5.916005 
2.996 % 

6.619101 
8.533 % 

6.979045 
14.435 % 

 
Table 3. DNF method results compared with other methods for �� = 1, �� = 1, the natural frequency chosen is �V = 1 rad/s 

Amplitude 6 Numerical RN method Modified HPM � DNF �� DNF 

0.05 1.001028 
1.000939 
0.009 % 

1.000938 
0.009 % 

1.000939 
0.009 % 

1.000939 
0.009 % 

0.2 1.015361 
1.015500 
0.014 % 

1.015216 
0.0142 % 

1.015382 
0.0020 % 

1.015414 
0.0052 % 

0.5 1.106532 
1.113281 
0.610 % 

1.101490 
0.4556 % 

1.107503 
0.0877 % 

1.108546 
0.1820 % 

1.0 1.523596 
1.687500 
10.758 % 

1.473823 
3.2668 % 

1.554790 
2.0474 % 

1.541104 
1.1491 % 

2.0 3.593537 
7.500000 
108.70 % 

3.379416 
5.9585 % 

3.741657 
4.1218 % 

3.882786 
8.0491 % 

5.0 19.18152 
205. 6875 
972.32 % 

18.07842 
5.751 % 

20.25772 
5.611 % 

21.49016 
12.036 % 
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Table 4. DNF method results for various values of the nonlinear coefficients, the natural frequency chosen is �V = 1 rad/s 

Nonlinear Coefficients Frequency �2 (computed to � accuracy) 

�  ��  

�

� � -1.0 -0.5 0.0 0.5 1.0 

       -1.0 0.984378 0.984653 0.984886 0.985140 0.985393 
       -0.5 0.991968 0.992225 0.992472 0.992724 0.992975 
        0.0 0.999500 0.999750 1.000000 1.000250 1.000500 
        0.5 1.006976 1.007224 1.007472 1.007720 1.007968 
        1.0 1.014412 1.014643 1.014889 1.015135 1.015402 

 
To conclude, the results of cubic-quintic nonlinear oscillator with different values of the nonlinear coefficients has been 

implemented to study selected cases of oscillators in both hardening and softening cases. In addition, the approximate analytical 
results of DNF have been verified using numerical continuation techniques such as the COCO toolbox in Matlab [17,18]. COCO is 
used to numerically compute the frequency response functions representing the locus of points joining the maximum amplitude 
per period of the forced damped systems by adding viscous damping and periodic forcing terms to the cubic-quintic oscillator 
described in Eq. (1). Accordingly, using small damping value, W = 0.01, Fig. (4) is generated for combinations of the nonlinear 
coefficients in the original equations of motion. In this figure, results for the linear oscillator, Duffing oscillator in both hardening 
and softening cases and the cubic-quintic oscillator in both hardening and softening cases are shown. The forced frequency 
response functions (dashed colored lines) are numerically computed using COCO, while the backbone curves (solid-colored lines) 
are computed using � DNF results, Eq. (9). In Fig. (4), the idea is that the backbone curve should align along the center of the 
resonance curve (e.g. the COCO curve). The only point that the COCO and backbone should cross is near the peak of the resonance 
(COCO) curve. In Fig. (4), it can be seen that this is true, for all the cases considered. So, in this sense, the matching is good. 

4. Analysis of generic cubic-quintic SDOF oscillator  

In the previous Section, the results of � DNF were shown to be accurate enough for the analyst to adopt, without the need to 
consider higher order terms, this is due the presence of odd nonlinear terms only in the original EOM. On the other hand, the 
presence of even nonlinear terms can raise the difficulty of the analysis. In this section, the system considered represents a more 
complicated case in which the oscillator has four different orders of polynomial nonlinear terms, in this example the effect of 
higher order accuracy, ��, can be explored. Finally, a general closed form relation of the backbone curve, truncated to � accuracy is 
obtained for any oscillator with N number of stiffness polynomial nonlinear terms. In principle, Wagg and Neild [14] showed that, 
for the quadratic nonlinear oscillator, � DNF will not be able to capture the nonlinear frequency-amplitude curve of the system, 
while extending the analysis to �� leads to a satisfactory approximation. In this section, using a SDOF oscillator with both odd and 
even nonlinear terms it is shown that the presence of even nonlinearities makes it necessary to compute ��. 

Considering a SDOF nonlinear oscillator with four different orders of polynomial geometric nonlinear terms (with orders two to 
five, respectively), in its conservative form. The equations of motion of this oscillator can be written as 

�� ��� + ������� + ������� + ������� + ���*��� + �*���� = 0, (20) 

where the nonlinear coefficients are all assumed to be relatively small when compared to the linear term. Using the DNF, the 
objective is to find the backbone curves of this system. In such unforced systems, the analysis will be similar to that in the previous 
cubic-quintic system, with more terms to be computed (or correspondingly larger matrix sizes). For a DNF computed to � accuracy, 
to find the number of terms, we can consider the following 

 any nonlinear power X will contribute by X + 1 terms, and this is accumulative according to the number of nonlinear 
terms in the EOM. Hence, the analysis of the oscillator in Eq. (23) involves 18 terms to be computed in the � order solution.  

 a viscous damping term, if appears in the equation of motion, will result in two additional terms, hence, the damped 
cubic-quintic oscillator involves 12 terms in that case. 

 for the case of forced systems, more terms are to be included in the analysis according to the forcing type; either resonant 
or non-resonant. However, the analysis of this work is restricted to unforced, and non-resonant cases only.  

Accordingly, the � solution of the conservative oscillator in Eq. (23) results in 18 terms in the matrices, this number of terms is 
difficult to be manipulated by hand calculations, and this can justify turning to symbolic computations, moreover, the number of 
terms will also increase dramatically if considering �� solution, in fact the number of terms involved in �� analysis of Eq. (23) will 
be 52 terms. 

Practically, DNF analysis of Eq. (20) will be similar to the cubic-quintic oscillator, with more terms to be included in the solution. 
Accordingly, only final results are shown in this section. The backbone curve, truncated to � is found to be 

�2� = ��� + 34 ��6� + 58 ��6* (21) 

which is identical to the equation obtained for the cubic-quintic oscillator, thus, it is clear that the effect of the even nonlinear 
terms in the original EOM is not appearing in the � order results. If the analysis is extended to ��, the resulting backbone curve 
will be 

�2� = ��� + 34 ��6� + 58 ��6* + 1�2� = 3128 ���6* + 564 ���*6G + 951536 �*�6A − 56 ���6� − 74 ����6* − 6380 ���6G> (22) 

Table 5 shows a comparison between � and �� frequency results of this oscillator and the numerical results obtained using 
ODE45 in Matlab. For nondimensionalization purposes, similar to the cubic-quintic oscillator, the nondimensional numerical data 
chosen for Table 5 are �� = �� = �� = �* = 0.1. The results in Table 5 clearly show that the solutions truncated to �� are more 
accurate than those truncated a �, which is a consequence of the presence of even nonlinear terms in the original equations of 
motion. For this particular system, the accuracy of the approximate analytical results is slightly modified due to calculating the 
higher order expansion. Nevertheless, in some other cases it can be necessary to find ��  solution; for example, if only even 
nonlinear terms appear in the equation of motion.  
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Table 5. DNF results for various values of the nonlinear coefficients, the natural frequency chosen is �V = 1 rad/s and �� = �� = �� = �* = 0.1. 6 Numerical � �� 

0.05 1.00018 
1.00009 
0.008 % 

1.00014 
0.005 % 

0.1 1.00043 
1.00033 
0.010 % 

1.00035 
0.008 % 

0.2 1.00147 
1.00155 
0.007 % 

1.00137 
0.011 % 

0.5 1.01017 
1.01126 
0.108 % 

1.00967 
0.049 % 

1 1.06428 
1.06653 
1.21 % 

1.05288 
0.869 % 

2 1.45567 
1.51657 
1.52 % 

1.47312 
1.25 % 

3 2.75600 
2.59567 
2.51 % 

2.61570 
1.86 % 

4 3.83312 
4.86614 
3.21 % 

4.30962 
2.10 % 

5 6.5698 
6.27592 
4.47 % 

6.65439 
2.45 % 

It has been shown that the analysis of a nonlinear oscillator with a single quadratic nonlinearity (the escape equation) using 
DNF truncated to � accuracy (refer to [14] for more details) is not sufficient to compute the backbone curve relation, in fact the �� 
order analysis is required.  

In this work, it is shown that this result is true for higher order even nonlinear terms, and Table A2 (in Appendix 4) summarizes 
the results of the backbone curves for both lower and higher accuracies computed up to the 15th polynomial order of the nonlinear 
terms. For verification purposes of the approximate analytical results of DNF, it is possible to compare with numerical continuation 
(COCO). Hence, Fig. (5) shows a comparison between DNF truncated to both � and ��, along with the numerical solution of the 
related forced damped system. The numerical data are �� = �� = �� = �* = 0.1. 

Using Fig. (5), it is clear that good matching between DNF results and the numerical results, in terms of the backbone curve 
curvature being very close to the center line of the COCO computed curve. However, the backbone curves are not intersecting exactly 
at the peak of the COCO curve. One reason for this is related to the damping ratio used for computing the numerical results. The 
COCO simulations include a viscous damping term, which was chosen to be W = 0.01 in this case, while the backbone curves are 
computed for conservative systems. If damped backbone curves were computed, better matching between the backbones and COCO 
curves would be expected. 

4.1 Analysis of SDOF oscillators with any type of odd polynomial nonlinearities  

The equation of motion for a general SDOF conservative oscillator, with multiple geometric (polynomial) odd nonlinearities can 
be written as 

�� ��� + ������� + �Z = 0, (23) 

where �� is the natural frequency and the nonlinear terms vector �Z, in its general form, is written as  

�Z = [ �\�\���]
\^�  (24) 

 

 

Fig. 4. Backbone curves and forced frequency response functions for different values of the nonlinear coefficients; solid lines represent backbone 
curves and dashed lines show the locus of the maximum displacement amplitude of the equivalent period orbit with forcing and damping added. 

Parameter values are: �� = 2 rad/s, and �� = �� = 0.1 for the hardening cases, and �� = �� = −0.1 for the softening cases. 



Direct Normal Form Analysis of Oscillators with Different Combinations of Geometric Nonlinear Stiffness Terms 1175 
 

Journal of Applied and Computational Mechanics, Vol. 7, No. SI, (2021), 1167-1182 

Table 6. Values of the constants _` for � order DNF 

Order of nonlinearity 3 5 7 9 _` 
34 

58 
3564 

63128 

 
Herein, �\, the coefficient of the i-th nonlinear stiffness term is considered to be relatively small, and R denotes the number of 

odd nonlinear terms. Using the method of DNF (implemented symbolically), the corresponding backbone curves of Eq. (23) have 
been generated. It was found that, for � order only, the effect of any odd nonlinearity appearing in the equation of motion is additive 
in the resulting expression for the backbone curve. For instance, the � order solution of the cubic-quintic oscillator will contain the 
terms of the cubic oscillator plus a term from the quintic oscillator. As a result, the corresponding expression for the backbone 
curve truncated to � order can be written as 

�2� = ��� + [ _`�̀ 6�`@�]
`^�  (25) 

where _` are constant coefficients appearing in the backbone curve equation, (these coefficients are independent of the nonlinear 
coefficients, or �  values appearing in the original equation of motion). Table 6 shows the leading values of these constant 
coefficients for the first four orders of odd nonlinearities. 

Thus, using Eq. (25) and the values from Table 6, DNF results truncated to � accuracy, for the conservative backbone curve can 
be obtained. However, by using the binomial coefficients it can be shown that for any odd order a the coefficients _` are given by 
the general expression 

_` = ��bcd 3 a`@�� 4 ,   a = 1, 3, 5, …  (26) 

Hence, the backbone curve equation, truncated to � order, for a SDOF oscillator with odd polynomial nonlinear stiffness terms, 
can be written as  

�2� = ��� + [ f 12�` S2a + 12a + 22 T �̀ 6�`@�g]
`^�  (27) 

For �� accuracy, due to the appearance of some cross coupling terms, for instance, the term including ���� in Eq. (15), it is much 
more difficult to find a closed form solution similar to that in Eq. (25). However, using the proposed symbolic computation approach, 
we have been able to apply �� DNF analysis for some selected SDOF oscillators and get expressions for the conservative backbone 
curves, the results can be found in Table A3, Appendix 4. 

5. Analysis of 2-DOF oscillator with cubic and quintic nonlinearities  

In this Section, we consider the two degree-of-freedom oscillator shown in Fig. (6), in which the spring forces are governed by 
both linear and nonlinear terms, and the nonlinear term contains cubic and quintic orders of polynomial nonlinearities. The main 
purpose of this Section is to show how the type of analysis carried out for SDOF systems can be applied to oscillators of more than 
one degree-of-freedom. As a result, the system is assumed to be conservative (undamped and unforced), and the corresponding 
single-mode backbone are computed (e.g. neglecting the resonant cases).  
 

 

Fig. 5. Comparison of DNF results and COCO results for the nonlinear oscillator in Eq. (23), the solid blue and red curves represent the analytical DNF 
results for � and �� accuracies, respectively. Moreover, the black line denotes the frequency-response curve computed using COCO; the solid black 

line shows the stable region of the response while the dashed black line represents the unstable region.  
Parameter values are: �� = 1 rad/s, and �� = �� = �� = �* = 0.1. 



1176 Ayman Nasir, Neil Sims and David Wagg. Vol. 7, No. SI, 2021 

 

Journal of Applied and Computational Mechanics, Vol. 7, No. SI, (2021), 1167-1182   

In matrix form, the system equation of motion can be written as 

h� 00 �i j� + k
� + 
� −
�−
� 
� + 
�l j + m��,���� − ��,���� − ���� + �,��� − �,���� − �����,���� + ��,���� − ���� + �,��� + �,���� − ���n = h00i (28) 

where j = $�� ��(, and the two masses are of identical mass �, and the linear stiffness coefficients are 
� and 
�. The nonlinear 
stiffnesses are denoted by � with subscripts that reflect both the order of the nonlinearity and the spring number, thus, the cubic 
stiffness coefficients are ��,�  and ��,�  and the quintic stiffness coefficients are �,�  and �,� , respectively.  This form of the 
subscript is chosen to help generalization of this problem to include higher orders of odd nonlinearities. The analysis of such a 
system starts by obtaining the linear version of Eq. (28), by setting all the nonlinear stiffnesses to be zero. Following that, the linear 
modal analysis leads to a modal transformation of 

j = op   where   o = h1 11 −1i  

Then, if this linear modal transformation is applied to the nonlinear system in Eq. (28) we obtain the following 

p� + k���� 00 ���� l p + �� m ��� + 3����� + �� + 5����*X���� + 3����� + X��� + 5��*��n = h00i (29) 

where ���� = q!, ���� = �q!  are the natural frequencies, while X� = 1 + 8��,�/��,� and X� = 1 + 32�,�/�,�. Now we follow the Step 2 of 

the DNF procedure for MDOF systems as described in Appendix 1.  
Following the DNF procedure (see [9, 14] for details), one can compute approximate analytical expressions for backbone curves. 

For this system of coupled cubic-quintic oscillators, considering the non-resonant case, where �2� ≠ �2�, we get the following 
expressions of the backbone curves 

6� s���� − �2�� + �tu,d*! $6�� + 26���2 + v�( + tw,dA! $6�* + 26�*�2 + v�(x = 0   (30a) 

6� s���� − �2�� + �tu,d*! $X�6�� + 26���2 + v�( + tw,dA! $X�6�* + 26�*�2 + v�(x = 0  (30b) 

where v denotes two main cases corresponding to the in-unison and out-of-unison cases as follows: 
 if v = +1, we have the in-unison case, where the phase difference |z� − z�| = 0 for the in-phase case and |z� − z�| = ±�|, � = 1,2,3, … which represents the out-of-phase case. 

 if v = −1, we have the out-of-unison case where the phase difference |z� − z�| = ± �}�  for � = 1,2,3, … which represents 

the out-of-unison case. 
Accordingly, we can consider several cases of the backbone curves, in this work we consider the case of single-mode backbone 

curves (usually denoted by S, refer to [14] for more details of the single-mode and double-mode backbone curves). The single-mode 
backbone curves can be generated when setting 6� = 0 in Eq. (30a), or 6� = 0 in Eq. (30b), for which we get 

~�  ⇒  6� = 0  ⇒  �2�� = ���� + �tu,d*! 6�� + tw,dA! 6�*,   (31a) 

~�    ⇒  6� = 0  ⇒  �2�� = ���� + �tu,d*! X�6�� + tw,dA! X�6�* = 0   (31b) 

In these single-mode backbone curves, no phase coupling occurs between the two modal coordinates, �� and ��. In order to 
explore the case of phase coupling between the two modal coordinates, it is possible to consider the in-unison case when v = +1. 
In literature, some research has been conducted to study the double-mode (or two mode) modal interactions, see [9] as an example. 
However, modal-interactions are out of the scope of this work and we only consider the single-mode backbone curves. In Fig. (7) 
sample results of the single-mode backbone curves for this oscillator are shown. 

The key point is to notice the similarity between the single-mode backbone curves for the 2-DOF system, Eq. (31), and the 
corresponding results of the SDOF cubic-quintic oscillator, Eq. (24). Hence, the single-mode backbone curves, truncated to � 
accuracy, for a 2-DOF nonlinearly couple oscillators with odd polynomial nonlinear stiffness terms, can be written as 

S�  ⇒  �2�� = ���� + [ f 1�2��` S2a + 12a + 22 T ��`@�,�6�`@�g]
`^�  (32a) 

S�  ⇒  �2�� = ���� + [ f 1�2��` S2a + 12a + 22 T ��`@�,�X̀ 6�`@�g]
`^�  (32b) 

 

Fig. 6. The schematic diagram of the 2-DOF cubic-quintic oscillator in Section 5. 
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(a) ~� BBC (b) ~� BBC 

Fig. 7. Single-mode backbone curves of the 2-DOF oscillator studied in Section 5: (a) ~� backbone curve which represents the projection of 6� 
against �2�, (b) ~� backbone curve which represents the projection of 6� against �2�. 

Parameter values are: ��� = 1 rad/s, ��� = 1.2 rad/s and ��,� = ��,� = �,� = �,� = 0.1. 

  

where X̀ = 1 + �2��`@� =tDb�d,DtDb�d,d> . Using Eq. (32), the single-mode backbone curves of the 2-DOF oscillator with odd polynomial 

nonlinearities can be computed. This example shows how (at least for the relatively simple case of single mode backbone curves) 
the analysis for cubic-quintic SDOF oscillators relates to the 2-DOF case. 

6. Conclusion 

In this paper, the direct normal forms method has been used to study nonlinear oscillators with higher order polynomial 
stiffness nonlinear terms. For the SDOF case, the analysis has been performed for two orders of series expansion, � and ��, and 
the related backbone curves were derived for both of cases. The results were compared with a selection of other methods already 
available in the published literature. One point of interest was that in the case of only odd nonlinear terms (like the cubic-quintic) 
the �� order solutions were not always more accurate than the � order solutions (when compared to the benchmark case). When 
even nonlinear terms were added, as with the generic cubic-quintic SDOF oscillator this changed, and here the �� order solutions 
were always more accurate than the � order solutions – as would be expected. In addition, it was shown that, for the SDOF 
oscillators considered with only odd nonlinear terms, the expression for the backbone curve of the system to � order could be 
generalized. This was not the case when even nonlinearities were present and in this case �� accuracy was needed. In terms of 
methodology, the use of symbolic computations helped deal with algebraic complexity, for the higher orders nonlinearities and/or 
degrees of freedom. As a final example of the paper, a two degree-of-freedom cubic-quintic oscillator was considered. Here it was 
shown that for single mode backbone curves (ignoring potential resonances and out-of-unison responses) there was a similar 
structure in the approximate expressions for the backbone curves when compared with the equivalent SDOF cubic-quintic cases. 
This demonstrates that a possible general relationship exists for SDOF and MDOF oscillators of this type, at least in the simplest 
cases. This may be a worthwhile topic for future research. 
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APPENDICES 
 

Appendix 1: Summary of the DNF procedure for conservative systems 

Considering a general unforced, nonlinear, N-degree-of-freedom mechanical system, whose equation of motion may be written 
as 

��� + �� + ��Z��� = 0, (A.1) 

where � is an:� × 1; vector of physical displacements, M and K are :� × �; matrices of mass and linear stiffness respectively, �Z��� is an :� × 1; vector of stiffness related nonlinear terms and � is used to denote smallness of the nonlinear terms. Here, for 
the application of the direct normal form technique, the nonlinear terms are assumed to be able to be expressed in a polynomial 
form in terms of x. 

The first step of the direct normal form technique is the linear modal transform to decouple the linearly coupled terms, which 
is written as 

� = ��, (A.2) 

and the resulting equation of motion in modal coordinates is 

�� + �� + ������ = 0, (A.3) 

where � is :� × 1; vector of linear modal displacement and � is an :� × �; matrix of linear mode shape matrix, and � is an :� × �; diagnose matrix of the square of natural frequencies, which can be found from the eigenvalues problem �� = �����, then 
the nonlinear terms vector becomes 

������ = ��������Z����, (A.4) 

The following step of the direct normal form technique is the nonlinear near-identity transformation, i.e. 

� = � + �����, (A.5) 

which results in a resonant equation of motion, written as  

�� + �� + ��8��� = 0, (A.6) 

where � and ���� are the fundamental and harmonic components of q respectively, and �8��� is an :� × 1; vector of resonant 
nonlinear terms.  

To determine the resonant nonlinear terms, the vectors �8��� and ���� are expressed in a series form as, 
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��8��� = ��8������ + ���8������+. .. (A.7a) 

����� = �0������ + ��0������+. . ., (A.7b) 

and ����� is expanded in a Taylor series about the equilibrium � = �, written as 

������ = ������ + �� ��� ���������+. . ., (A.8) 

Additionally, a frequency detuning expression is introduced, based on the that the response frequencies of nonlinear systems 
are often distinct from their natural frequencies, written as, 

� = � + ��, (A.9) 

where � is an :� × �; diagonal matrix of square of resonant frequencies, and � = � − �. Now, substituting Eqs. (A7), (A8) and (A9) 
into Eq. (A3) to compare with Eq. (A6) gives, 

� ����� 0������ + �� ����� 0������ + ��0������ + ���0������ + ���0������ + ������ + �� ��� �����0������+. . . = ��8������ + ���8������+. . ., (A.10) 

this leads to expressions that must be balanced in the following order 

��: ����� 0������ + �0������ + ������� = �8������ (A.11a) 

��: ����� 0������ + �0������ + ������� = �8������ (A.11b) 

where, 

������� = ����� (A.12a) 

������� = �� − ��0������ + ��� �����0������ (A.12b) 

Here, an assumed solution of the form  

�� = � � + �!� = =6�2 ��\��> �\BC�� + =6�2 �\��> ��\BC��, (A.13) 

is adopted, where� = 1, . . . , �,6�, �� and �� are the displacement amplitude, phase lag, and response frequency of the nth mode, 
respectively. Substituting Eq. (13), the vectors ��`�, ��`� and �8�`� may all be expressed in terms of a {ℑ` × 1} vector of nonlinear 

terms in the original problem, i.e. in ��`�. For example, if ��`� = )��`�+��`�∗  is defined, then by mirroring this structure, 0�`� = )ℎ�`�+��`�∗  

and �8�`� = )�8�`�+��`�∗ are obtained, where $•( denotes a {� × ℑ`} coefficient matrix. For the case of polynomial nonlinear terms under 

consideration, then the elements in ��`�∗  may be written as 

��`�ℓ∗ = � � ���b,ℓ,��!���b,ℓ,��
�^�  (A.14) 

where . `,ℓ,�  and . `,ℓ,�  are exponents of � �  and �!�  in any element of ��`�∗  respectively. In order to identify the resonant 

nonlinear terms retained in �8�`�from ��`�, ��`�, is introduced, i.e. 

��`��,ℓ = f[". `,ℓ,� − .!`,ℓ,�#�
�^� �2�g� − �2��  (A.15) 

accompanied with the corresponding criteria that 

Non-resonant: ��`��,ℓ ≠ 0, )�8�`�+�,ℓ = 0, )ℎ�`�+�,ℓ = )��b�+�,ℓ �b��,ℓ , (A.16a) 

Resonant: ��`��,ℓ = 0, )�8�`�+�,ℓ = )��`�+�,ℓ, )ℎ�`�+�,ℓ = 0 (A.16b) 

Once the resonant nonlinear terms are determined to a specific accuracy level, i.e. �`, with the substitutions of Eq. (A.13), Eq. (A.6) 
can be written in the form, 

¡��\BC�� + ¡<���\BC�� = 0, (A.17) 
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Algorithm: ¢-order DNF technique (Non-resonant case) using symbolic computations 
 
Inputs: Mass matrix M, Linear stiffness matrix K, nonlinear and linear damping vector Nx, forcing amplitude matrix Px and 

forcing frequency £. 
 
Outputs: Displacement response x, backbone relations. 

 
Procedure: 
 Linear modal transformation  

1. Calculate linear natural frequencies, �, and mode shapes �. 
2. Calculate nonlinear and linear damping terms vector Nx and forcing amplitudes Pq. 

 Forcing transformation 
3. Determine resonant forcing amplitudes Pv. 
4. Calculate the forcing transform matrix e (if exists). 
5. Calculate nonlinear and linear damping terms after forcing transformation Nv. 

 Nonlinear near identity transformation (symbolically) 
6. Loop #1: perform a loop over DOF, substitute x’s and their derivatives by corresponding up and um components 

(using several if clauses inside the loop). 
7. For each equation in Nv, calculate the number of terms (as vector) then convert to set, and then find the total 

number of terms for the whole system (unite all terms for all equations and convert to vector again. 
8. Loop #2 (nested): the outer loop over the DOF, and the inner loop over terms number in each equation, determine 

the nonlinear and linear damping coefficients, and corresponding unique combination of variables u* (using if 
clauses and coefficients commands) 

9. Loop #3 (nested): calculating n* matrix for the whole system. 
10. Loop #4 (nested): calculating power indexes sp and sm for u* (whole system) and placing them in Table (or matrix) 

form. 
11. Check: multiply n* by u* and subtract initial equations, zeros must be obtained. 
12. Loop #5 (nested): Forming - matrix, for to DOF and then to the total number of terms, use corresponding - 

equation.     
13. Loop #6 (nested): Calculate coefficients of resonant terms nu*, and of harmonic terms h*. 
14. Calculate the resonant nonlinear and linear damping terms by multiplying nu* by u*. 

 Finding backbone curves and inverse transformation to find x. 
 

 
where ¡� and ¡<� are time-independent complex conjugates and, finally setting ¡� = 0 leads to the backbone curve expressions. 
With the aid of Maple software, symbolic computations are held in order to reach higher accuracy and involve more complex system 
analysis; with such software it is possible use normal forms analysis and generate codes for SDOF and MDOF oscillators. Finally, 
the symbolic implementation of the DNF method is shown in the following algorithm. 

 
Appendix 2: Summary of the DNF procedure for higher order accuracy 

While in most cases the � truncated solution yields acceptable results (compared to numerical solutions), sometimes it can be 
beneficial (or even required) to extend the analysis to a higher order accuracy. In this section, a brief formulation to �� accuracy is 
discussed, more details can be found in [14]. Referring to Eq. (A.10), it is possible to obtain the �� accuracy solution by finding the ℎ���� and �8���� vectors, in analogy to Eq. (A.10) it is possible to write  

�¤¥��� + ¦0¥��� + ����� 0¥��� = ��¥��� (A.18) 

where �¤¥��� = �¥��� + �� − ��0§��� + 99� :�§���;0§���  

Herein, more complexity can be clearly noticed regarding the nonlinear term, so it is more difficult to obtain the solution to �� 
accuracy. However, according to the system being approximated, it will be shown that rather than being considered as a 
compromising procedure to improve the accuracy, the need of extending the analysis to �� highly depends on the orders of the 
nonlinear terms. In matrix form, and similar to the analysis of �, the following terms can be introduced,  

�¤¥��� = �@�@"� , �!# 

0¥��� = 0@�@�� , �!� 

��¥��� = �8@�@�� , �!�   

(A.19) 

where, for SDOF systems, �@, 0@, �8@ are row vectors, and �@�� , �!� is a column vector, hence, the resulting products will be 
scalars. The step-by-step analysis is performed exactly as the case of �, and -@ is computed accordingly, [14]. Finally, the near-
identity transformation, to �� order, along with the resulted EOM are found to be, 

� = � + 0∗�∗ + 0@�@ 

�� + �� + �∗�∗ + �8@�@ = 0 
(A.20) 

The same procedure with some additional steps can be followed for forced-damped systems, and for systems studied in the 
resonant case, refer to [14] for detailed analysis of such systems. 
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Appendix 3: Matrix manipulation for the cubic-quintic nonlinear oscillator 

Table A1. �� DNF matrix results for the cubic-quintic oscillators 

�/∗ -/∗ ��,/∗  0/∗ �/∗ -/∗ ��,/∗  0/∗ 
�!�  8�2� 0 

������ − �2��64�2*  � ��!̈ 24�2� 0 
55���96�2* 

�!  24�2� 0 
9��� + ������ − �2��576�2*  � ��!�  0 

3���8�2� 0 

�!̈ 48�2� 0 
����64�2* � ��!*  0 

5�����2�  0 

�!©  80�2� 0 
���384�2* � ��!G  8�2� 0 

235���96�2*  

� � 8�2� 0 
������ − �2��64�2*  � *�! 8�2� 0 

6��� + 5������ − �2��64�2*  

�  24�2� 0 
9��� + ������ − �2��576�2*  � *�!�  0 

5�����2�  0 

� ̈ 48�2� 0 
����64�2* � *�!  0 

95���6�2�  0 

� ©  80�2� 0 
���384�2* � �!�  8�2� 0 

61����64�2*  

� �!*  8�2� 0 
6��� + 5������ − �2��64�2*  � �!*  0 

95���6�2�  0 

� �!G  24�2� 0 
37����192�2*  � G�! 24�2� 0 

37����192�2*  

� �!A  48�2� 0 
95���1152�2* � G�!�  8�2� 0 

235���96�2*  

� ��!�  0 
3���8�2� 0 � ̈�!�  24�2� 0 

55���96�2* 

� ��!  8�2� 0 
61����64�2*  � A�!�  48�2� 0 

95���1152�2* 

   
Appendix 4: Some results obtained for different types of oscillators 

Table A2. Backbone curves of SDOF oscillators with polynomial nonlinear term truncated to � and �� accuracies 

Nonlinear vector � Backbone curve �� Backbone curve 

������ ��� ��� − 56�2� ��6� 

������ ��� + 34 �6� ��� + 34 �6� + 3128�2� ��6* 

��*��� ��� ��� − 6380�2� ��6G 

����� ��� + 58 �6* ��� + 58 �6* + 951536�2� ��6A 

��G��� ��� ��� − 12871792�2� ��6�ª 

��¨��� ��� + 3564 �6G ��� + 3564 �6G + 640565536�2� ��6�� 

��A��� ��� ��� − 1215518432�2� ��6�* 

��©��� ��� + 36128 �6A ��� + 63128 �6A + 84393655360�2� ��6�G 

���ª��� ��� ��� − 440895720896�2� ��6�A 

������� ��� + 231512 �6�ª ��� + 231512 �6�ª + 195510712582912�2� ��6�ª 

������� ��� ��� − 39002256815744�2� ��6�� 

������� ��� + 4291024 �6�� ��� + 4291024 �6�� + 20941713117440512�2� ��6�* 

���*��� ��� ��� − 45242618388608�2� ��6�G 

������ ��� + 643516384 �6�* ��� + 643516384 �6�* + 17032808258589934592�2� ��6�A 

Table A3. Backbone curves of �� accuracy for SDOF oscillators with combined polynomial nonlinear term truncated 

Nonlinear vector �� Backbone curve 

������� + ������� ��� + 3128�2� ���6* + 34 ��6� − 56�2� ��6� 

������� + ���*��� ��� − 6380�2� ���6G − 74�2� ����6* − 56�2� ���6� 

������� + ������ ��� + 951536�2� ���6A + 58 ��6* − 56�2� ��6� 

������� + ���G��� ��� − 12871792�2� ���6�ª − 158�2� ����6G − 56�2� ���6� 

������� + ���¨��� ��� + 640565536�2� ���6�� + 3564 ��6G − 56�2� ��6� 
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������� + ���A��� ��� − 1215518432�2� ���6�* − 385192�2� ����6A − 56�2� ���6� 

������� + ���©��� ��� + 84393655360�2� ���6�G + 63128 ��6A − 56�2� ��6� 

������� + ���*��� ��� − 6380�2� ���6G + 3128�2� ���6* + 34 ��6� 

������� + ������ ��� + 34 ��6� + 58 ��6* + 3128�2� ���6* + 564�2� ����6G + 951536�2� ���6A 

������� + ������� + ������ ��� + 34 ��6� + 58 ��6* + 3128�2� ���6* + 564�2� ����6G + 951536�2� ���6A − 56�2� ���6� 

������� + ������� + ���*��� + �*���� + ��G��� 

��� + 34 ��6� + 58 ��6* + 3128�2� ���6* + 564�2� ����6G + 951536�2� ���6A − 56�2� ���6� − 12871792�2� ��6�ª
− 9964�2� ���6A − 158�2� ���6G − 6380�2� ���6G − 74�2� ����6* 
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