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Abstract 
High flow discharges coming from the hydraulic structures usually carry a high-velocity jet of flow, 
which could have different short- and long-term impacts on the river mechanics and the habitat 
conditions. Scouring is one of the major effects of the incoming flow jet, which, once aerated, has 
a dynamic behavior and structure. Plunge pools are hydraulic structures to prevent the severe 
damages of the scouring phenomena. In the present study, due to the high complexity of 
constructing a physical model, the effect of air entrainment on scoured hole’s depth is assessed 
using the Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) 
methods. Each soft computing model’s performance on the scouring is compared to a Nonlinear 
Regression Method’s result using different statistical measures (RMSE, ME, MAE). The prediction 
accuracy of ANN, ANFIS, and nonlinear regression using RMSE was calculated as 0.0137, 0.011, 
and 0.0262, respectively. This study presents a novel achievement in measuring and predicting the 
scoured hole’s depth as one of the most critical phenomena in hydro-environmental science. 
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Introduction 

Predicting scour holes created 
downstream of the hydraulic structures is a 
critical issue regarding the probable impacts 
of the river’s morphology. It may cause some 
changes inside the habitat condition as well. 
Besides, the emerged scour holes should be 
in a way to minimize the failure and 
subverting probability. The effects of 
different parameters and the existence of 
nonlinear relations among the scour’s 
parameters raise the complexities of 
estimating the downstream changes. A 
typical way to explore the relationship 
between the scour hole dimension parameters 
is to recognize the dimensionless parameters 
and then determine the governing 
mathematical mapping of the effective 
parameters.  

Extensive research projects were 
conducted to determine local scour around 
hydraulic structures, and in most of the 
studies, the results were presented in an 
empirical form. Rouse (1940) reviewed the 
scour hole dimension from the initiation to 
the hole’s equilibrium form. Borman and 
Bormann and Julien (1991) presented 
equations for scouring a hole by investigating 
the jet’s characteristics. The dynamics of 
shear stress flow in the scouring hole were 
examined by Robinson et al. (2000). The 
scouring might be affected by the amount of 
entrained air into the incoming jet based on 
their findings. Therefore, Equation 1 for the 
scouring depth was proposed considering air 
aeration inside the incoming jet (Mason, 
1989; Mason & Arumugam, 1985). 
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where T is the scouring depth, q is the 
specific discharge, h  is the tailwater depth, 
g is the acceleration of gravity, D is the mean 
diameter of bed materials, and β is the 
fraction of air inside the incoming water, 
which was proposed by Ervine (1976). In 
Equation 1, β is a factor for the definition of 
scouring process replaced instead of the jet’s 
height (H). Bohrer et al. (1998) investigated 
the behavior of the jet’s velocity and assessed 
the decreasing trend of the velocity profiles. 
Two jet types were evaluated with and 
without air entrance inside the water jet. The 
results showed that the air-entraining process 
would decrease the jet’s mean velocity. 
Canepa and Hager (2003) studied the air and 
water interaction and its effects on scouring. 
They showed a reverse relationship between 
the amount of air and the depth of scour hole. 
Xu et al. (2004) studied the air-entraining 
impact on scouring caused by the falling jets. 
They proposed a formula addressing the 
relationship between the amount of 
concentrated air and the relative scouring 
depth. Under the same bed material and 
tailwater depth, the scour hole profile 
basically depends on the scour depth and is 
not significantly affected by air 
concentration. Jet air entrainment can affect 
the shape of the scour hole and reduce the 
depth of the scour. 

The experimental research results are 
used in the present study to predict the scour 
depth under different hydraulic conditions 
using artificial neural networks and nonlinear 
regression-based approaches. The 
methodology and the results of each part of 
the study are discussed in the further sections. 
 
Material and Method 

Based on the scope of this study, two 
machine learning approaches, including 
ANN, ANFIS, along with a nonlinear based 
regression method, were applied to the 

experimentally result from the previous 
studies. Each model’s construction and 
theory are discussed in the following 
sections.  
 
The Adaptive Neuro-Fuzzy Interface 
System  

ANFIS model is a general investigation 
tool that approximates continuous real 
functions on compact sets. This model was 
developed in 1993 by Jang and used by 
different hydro-environmental researchers to 
investigate various aspects and hydraulic 
parameters, such as the prediction of 
effective hydrodynamic parameters of the 
hydraulic jump (Baharvand et al., 2020; 
Roushangar et al., 2018), the bedload 
transport (Azamathulla et al., 2009a; Riahi-
Madvar & Seifi, 2018), the prediction of 
meteorological variables (Hassanzadeh et al., 
2020), the prediction of flow characteristics 
over different type of spillways (Azamathulla 
et al., 2009b; Yildiz et al., 2020), etc. The 
connection between the ANFIS model nodes 
is of “directional links” type, in which the 
node’s function introduces the variable or 
constant parameters to each node (Jang et al., 
1997). The architecture of the developed 
ANFIS model is shown in Figure (1). The 
example below presents the two if-then fuzzy 
models’ rules, known as the Takagi and 
Sugeno rule system, used inside the 
developed prediction model.  
 
Rule 1: If x is A1, y is B1, and z is C1, then 

11111 szryqxpf   
Rule 2: If x is A2, y is B2, and z is C2, then 

22222 szryqxpf   
 

where  f1 and f2 are the output functions 
of rules 1 and 2, respectively. Figure 
1 shows the structure of the developed 
ANFIS model.  
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Fig. 1- The architecture of the developed ANFIS model to estimate the scour depth parameters 

 
In Figure (1),  xAO iil ,  indicates the 

node function for each square node i for layer 
1, and i = 1, 2, x, is the ith input node; Ai is a 
linguistic label (i.e., “small” or “big”) for this 
node function. When input x satisfies 
quantifier Ai, Ol, i, is the membership 
function (MF) of a fuzzy set A (e.g., A1, A2, 
B1, B2, C1, C2) and indicates the degree of the 
produced set.  xAi  is mainly a Gaussian 
function ranging between 0 and 1 as the 
minimum and maximum levels, respectively.  
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where  ai , bi are the parameter sets. The 

circle nodes of layer 2 have index Π, which 
indicates the multiplication of the inputs. For 
instance, 

      2,1,  izCyBxAw iiii . 
The output of each node shows the 

impression level of a rule. Circle nodes of 
layer 3 take the label N. Following this, the 
ratio of the level of an impression of the ith 
rule on the sum of all rules’ levels is 
computed by the ith node using the Equation 
(3).  
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The node function of the square nodes in 

layer four is calculated using Equation (4).  
 

 iiiiiiii szryqxpwfwO ,4             (4) 

 
where iw  represents the layer three 

output, and the parameter series 
is  iiii srqp ,,, . These layer parameters are 
called consequent parameters. The single 
circle nodes of layer five summarizes all 
incoming signals and returns the result as the 
final output, as shown in Equation (5).   
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The output of the ANFIS model is 

generated using either linear or fixed value 
functions. Detailed information for the 
ANFIS model and its function is available 
in Jang’s (1993) study. 
 
Nonlinear Regression 

 
Nonlinear Regression analysis is mainly 

used when two or more variables might be 
connected systematically by a nonlinear 
relationship. The complexity of the nonlinear 
approaches compared to the linear models is 
evident because the model’s primary 
function is constructed based on different 
approximations inside each iteration. 
Different well-known mathematic methods 
such as the Gauss-Newton method and the 
Levenberg-Marquardt method are developed, 
which can be used as the nonlinear models’ 
primary function. 

In nonlinear models, one of the 
parameters would be the dependent 
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parameter. Simultaneously, the rest of the 
variables are used as the independent 
parameters by the assigned function to 
predict the dependent term. Equation 6 
indicates the present study’s primary 
equation concerning the effective parameters 
on the scour hole depth produced by the 
dimensional analysis method. 

 
e
t

d
t

c
t

b
tts srqpad   (6) 

 
where a, b, c, d, and e are constant 

coefficients. Also,  pt , qt , rt , and st are 
representative of the independent variables. 
 
Model Performance 

Four statistical measures are used to 
examine the fitted function’s accuracy by 
ANN, ANFIS, and MLR models to the 
testing data. These measures are Main 
Absolute Error (MAE), Root Mean Square 
Error (RMSE), determination coefficient 
(R2), and slope of the best fit line (m). 
Statistical functions used for evaluating the 
models’ performance are expressed through 
Equations (7) to (9).  
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where O is the observed parameter, O is 
the average of observed parameters, P is the 
model’s predicted parameter, and N is the total 
data. The regression line gradient between 
predicted and observed results (m) is also 
calculated for evaluating the model’s 

performance. The model’s highest accuracy 
occurred when m=1, which shows that the 
model predicted the values entirely correct, and 
the performance of the model would be a 
hundred percent. 
 
Experimental Data 

The experiments are conducted in a pool 
with 2m length, 1m width, and 1m depth. 
Figure (2) shows the designed experimental 
setup for the present study. The discharge is 
transported to the nozzle by a circular pipe with 
a 4-inch diameter. For simulating a vertical jet, 
a roller for the nozzle is fixed at 90 degrees. 
The tailwater depths are controlled in three 
scenarios, 0.325m, 0.385m, and 0.435m. The 
equilibrium time of scouring is determined for 
5 hours. The equilibrium time is the 
appropriate time needed for collecting the bed 
elevation profile. The bed elevation variation is 
detected by a Leica Disto-d8 laser meter. 
Figure 2 shows the nozzle location, scour hole, 
and governing parameters of the study.  

The most critical parameters that affect ds 

are the maximum depth of scouring and Ls, the 
length of scour downstream of the impinging 
jet, the discharge of spillway Qw,, the incoming 
air discharge Qa, the total head H, the velocity 
of air-water mixed flow (V), the width of the 
pool (B), the tailwater depth (h), the nozzle 
diameter (dn), the mean sediment size (d50), the 
gravitational acceleration (g), the fluid 
viscosity (µ), the density of water and (ρw), and 
sediment’s density (ρs), respectively. 
Identifying effective parameters is essential for 
determining the relation between effective 
parameters of scour hole dimensions. To find 
the best function addressing the scour depth, ds 
and Ls are assumed dependent variables and 

wsnaW gDhBdHVQQ  ,,,,,,,,,,, 50  are 
considered the study’s independent variables. 
For determining a simple dimensionless 
equation, the air concentration is identified as 
Equation 10.   
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Fig. 2- Sketch of the pre-aerated jet and its effect in the plunge pool on the scour hole dimension 
 

Table 1- Effective parameters range in the present study 
Parameter Symbol Unit Limit 

Tailwater depth H m 0.26-0.45 
Nozzle diameter dn mm 20.5-36.5 
Air discharge Ca % 0-30.1 
Flow velocity (air and water 
mixture) V m/sec 1.46-2.41 

Depth of scouring ds m 0.019-0.227 
Length of scour downstream of the 
jet Ls m 0.21-0.88 

 
Using π Buckingham theory and by 

considering ρ, g, and h, as primary variables, 
the dimensionless equation governing the 
scour hole dimensions’ behavior in a plunge 
pool can be written as Equations 11 and 12: 
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An accurate experimental data set is 

needed to investigate different effective 
scenarios to optimize the scour hole 
dimensions downstream a spillway. Table (!) 
shows the ranges of each parameter used in 
this study.  

In the training stage of the soft computing 
and MLR approaches, 80 percent of the 
randomly experimentally driven data is 

assigned to the training dataset. The rest of 
the dataset (20) is used to assess each model’s 
accuracy. The result of each model’s 
precision is discussed in the following 
section.  
 
Results and Discussion 

The ANN model is designed and trained 
80% of the effective dimensionless 
parameters. The model’s optimal architecture 
containing the input layer, hidden layers, and 
their neuron threshold function, iteration 
cycle, and the output section are determined 
using MATLAB 7.12. Input parameters are 
considered as Fr, dn/h, and Ca ),,( an ChdFr  , 
and output parameters are ds and Ls. Different 
network patterns are used to predict the best 
function addressing the scour depth. Table 
(@) shows a summary of the created network 
architecture and its performance using the 
statistical measures.  
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The result of ANN prediction in 
preparation and test stages are summarized in 
Table (3). 

Figures (3a) and (4a) show the ANN 
model’s performance in estimating ds/h and 
Ls/h in the training stage with a correlation 

coefficient of more than 0.99. The “m” value 
is almost 1 in both models (Table 3), 
representing the model’s high ability to 
predict the training stage’s scour depth. The 
fitted model’s result on the test dataset is 
shown in Figures (3b) and (4b). 

 
Table 2- Comparison of the network architecture for dimensionless length and width of scouring 
Output 

parameter 
Input 

parameter 
Network 

architecture 
Training test Performance 

function R2 RMSE R2 RMSE 

ds/h Fr,dn/h,Ca 3-3-1 0.9921 0.0189 0.9915 0.0219 Sigmoid 
ds/h Fr,dn/h,Ca 3-4-1 0.9922 0.0187 0.9922 0.021 Sigmoid 
ds/h Fr,dn/h,Ca 3-5-1 0.9922 0.0188 0.9913 0.0222 Sigmoid 
ds/h Fr,dn/h,Ca 3-6-1 0.9916 0.0195 0.9902 0.0236 Sigmoid 
ds/h Fr,dn/h,Ca 3-3-3-1 0.9899 0.0213 0.9899 0.0237 Sigmoid 
ds/h Fr,dn/h,Ca 3-4-4-1 0.9907 0.0205 0.9911 0.0224 Sigmoid 
Ls/h Fr,dn/h,Ca 3-3-1 0.9924 0.0439 0.9909 0.0552 Sigmoid 
Ls/h Fr,dn/h,Ca 3-4-1 0.9917 0.0461 0.9898 0.0579 Sigmoid 
Ls/h Fr,dn/h,Ca 3-5-1 0.9879 0.0555 0.9866 0.0652 Sigmoid 
Ls/h Fr,dn/h,Ca 3-6-1 0.9918 0.0455 0.9903 0.0564 Sigmoid 
Ls/h Fr,dn/h,Ca 3-3-3-1 0.9921 0.0446 0.9907 0.0563 Sigmoid 
Ls/h Fr,dn/h,Ca 3-3-4-1 0.9899 0.0503 0.9884 0.0614 Sigmoid 
Ls/h Fr,dn/h,Ca 3-4-4-1 0.992 0.0449 0.9909 0.0558 Sigmoid 

 
Table 3- Statistical measures of the ANN model  

Parameter Train  Test 
MAE RMSE R2 m  MAE RMSE R2 m 

ds/h 0.0101 0.0137 0.9951 0.9985  0.0103 0.0111 0.985 0.9268 
Ls/h 0.0252 0.346 0.999 0.9943  0.0439 0.0518 0.9732 1.0301 

 

  
Fig. 3- ANN model performance in estimating ds/h,  a) Train  b) Test 
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Fig. 4- ANN model performance in estimating Ls/h,  a) Train  b) Test 

Table 4- Statistical measures of the ANFIS model in estimating dimensionless  
length and width of scouring 

Parameter Train  Test 
MAE RMSE R2 m  MAE RMSE R2 m 

ds/h 0.0078 0.011 0.9973 0.9995  0.0102 0.0139 0.9975 1.0146 
Ls/h 0.0191 0.0287 0.9968 1.0023  0.0461 0.0641 0.9929 1.0259 

 

  
Fig. 5- ANFIS model performance in estimating ds/h,  a) Train  b) Test 

The developed ANFIS model used in the 
present study estimates dependent variables 
in a highly acceptable range. The 
performance of the ANFIS model is shown in 
Table (4). Figures (5) and 6 show the ANFIS 
model’s performance in estimating the length 

and width of scouring. The correlation 
coefficient values of the test stage show the 
significant ability of the model to predict the 
length and width of scouring (Figures 5b and 
6b). 
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Fig. 6- ANFIS model performance in estimating Ls/h, a) Train  b) Test 
 

Table 5-Statistical analysis of nonlinear regression relation for estimating scour hole 

Parameter Train  Test 
MAE RMSE R2 m  MAE RMSE R2 m 

ds/h 0.0114 0.0262 0.9731 0.993  0.0356 0.0551 0.9554 1.0232 
Ls/h 0.0143 0.0334 0.9926 0.999  0.0441 0.0545 0.9922 1.0116 

 

Fig. 7- Nonlinear regression performance in estimating ds/h,  a) Train  b) Test 

The nonlinear regression-based approach 
was produced by SPSS software and applied 
to the same 80 percent of the experimental 
dataset used for the ANN and ANFIS models. 
Equations 11 and 12 show the resulted 
formula addressing the scour depth and 
length, respectively.  
 

      8862.0908.25274.0 17919.0 ans ChdFrhd    
(11) 

 
      232.1011.10057.0 1465.1  ans ChdFrhL  

(12) 
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The performance of Equations (9) and (10) 
for predicting scour hole dimension are 
summarized in Table (5).  

Figures (7) and (8) show the results of 
nonlinear regression prediction. For 80% of 
the training data set, the correlation 
coefficient of the scour hole parameters ds/h 
and Ls/h are 0.97 and 0.99, and for the testing 

stage of the proposed equations, the 
coefficients are 0.95 and 0.99, respectively. 
The “m” value of fitted line is so close to 45 
degree for determining equations. For depth 
and scouring length testing stages, this value 
is 0.023 and 0.011 higher than the optimal 
value (m=1), respectively (Table 5). 

 
 

  
Fig. 8- Nonlinear regression performance in estimating Ls/h, a) Train  b) Test 

 
 

  
Fig. 9- Error percentage of the data-driven methods for prediction of scour hole dimensions a) 

depth b) length 
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The result’s comparison shows that the 
root main square error of ANN, ANFIS, and 
Nonlinear regression method to predict 
maximum scour hole downstream of the 
aerated vertical jet is 0.0137, 0.011, and 
0.0262, respectively. 

For a better comparison of the developed 
models’ performance in predicting the scour 
dimensionless hole parameters, the error of 
each model’s predicted values from the real 
data is shown in Figure (9). The ANFIS 
model’s error fluctuates from 0% to 12.7% in 
predicting the depth of scour hole Figure 
(9a), while Figure (9b) shows the error range 
between 0 to 7.8% for ANFIS model scour 
hole’s length estimation. For the entire data 
of the study, there is an acceptable average 
error fluctuation. This study brings novel 
achievements for the engineering community 
and indicates the ANFIS model’s superiority 
against ANN and MLR methods. However, 
the statistical measures prove that the 
proposed simplified nonlinear equation has 
acceptable accuracy for the designers and 
investigators in future studies.  
 
Conclusion 

In the present study, the aerated vertical 
water jet’s effect on the created scour hole 
dimensions was discussed. First, the 
experimental model was designed, and the 
effective parameters were identified and used 
to produce the effective dimensionless 
parameters of the study. The effective 

parameters on the scour hole’s depth and 
length were identified as Fr, dn/h, Ca. Second, 
two ANN and ANFIS models were trained to 
predict the scour hole dimensions under 
different hydrodynamic conditions. In 
addition to the mentioned data driven 
approaches, a nonlinear regression-based 
model was fitted to the training dataset in 
order to generate a dimensionless formula to 
define the scour hole’s geometrical 
characteristics. Different statistical measures 
were used to identify the performance of each 
three mentioned soft computing techniques. 
The root main square error for ANN, ANFIS, 
and nonlinear regression method to predict 
the scour hole’s depth is 0.0137, 0.011, and 
0.0262, respectively. Comparing the physical 
model data and the soft computing models 
revealed that the ANN and ANFIS had 
RMSE of 0.346, 0.0287, respectively, to 
predict the scour hole’s length. However, the 
nonlinear regression approach had the RMSE 
of 0.0334 for estimating the length of the 
hole. Hence, the ANFIS model showed the 
best performance in predicting the scour 
dimensions. Two empirical equations for the 
scour geometry were derived as a result of the 
nonlinear regression model with acceptable 
accuracy to be used for future studies. 
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