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Abstract. In this paper, two numerical methods for solving the MSEIR model are presented. In constructing these methods, the non-
standard finite difference strategy is used. The new methods preserve the qualitative properties of the solution, such as positivity, 
conservation law, and boundedness. Numerical results are presented to express the efficiency of the new methods. 
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1. Introduction 

Finite difference methods are widely used to solve ODEs and PDEs problems [1-3], but in the construction of numerical methods 
using standard finite difference approximations, the necessary qualitative properties such as the positivity of the solution may not 
be transferred to the numerical solution. To solve this problem, Mickens [4, 5] introduced new methods called NSFD methods. The 
advantage of these methods are that in addition to maintaining the usual properties such as stability, consistency, and convergence, 
they produce solutions that maintain the qualitative properties of the exact solution [6-9]. 

This class of schemes and their formulations are determined around two issues: first, how they formulate the discretization of 
derivatives, and second, what are the appropriate ways to approximate nonlinear terms. The forward finite difference 
approximation for the first-order derivative is one of the most common methods for discretization. In standard mode, derivative d�/d� is approximated by (�(� + ℎ) − �(�))/ℎ, in which, ℎ indicates the step-size. While, in the methods presented by Mickens, this 
term is approximated by (�(� + ℎ) − �(�))/
(ℎ), where 
(ℎ) is an increasing continuous function of ℎ, which satisfies the following 
condition: 


(ℎ) = ℎ + �(ℎ
),    0 < 
(ℎ) < 1,    ℎ → 0. (1) 

Note, when ℎ → 0 we must obtain the first derivative whatever the 
(ℎ) taken. In fact, it must be: 

d�d� = lim�→�
�(� + 
�(ℎ)) − �(�)

(ℎ) , (2) 

 where 
�(ℎ) and 

(ℎ) are continuous functions of the step-size ℎ verifying (1). The finite difference method is called non-standard, 
when it satisfies one of the following conditions: 
   • The function in the denominator of the approximation of the discrete derivative must generally be expressed by a function such 
as 
 of the step length, provided that (2) is verified. Using this rule, we can introduce a complex analytical function of ℎ in the 
denominator, which holds in the following condition: 


(ℎ) = ℎ + �(ℎ
),    0 < 
(ℎ) < 1,    ℎ → 0, (3) 

several functions 
(ℎ) that satisfy in (3) are:  

ℎ,    sin(ℎ)   or    1 − � !�" ,     " > 0.   

   • The nonlinear expressions in the differential equation must be approximated non-locally, for example, the following can be 
mentioned (see [10-30]) 

� ≈ 2�& − �&'�, 
            �
 ≈ 2(�&)
 − �&'��& , 

�( ≈ �&'�(�&)
, 
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             �( ≈ �&
 )�&'� + �& �2 *. 
Note, that there are no general rules for choosing a denominator function or non-local expressions, although to see some 

techniques, you can refer to [13-28, 31-39].  
In this paper, we develop the NSFD methods to obtain numerical solutions to the MSEIR epidemic model, where we apply the 

"Conservation Law" in the numerical schemes. New numerical methods retain their positive property. The rest of the paper is 
organized as follows: In Section 2, we introduce the mathematical model for the MSEIR epidemic model. In Section 3, we propose 
the new methods. In Section 4, boundedness, and the conservation law of methods are investigated. We investigate the positivity 
property in Section 5. In Section 6, we compared the obtained results from the new methods with the results of the classical 
methods. Finally, we end the paper with some conclusions in Section 7. 

2. Mathematical Model 

The mathematical model of MSEIR [2] consists of the following system of differential equations:  

+′(-) = .(/ − 0) − (1 + 2)+, 
0′(-) = .0 + 1+ − 304// − 20, 

5′(-) = 304// − (6 + 2)5, 
47(-) = 65 − (8 + 2)4, 

9′(-) = 84 − 29, 
/′(-) = (. − 2)/, 

(4) 

where   
     • M: the individuals with passive immunity, protected by maternal antibodies;  
     • S: the susceptible class, those individuals who can incur the disease but are not yet exposed to the disease;  
     • E: the individuals exposed to the disease but not yet infectious;  
     • I: the individuals infected by the disease and transmitting the disease to others;  
     • R: the recovered, with permanent immunity,  
the parameters 2, :, 3, 6, 1 and 8 are positive numbers. By dividing each of the variables by N, we normalize the population, i.e. : ; = +// , < = 0// , � = 5// , = = 4// and > = 9// . This reduces to the following equivalent system for the MSEIR: 

;′(-) = (2 + :)(� + = + >) − 1;, 
<′(-) = 1+ − 3<=, 

=′(-) = 3<= − (6 + 2 + :)�, 
=′(-) = 6� − (8 + 2 + :)=, 

>′(-) = 8= − (2 + :)> 

(5) 

The basic reproduction number of the system (5) is given by: 

ℛ� = 63(6 + 2 + :)(8 + 2 + :),  

The system (5) has a disease-free equilibrium @A5 = (0,1,0,0,0)B and there exists also an endemic equilibrium 55 =(;∗, <∗, �∗, =∗, >∗) where: 

;∗ = . + 21 + 2 + : (1 − 1ℛ�), 
<∗ = 1ℛ�, 

�∗ = 1(2 + :)(1 + 2 + :)(6 + 2 + :) (1 − 1ℛ�), 
=∗ = 61(2 + :)(1 + 2 + :)(6 + 2 + :)(8 + 2 + :) (1 − 1ℛ�), 
>∗ = 618(1 + 2 + :)(6 + 2 + :)(8 + 2 + :) (1 − 1ℛ�). 

 

The dynamics of the MESIR moel is shown in Fig. 1. 
 
 
 
 
 
 
 
 

 
 

Fig. 1. Determine dynamics of the MESIR Model 
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3. Construction of New Methods 

In this section, we propose two NSDF methods for the system (5) the following form: 

3.1 Method 1 

We propose our first new nonstandard (PESN) method as:  

;&'� − ;&D(ℎ) = (2 + :)(�& + =& + >&) − 1;&'�, 
<&'� − <&D(ℎ) = 1;&'� − 3<&'�=& , 

�&'� − �&D(ℎ) = 3<&'�=& − (2 + :)�& − 62 (�&'� + �&), 
=&'� − =&D(ℎ) = 62 (�&'� + �&) − (2 + :)=& − 82 (=&'� + =&), 

>&'� − >&D(ℎ) = 82 (=&'� + =&) − (2 + :)>& , 

(6) 

by simplifying the above relationships, we have: 

;&'� = D(ℎ)(2 + :)(�& + =& + >&) + ;&1 + 1D(ℎ) , 
<&'� = 1D(ℎ);&'� + <&1 + 3D(ℎ)=& , 

�&'� = 3D(ℎ)<&'�=& + �&(1 − D(ℎ) E2 + : + 62F)
1 + 62 D(ℎ) , 

=&'� = 62 (�&'� + �&) + =&(1 − D(ℎ) E2 + : + 82F)
1 + 82 D(ℎ) , 

>&'� = 82 D(ℎ)(=&'� + =&) + >&(1 − D(ℎ)(2 + :)). 

(7) 

3.2 Method 2 

We propose our second new NSDF method for the system (5) in the following form: 

;&'� − ;&D(ℎ) = (2 + :)(�& + =& + >&) − 12 (;&'� + ;&), 
<&'� − <&D(ℎ) = 12 (;&'� + ;&) − 3<&'�=& , 

�&'� − �&D(ℎ) = 3<&'�=& − (2 + :)�& − 62 (�&'� + �&), 
=&'� − =&D(ℎ) = 62 (�&'� + �&) − (2 + :)=& − 82 (=&'� + =&), 

>&'� − >&D(ℎ) = 82 (=&'� + =&) − (2 + :)>& , 

(8) 

by simplifying the above relationships, we have: 

;&'� = D(h)(2 + :)(�& + =& + >&) + ;&(1 − 1D2 )
1 + 1D(ℎ)2 , 

<&'� = 1D(ℎ)2 (;&'� + ;&) + <&
1 + 3D(ℎ)=& , 

�&'� = 3D(ℎ)<&'�=& + �&(1 − D(ℎ) E2 + : + 62F)
1 + 62 D(ℎ) , 

=&'� = 62 (�&'� + �&) + =&(1 − D(ℎ) E2 + : + 82F)
1 + 82 D(ℎ) , 

>&'� = 82 D(ℎ)(=&'� + =&) + >&(1 − D(2 + :)). 

(9) 



Nonstandard Dynamically Consistent Numerical Methods for MSEIR Model 199 
 

Journal of Applied and Computational Mechanics, Vol. 8, No. 1, (2022), 196-205 

4. Boundedness and the Conservation Law  

 In this section, we investigate the boundedness and the conservation law.  
 Definition 4.1 Using [5], consider a system modeled by n-first-order differential equations 

HIHJ = K(�),  (10) 

where, 

�(-)B = (��(-), . . . , �&(-))B,        K(�)B = (K�(�), . . . , K
(�)),  (11) 

let  

+(-) = L&
MN�

�M(-). (12) 

If +(-) satisfies a scalar differential equation of the form 2+2- = K(+), (13) 

where K is a function depending only on +, then Eq. (13) is a conservation law for the system given by Eqs. (10) and (11).  
  

Proposition 4.2 Methods (7) and (9) preserve the conservation law.  

Proof. By summing the equations in (6) we have:  22- (; + < + � + = + >) = (2 + :)(�& + =& + >&) − 1;&'� + 1;&'� − 3<&'�=& 

+3<&'�=& − (2 + :)�& − 62 (�&'� + �&) 

+ 62 (�&'� + �&) − (2 + :)=& − 82 (=&'� + =&) 

+ 82 (=&'� + =&) − (2 + :)>& = 0, 
 

and  

;&'� + <&'� + �&'� + =&'� + >&'� − ;& − <& − �& − =& − >& = 0,  

where  

;& + <& + �& + =& + >& = 1,  

we have  

;&'� + <&'� + �&'� + =&'� + >&'� = 1,  

therefor the method (7) preserve the conservation law. Similarly, by summing the equations in (8) we have:  

22- (; + < + � + = + >) = (2 + :)(�& + =& + >&) − 12 (;&'� + ;&) + 12 (;&'� + ;&) − 3<&'�=& 

+3<&'�=& − (2 + :)�& − 62 (�&'� + �&) 

+ 62 (�&'� + �&) − (2 + :)=& − 82 (=&'� + =&) 

+ 82 (=&'� + =&) − (2 + :)>& = 0, 
 

and  

;&'� + <&'� + �&'� + =&'� + >&'� − ;& − <& − �& − =& − >& = 0,  

where  

;& + <& + �& + =& + >& = 1,  

we have 

;&'� + <&'� + �&'� + =&'� + >&'� = 1,  

therefor the method (9) preserves the conservation law. ∎ 
   

Definition 4.3 Solutions of system 

�′ = K(-, �),    - > 0 (14) 

are bounded if the solution �(-, -�, ��) of the system satisfies in the following: 

∥ �(-, -�, ��) ∥≤ R(∥ �� ∥, -�), ∀- ≥ -� (15) 

where R: ℝ' × ℝ' ⟶ ℝ' is a constant dependent on -� and ��.  
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Proposition 4.4 Methods (7) and (9) are bounded.  

Proof. Since the proposed schemes are positive, and all variable are nonnegative real numbers and according to the conservation 
law, the sum of theme variables equal to one, it follows that the methods have the boundedness. 

5. Positivity 

In this section, we investigate the positivity property of the constructed methods in the previous section.  
Definition 5.1 The finite-difference method is called positive, if, for any value of the step size h, and �� ∈ ℝ'&  its solution remains positive, i.e. �Z ∈ ℝ'& for all [ ∈ \.  

  
Theorem 5.2  Sufficient condition for methods (7) and (9) to be positive is the following: 

0 ≤ D(ℎ) ≤ 12 + : + 82.  

Proof. Assume that ;& , <& , �& , =&, and >& are nonnegative real numbers so for positivity of method (7) it is enough to show that: 

1 − D(h) E2 + : + 62F ≥ 0,   ⇔    D(h) ≤  1E2 + : + 62F, (16) 

1 − D(ℎ) E2 + : + 82F ≥ 0, ⇔    D(h) ≤  1E2 + : + 82F ,  (17) 

1 − D(ℎ)(2 + :) ≥ 0,   ⇔    D(h) ≤  1(2 + :) (18) 

from (16)-(18) can be seen that 

D(ℎ) ≤ min ^ 1E2 + : + 62F , 1E2 + : + 82F , 1(2 + :)_ (19) 

which leads to 

0 ≤ D(ℎ) ≤ 12 + : + 82. (20) 

Similarly, for the positivity of method (9), it is enough to show that 

1 − 1D(ℎ)2 ≥ 0,   ⇔    D(ℎ) ≤  21 , (21) 

1 − D(ℎ) E2 + : + 62F ≥ 0,    ⇔    D(ℎ) ≤  1E2 + : + 62F , (22) 

1 − D(ℎ)(2 + : + 82) ≥ 0,    ⇔    D(ℎ) ≤  1(2 + : + 82) , (23) 

1 − D(h)(2 + :) ≥ 0,,    ⇔    D(ℎ) ≤  1(2 + :) , (24) 

therefore from (21)-(24) we have 

D(ℎ) ≤ min ^21 , 1E2 + : + 62F , 1E2 + : + 82F , 1(2 + :)_ (25) 

which leads to  

0 ≤ D(ℎ) ≤ 12 + : + 82. (26) 

Thus inequalities (20) and (26) gives: 

0 ≤ D(ℎ) ≤ 12 + : + 82, (27) 

and this completes the proof. ∎ 

6. Numerical Results 

In this section, we present some numerical simulations to confirm the advantages of the constructed NSFD methods. Consider 
model (5) with the parameters: 

2 = 1/(40 ∗ 365), 3 = .14, 1 = 1/180, 6 = 1/14, 8 = 1/7, : = 0,  
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(a)  Method 1 (b)  Method 2 

Fig. 2. Numerical results of the new methods with ℎ = 10, ;(0) = 0.05, <(0) = 0.87, �(0) = 0.03, =(0) = 0.05, >(0) = 0. 

(a)  Method 1 (b)  Method 2 

Fig. 3. Numerical results of the new methods with ℎ = 10, ;(0) = 0.05, <(0) = 0.87, �(0) = 0.03, =(0) = 0.05, >(0) = 0. 

 

(a)  Method 1 (b)  Method 2 

Fig. 4. Numerical results of the new methods with ℎ = 10, ;(0) = 0.05, <(0) = 0.87, �(0) = 0.03, =(0) = 0.05, >(0) = 0. 
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(a)  Method 1 (b)  Method 2 

Fig. 5. Numerical results of the new methods with ℎ = 10, ;(0) = 0.05, <(0) = 0.87, �(0) = 0.03, =(0) = 0.05, >(0) = 0. 

(a)  Method 1 (b)  Method 2 

Fig. 6. Numerical results of the new methods with ℎ = 10, ;(0) = 0.05, <(0) = 0.87, �(0) = 0.03, =(0) = 0.05, >(0) = 0. 

(a)  Method 1 (b)  Method 2 

Fig. 7. Numerical results of the new methods with ℎ = 10, ;(0) = 0.05, <(0) = 0.87, �(0) = 0.03, =(0) = 0.05, >(0) = 0. 
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Table 1. Qualitative behavior with respect to 5� of the methods considered on the problem (4) with ;(0) = 0.05, <(0) = 0.87, �(0) = 0.03, =(0) = 0.05, >(0) = 0. 

ℎ 5fg�> 9h2 +�-ℎi21 +�-ℎi22 

0.1 Convergence Convergence Convergence Convergence 

1 Convergence Convergence Convergence Convergence 

5 Convergence Convergence Convergence Convergence 

10 Divergence Convergence Convergence Convergence 

15 Divergence Divergence Convergence Convergence 

20 Divergence Divergence Convergence Convergence 

50 Divergence Divergence Convergence Convergence 

100 Divergence Divergence Convergence Convergence 

Table 2. The computational time used to obtain Figures 1-7. 

Figure (a) (b) 

Fig. 1 0.65s 0.66s 

Fig. 2 3.62s 5.71s 

Fig. 3 0.72s 0.73 

Fig. 4 0.65s 0.68s 

Fig. 5 1.8s 1.81s 

Fig. 6 1.8s 1.82s 

Fig. 7 0.64s 0.65s 

 

(a)  Method 1 (b)  Method 2 

Fig. 8. Numerical results of the new methods with ℎ = 10, ;(0) = 0.05, <(0) = 0.87, �(0) = 0.03, =(0) = 0.05, >(0) = 0. 

 

and according to inequalities (19) and (27), we take: 

j = min ^21 , 1E2 + : + 62F , 1E2 + : + 82F , 1(2 + :)_,  

and 

D(ℎ) = tanjℎj .  

The parameters used in these simulations have been taken from [40]. Figure 2 shows that the new methods retain the 
positivity property, while the Euler method and the second-order Runge-Kutta method (RK2) give negative values when using 
the MSEIR model, (see Figure 3). Figure 4 shows that the values of 9(-) and 0(-) are approaching 0 and 1, respectively. In Figure 5, 
we see that the values 5(-) and 4(-) approach zero and remain positive, which means that they do not go beyond the dynamic 
system. In Table 1, we see that the Euler and RK2 methods diverge with increasing the step-size, but the new schemes are 
convergent for all h. In Figures 6-7, we used the same parameters as above for 1, 6, 8, and : but we choose 3 = 0.17 so that 9� ≈1.1883. As can be seen for each h, nonstandard methods give good approximations and converge to the endemic equilibrium, 
and it is also clear that our schemes converge to the endemic equilibrium better than the method presented in [40]. If the 
sufficient condition in Theorem 5.2 is violated, then the numerical solutions may exhibit spurious oscillations and the new 
methods produce negative values, (see Figure 8). In Table 2, computational time used to obtain Figures 2-8 presented. It is worth 
pointing out that the required codes written in MATLAB. The feature of computer, that authors used to solve these four numerical 
methods, was RAM 8GB and CPU 2.40GHz. 
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To obtain numerical solutions, we do the following: 
 Step 1 Select values: ;�, ��, <�, =�, >�, such that ;� + �� + <� + =� + >� = 1. 
 Step 2 For n = 0, 1, 2,…, do 
 Step 3 Calculate  ;m+1 . 
 Step 4 Using this value of ;m+1, =&  and  <&, calculate <&'�. 
 Step 5 Using this value of <m+1, =&  and  �&, calculate �&'�. 
 Step 6 Using this value of �m+1 , �& and  =&, calculate =&'�. 
 Step 7 Using this value of =m+1, =&  and  >&, calculate >&'�. 

7. Conclusions and Discussion 

In this paper, we introduced two nonstandard finite difference (NSFD) methods for the MSEIR epidemic model. The properties 
such as positivity and boundedness for the proposed methods have been shown. Also, these methods preserve the conservation 
law. 
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