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Abstract. In this study, an adaptive proportional-derivative (PD) control scheme is proposed for trajectory tracking of multi-
degree-of-freedom robot manipulators in the presence of model uncertainties and external disturbances whose upper bounds are 
unknown but bounded. The developed controller takes the advantages of linear control in the sense of simplicity and easy design, 
but simultaneously possesses high robustness against model uncertainties and disturbances while avoiding the necessity of 
precise knowledge of the system dynamics. Due to the linear feature of the proposed method, both the transient and steady-state 
responses are easily controlled to meet desired specifications. Also, an adaptive law for control gains using only position and 
velocity measurements is introduced so that parameter uncertainties and disturbances are successfully compensated, where the 
prior knowledge about their upper bounds is not required. Stability analysis is conducted using the Lyapunov’s direct method and 
brief guidelines on how to select control parameters are also provided. Simulation results corroborate that the adaptive PD control 
law proposed in this paper can achieve a fast convergence rate, small tracking errors, low control effort, and small computational 
cost and its performance is compared with that of an existing nonlinear sliding mode control method. 

Keywords: Adaptive control, PD control, Robot manipulator, Stability, Uncertainty. 

1. Introduction 

For the last few decades, the development of robust control schemes for robot manipulators has gained extensive interest due 
to its importance and practicality. Robust control strategies are designed to have good dynamic behavior, even when confronted 
with model uncertainties and external disturbances such as time-varying friction, backlash, and payload variation. Various 
control approaches have been proposed to achieve this goal, including feedback linearization [1-3], backstepping control [4-6], ∞H  

control [7-9], passivity-based control [10-12], conventional sliding mode control [13-16], and continuous sliding mode control 
without chattering [17-21]. The aforementioned methods were able to provide satisfactory performances in terms of good tracking 
accuracy under the effects of model uncertainties and external disturbances to which an uncertain dynamic system might be 
subjected. 

On the other hand, linear control approaches still remain the most popular and preferred options in handling robot control 
problems with the least computational cost. Among others, PD (proportional-derivative) or PID (proportional-integral-derivative) 
control is a traditional but powerful strategy that usually takes the information about the deviation of the actual state from the 
desired state and feeds it back into the plant input. Neither exact dynamic modeling nor complex calculation of input torques are 
necessary for the implementation of PD/PID control [22]. Hence, a good number of researchers and engineers have applied PD/PID 
control to robot manipulator trajectory tracking [23-25]. Kawamura et al. [22] developed a local PD feedback controller with gravity 
compensation that forces a robot manipulator to follow a desired reference trajectory with arbitrary accuracy if the velocity 
feedback gain is set sufficiently large and the initial position/velocity errors are sufficiently small. It is known that unlike PD 
control, classical PID control reduces a bandwidth of the closed-loop system and guarantees only semiglobal stability that yields 
arbitrary small output tracking errors from a given set of initial conditions [26, 27]. Hence, Arimoto [28] and Kelly [29] added 
nonlinear integral terms to a linear PD feedback law to ensure global asymptotic stability. Cervantes and Alvarez-Ramirez [27] 
proposed a method of selecting PID control gains such that the tracking error should be sufficiently small for any compact set of 
initial position and velocity errors. The problem was solved by considering the closed-loop system as a standard singularly 
perturbed nonlinear system where all nonlinearities were lumped into a single function and estimated via a reduced-order 
observer. They assumed that the upper and lower bounds of the inertia matrix are a priori known. Jafarov et al. [30] developed a 
variable structure PID control law with a PID sliding surface that achieves global asymptotic stability of the controlled robot 
system. However, the bounds on the system parameter matrices were again assumed to be known. Nunes and Hsu [31] proposed 
a causal PD controller plus a feedforward compensation that yields uniform global asymptotic stability with respect to bounded 
input disturbances and derived inequality conditions for the PD control gains. However, the robot dynamic model was assumed to 
be known in advance in their method. Some researchers considered saturated torque constraints in their studies. Gorez [32] was 
the first who presented a bounded PID control law for global regulation assuming these kinds of constraints. Since the control 
scheme proposed in [32] was quite complex, Su et al. [33] attempted to obtain simpler structures, a so-called SP-SI-SD algorithm 
through Lyapunov stability analysis. Mendoza et al. [34] further simplified this algorithm and developed an output-feedback 
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scheme by creating a velocity estimated auxiliary subsystem. 
Most robust controllers of robot manipulators in the literature are nonadaptive and possess time-invariant control laws. They 

are usually obtained by assuming that the upper and lower bounds on the model uncertainties or disturbances are a priori known. 
However, an accurate estimation of these bounds is difficult or costly to obtain in practice when controlling a time-varying 
nonlinear model of a robot manipulator in an unknown environment. Hence, adaptive control that automatically tunes its control 
parameters has also been studied to increase the flexibility in handling the time-varying nature of uncertain dynamics and 
disturbances. Tomei [35] designed a partially adapted PD controller that is adaptive with reference to unknown gravity parameters 
and ensures global asymptotic stability for any initial position/velocity errors. However, only a gravity term was estimated via 
adaptive dynamics and it was assumed that the bounds on the inertia and friction matrices are available in advance. Burkan [36] 
derived a parameter estimation law in terms of trigonometric functions and designed an adaptive PD controller with feedforward 
terms. The controller was obtained based on so-called linearly-in-parameter conditions such that the robot dynamics is assumed 
to be linear with uncertain constant inertia parameters. However, some drawbacks in the control performance, such as large 
overshoots or long settling time could be noticed. Xu and Qiao [37] combined a constant-gain PID control law with a robust 
adaptive algorithm that estimates the uncertain masses and the upper bounds on the disturbances to achieve global asymptotic 
trajectory tracking. However, the main limitation lies in the requirement that the D gain and the I gain should be identical, which 
constrains the flexibility of the controller and also chattering can be observed in the control signals. Nohooji [38] developed a self-
tuning PID scheme in conjunction with neural networks for trajectory tracking of robot manipulators subject to uncertain 
dynamics and disturbances. The resulting controller was further improved by introducing a barrier Lyapunov function to prevent 
the violation of constraints and uniform boundedness of all signals is achieved in the closed-loop system. However, the learning 
of neural networks is computationally heavy and designing control and neural network parameters needs experience in control 
design. Thus, there is a strong demand to develop a simple adaptive PD/PID control law with the least computational cost that can 
be easily used even with little information about the uncertain dynamics of a robot manipulator to be controlled. 

Motivated by the considerations above, the current paper proposes a simple adaptive PD control (APDC) scheme that achieves 
high-precision trajectory tracking of robot manipulators facing unknown dynamics and external disturbances. The control law is 
designed based on a simple self-tuning PD structure that automatically updates its gain and renders the tracking errors uniformly 
ultimately bounded within a prespecified small domain around the origin from nonzero initial errors. The proposed control 
approach captures advantages from both linear control and robust control and mainly aims at achieving high tracking accuracy 
while keeping its structure as simple as possible. The main contributions of this work can be summarized as follows: 
1. The APDC guarantees uniform ultimate boundedness of the tracking errors with little information about the uncertain 

manipulator dynamics and external disturbances that are time varying. Only an estimate of the inertia matrix is needed and 
it is shown that the tracking accuracy is less sensitive to the choice of the estimate. Performance comparison with an existing 
nonlinear sliding mode controller is also conducted in terms of tracking accuracy, control effort, and computational cost. 

2. Compared with the existing PD/PID controllers for robotic systems in the literature that frequently assumed the linearly-in-
parameter conditions [31, 36, 37], the current paper directly deals with the usual nonlinear dynamics of robot manipulators 
with model uncertainties and external disturbances. Also, unlike most existing adaptive controllers that involve complex 
coupled conditions for control parameters to be satisfied, only one parameter is adaptive in the control algorithm and the 
control parameters can be selected independently by having simple inequality conditions satisfied. 

3. The APDC proposed in this paper is of a pure PD form that consists of only position and velocity tracking errors with adaptive 
gains, whereas other existing PD/PID controllers for robotic systems usually have additional nonlinear terms to guarantee 
stability or boundedness of the signals generated by the controlled system [28-35, 37]. Since it has a simple PD structure, the 
presented control method preserves many benefits of linear control techniques such as easy design, stability study, and 
frequency-domain analysis. 

4. Since the design of the control and adaptation laws boils down to the selection of control parameters, brief guidelines of how 
to select good parameters to achieve desired performance are provided. In addition, the effects of each parameter on tracking 
accuracy and control effort are investigated. 
This paper is organized as follows. In Section 2 the nonlinear dynamic model of a robot manipulator and the proposed APDC 

scheme are provided. Then stability analysis of the controlled system is conducted in Section 3, followed by simulation 
verifications for tracking problems under various conditions in Section 4. Comparison with an existing nonlinear sliding mode 
controller and the effects of each control parameter on control performance are also discussed. Finally, Section 5 concludes this 
paper. 

2. Dynamic Model and Adaptive PD Control Law 

The dynamic model of a n-degree-of-freedom robot manipulator is described as a second-order nonlinear system as follows 
[25]: 

 ( ) ( ) ( ) ( ) ( ), ,t t+ + = +M q q C q q q G q dɺɺ ɺ ɺ τ  (1) 

where ( )tq  is the n by 1 vector of the joint coordinates, ( )M q  is the n by n inertia matrix which is positive definite, ( )C q, qɺ  is the 
n by n matrix that stands for the Coriolis and centrifugal forces, ( )G q  is the n by 1 vector of gravity forces, ( )tτ  is the n by 1 vector 
of the applied torques, ( )td  is the n by 1 vector of the external disturbances, and t  denotes time. The block diagram of the 
controlled robot manipulator system is provided in Fig. 1. It is assumed that the dynamic model eq. (1) includes model 
uncertainties. Hence, actual (unknown) values of these quantities can be denoted as ( ) ( ) ( )0= +∆M q M q M q , 

. . .

0( ) ( ) ( )= +∆C q,q C q,q C q,q , and ( ) ( ) ( )0= +∆G q G q G q , where the notations ( )0M q , ( )0 ,C q qɺ , and ( )0G q  stand for the nominal 
matrices that are known, and ( )∆M q , 

.

( )∆C q,q , and ( )∆G q  denote the model uncertainties. In what follows, the arguments of 
the various quantities will be suppressed unless required for clarity. Consequently, eq. (1) can be rewritten as 

 0 0 0 ,d+ + = + +M q C q G d Fɺɺ ɺ τ  (2) 

where 

 d −∆ −∆ −∆F Mq Cq Gɺɺ ɺ≜  (3) 

is the total lumped system uncertainty. We succinctly express eq. (2) in the acceleration level as 
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Fig. 1. Block diagram of the controlled robot manipulator system 

 

 ( )− −= + − − + + = +ɺɺ ɺτ Δ
1 1

0 0 0 0q q G d F u ,dM M C  (4) 

where the control acceleration vector u  and the uncertain term Δ  are defined as 

 ( )− − − − + +ɺ≜ ≜τ Δ
1 1

0 0 0 0u ,   q G d F .dM M C  (5) 

Let us define the tracking error vector as 

 ( ) ( ) ( )= −e q q ,dt t t  (6) 

where ( ) ( ) ( ) ( ) =   ⋯,1 ,2 ,q
T

d d d d nt q t q t q t  is the desired position vector. If we differentiate eq. (6) with respect to time twice, we 

have 

 = − = +ɺɺ ɺɺ ɺɺ γe q q u ,d  (7) 

where eq. (4) is used and − ɺɺ≜γ Δ q d  is defined. In the current paper, it is assumed that the uncertain term γ  is bounded by 

 ( ) Γ
∞

<≜ ⋯γ γ γγ 1 2max , , , ,n  (8) 

where 
∞

⋅ is the infinity-norm of a vector and Γ  is an unknown positive constant. 

Let us consider the following control law: 

 ( ) ( )=− − + =− − − − +ɺ ɺ ɺζω ω ζω ων ν
2 2u 2 e e 2 q q q q ,n n n nd d  (9) 

where ζ  and ωn  are positive constants to be selected by the user and ( )ν t  is an auxiliary control function to be designed. As 
can be easily deduced, ζ  and ωn  will act as the damping ratio and the natural frequency of the controlled system, which 
determine the transient response from the initial conditions. Substituting eq. (9) into eq. (7), we obtain 

 + + = +ɺɺ ɺζω ω ν γ
2e 2 e e .n n  (10) 

It is straightforward to see that while the additional control input ( )ν t  fights for the uncertainty ( )γ t  to suppress its effect on 
the system and the right hand side of eq. (10) remains sufficiently small so that + ≈ν γ 0 , the first two terms of ( )tu  in eq. (9) 
make the errors ( )te  decay exponentially because + + →ɺɺ ɺζω ω2e 2 e en n 0  as →∞t . In the current paper, to minimize control 
effort the control torque is assumed to be subjected to a saturation limit so that 

 ( )
∞
≤τ

* ,t T  (11) 

where *T  is a known positive value. Since 1
0
−=u M τ , the control acceleration is bounded by 

 ( ) ( ) ( ) ( ) ( ) ( )− − −

∞ ∞∞ ∞ ∞
= ≤ ≤ ≜τ τ

1 1 1 * *
0 0 0u q q q ,t t t T UM M M  (12) 

where ( )1
0
−

∞
M q  is the maximum absolute row sum of the matrix ( )1

0
−M q , which is the matrix norm induced by the infinity 

norm on vectors. Since ( )0M q  is a known matrix, the upper bound *U  in eq. (12) can be calculated. 

Now, we rewrite eq. (10) using the state-space representation as follows: 

 ( )× × ×

× × ×

       
       = + +       − −      

ɺ

ɺɺɺ ω ζω
ν γ2

ee
,

2 ee
n n n n n n

n n n n n n n n

0 I 0

I I I
 (13) 

or 

 ( )= + +ɺε ε ν γ ,A B  (14) 

where 

 × × ×

× × ×

     
     =     − −     

≜ ≜
ɺ ω ζω

ε 2

e
,  ,  .

e 2
n n n n n n

n n n n n n n n

0 I 0
A B

I I I
 (15) 

Here, ×n n0  and ×n nI  denote the n  by n  zero matrix and the n  by n  identity matrix, respectively. 

The aim is to find the additional control input ν  such that the error vector ε  in eq. (14) decays to zero (or to within a 
sufficiently small domain) as time goes by despite the presence of the uncertain term γ  which is time varying but bounded. We 
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propose the following robust adaptive PD control law ( )ν t  in eq. (9) for tracking control of an uncertain robot manipulator 
system: 

 ( )
( )

( ) ( )
( )

( )
 
 = − + =−  
ɺ

ω

δ ζ δ
ν e e h ,

2
n

K t K t
t t t t  (16) 

where ( ) ( ) ( )+ɺ≜ ω ζh e e / 2nt t t  and >δ 0  is a constant to be selected by the user that determines control accuracy as shall be 

shown shortly. Also, ( )K t  is the control gain that is updated by the following adaptation law: 

 ( ) ( ) ( )
( )

( ) ( )( )∞
∞

     = − + = − + ≥         

ɺ η η
δ

ν 0 0 0

h
1 ,   0

t
K t t K t K K t K K K  (17) 

where >η 0  and >0 0K  are control parameters to be selected by the user. The value of η  is selected to prevent a sudden rise 

of the gain and 0K  offers additional stability margin. It is noted that the condition ( )≥ >0 0K t K  is always satisfied. Since 

( )
∞
≥ν 0t , eq. (17) then becomes 

 ( )≥ − +ɺ η 0 .K K K  (18) 

Defining ( ) ( )−≜ 0L t K t K , we have ( ) ( )≥−ɺ ηL t L t  and hence, 

 ( ) ( ) ( )
− −∫≥ = ≥
η τ

η00 0 0,
t

d
tL t L e L e  (19) 

where the Gronwall’s inequality [39] is used. Since ( )≥ 0L t , the condition ( )≥ >0 0K t K  holds and the gain ( )K t  is always 

positive. 

Then, the overall control law ( )u t  is obtained by substituting eq. (16) into eq. (9) and we obtain 

 ( ) ( ) ( )
( )

( ) ( )
( )

( ) ( )
           =− + − + =− + +            

ɺ ɺ ɺ
ω ω ω

ζω ζω
ζ δ ζ δ ζ

u 2 e e e e 2 e e
2 2 2

n n n
n n

K t K t
t t t t t t t  (20) 

with the gain adaptation rule eq. (17). It must be noted that the proposed adaptive PD control law eq. (20) includes only the 
tracking errors and their time derivatives. We now propose the main theorem. 
Theorem: Consider the robot manipulator system eq. (1) or eq. (4) with the adaptive PD control (APDC) law eq. (20) and the gain 
adaptation rule eq. (17). Then, the controlled system will be stable such that the errors are uniformly ultimately bounded by 

( )e 2 nt
∞
≤ ζδ ω  in a finite time from any nonzero initial errors, provided that the control parameters are selected as follows: 

 

( )

( )

 > > > ≥ > < + <

ω δ η

ζ

ζω δ

0

*

0,  0,  0,  0 0,

1
,

2
0 2 .

n

n

K K

K U

 (21) 

The proof of Theorem is given in the next section. 

3. Stability Analysis 

Before we prove Theorem in the previous section, let us first prove the following two Lemmas. 
Lemma 1: Let us consider the following 2n  by 2n  symmetric matrix: 

 

ω
ω

ζ

ω

ζ

× ×

× ×

 
 
 
 =  
 
  

22
2

,

2

n
n n n n n

n
n n n n

I I

P

I I

 (22) 

where ζ  and ωn  are constants satisfying the conditions eq. (21) and a 2n  by 2n  symmetric matrix Q  is defined as 

( )=− +TQ A P PA  where A  is the matrix defined in eq. (15). Then both matrices P  and Q  are positive definite. 
Proof: First, the matrix P  is positive definite if and only if the following conditions are satisfied [40]: 

 ( )ω
ω ζ

ζ
> − >

2
2 2

2
2 0,  8 1 0.

4
n

n  (23) 

The two conditions in eq. (23) are immediately derived from eq. (21). 
Next, we show the positive definiteness of the matrix Q . From its definition, we can easily compute the matrix Q  as 

 ( )
( )

ω

ζ

ω
ζ

ζ

× ×

× ×

 
 
 
 =− + =  
 −  

3

2

.

4 1

n
n n n n

T

n
n n n n

I 0

Q A P PA

0 I

 (24) 

Then from the conditions eq. (21), it is obvious that the matrix Q  is positive definite, which completes the proof. ■ 
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Lemma 2: Assume that the magnitude of the control input ( )u t  given in eq. (20) is subjected to a saturation limit *U  as 

described in eq. (12). Then, the gain ( )K t  updated by the adaptive rule eq. (17) is always less than the value of ζω δ−* 2 nU  when 

( ) ( ) ( )ω ζ δ
∞ ∞
= + >ɺh e e / 2nt t t  holds. In brief, the following inequality is satisfied: 

 ( ) ( )ζω δ δ
∞

< ≤ < − >*
00 2 ,  when h .nK K t U t  (25) 

Proof: From eq. (20), we have 

 ( )
( )

( )
ζω δ

δ∞ ∞

+
=

2
u h ,n K t

t t  (26) 

since ( )> 0K t  for all time t . Then, when ( ) δ
∞
>h t , eq. (26) leads to 

 ( )
( )

( ) ( )
ζω δ

ζω δ
δ ∞ ∞

+
+ < = ≤ *2

2 h u ,n
n

K t
K t t t U  (27) 

and since ( )< ≤00 K K t  and ( )≤0 0K K , eq. (25) follows. ■ 

Now, we are ready to prove Theorem. Define a Lyapunov candidate function as 

 ( )δ

η
= + −ε ε

2*

0

1
,

2 2
TV K K

K
P  (28) 

where *K  is a sufficiently large number such that Γ < *K  and <* *U K  are satisfied. The time derivative of eq. (28) yields 

 ( ) ( )δ

η
= + + −ɺ ɺɺ ɺε ε ε ε

*

0

1
.

2
T TV K K K

K
P P  (29) 

Upon using eq. (14), eq. (29) becomes 

 ( ) ( ) ( )δ

η
= + + + + −ɺ ɺε ε ε ν γ

*

0

1
.

2
T T TV K K K

K
A P PA PB  (30) 

Since + =−TA P PA Q  from Lemma 1 and 

 

ω
ω

ζ ω

ω ζ

ζ

× ×
×

×
× ×

 
 

      = = + =        
  

ɺ ɺε

22
2

e e e e h
2

2

n
n n n n n

n nT T T T T Tn

n n n
n n n n

I I
0

PB
I

I I

 (31) 

from eqs. (15) and (22), eq. (30) simplifies to 

 ( ) ( )δ

η
=− + + + − =− +ɺ ɺ ɺε ε ν γ ε ε

*

0

1 1
h ,

2 2
T T T

KV K K K V
K

Q Q  (32) 

where ( ) ( )δ

η
+ + −ɺ ɺ≜ ν γ

*

0

hT
KV K K K

K
. Substituting eqs. (8) and (16) into ɺKV , we obtain 

 ( ) ( )δ δ

δ η δ η∞ ∞ ∞

 < Γ− + − ≤ Γ− + −  
ɺ ɺ ɺ* *

0 0

h h h h hT
K

K K
V K K K K K K

K K
 (33) 

since 
∞
≤

2
h h hT . Now, let us consider the case when δ

∞
>h . Then, from eq. (33) we have 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

δ δ

η η

δ δ

η η

∞ ∞ ∞ ∞

∞ ∞ ∞ ∞

< Γ− + − = Γ− + − + − − −

  = Γ− − − + − =− −Γ − − −   

ɺ ɺ ɺ

ɺ ɺ

* * * *

0 0

* * * * *

0 0

h h h h

h h h h .

KV K K K K K K K K K K K K
K K

K K K K K K K K K K
K K

 (34) 

Since > Γ*K , the first term in eq. (34) is negative. Substituting eq. (17) into the second term, we have 

 ( ) ( ) ( ) ( )δ δ
δ

η δ
∞

∞ ∞ ∞

       −      <− − − =− − − + − =− − − ≤                

ɺ ɺ* * * 0
0

0 0 0

h
h 1 h h 0K

K K
V K K K K K K K K K

K K K
 (35) 

because >*K K , ≥ 0K K , and δ
∞
>h . Hence, <ɺ 0KV  and eq. (32) becomes 

 =− + <− <ɺ ɺε ε ε ε
1 1

0
2 2

T T
KV VQ Q  (36) 

since the matrix Q  is positive definite. In brief, if we define a compact set δΩ  such that ω ζ δ
∞ ∞
= + ≤ɺh e e / 2n , then all the 

solutions of ( )h t  that start outside δΩ  will enter this set within a finite time and will remain inside the set for all future times 

[41]. 
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While the errors and their derivatives remain inside the set δΩ , each element satisfies 

 
ω

δ δ
ζ

− ≤ + ≤ =ɺ ⋯,    1,2, , .
2

n
i ie e i n  (37) 

First, consider the case ω ζ δ+ ≤ɺ / 2ni ie e  or ( )ω ζδ ω ζ≤− −ɺ 2 / / 2n ni ie e . Then, using the Gronwall’s inequality [39], we can easily 

show that 

 ( ) ( )
( )ω

ζζδ ζδ

ω ω

− − 
 ≤ + −  

0
2

0

2 2
,

n t t

i i
n n

e t e t e  (38) 

where 0t  is the time instant at which the condition ω ζ δ+ ≤ɺ / 2ni ie e  is first satisfied, and ≥ ≥0 0t t . Since ω ζ >/ 2 0n , the error 

( )ie t  is ultimately bounded by ( ) ζδ ω≤ 2 / nie t . Next, we consider the case δ ω ζ− ≤ +ɺ / 2ni ie e  or δ ω ζ− − ≤ ɺ/ 2n i ie e . Following the 

same procedure as in the first case, we arrive at 

 ( )
( )

( )
ω

ζζδ ζδ

ω ω

− − 
 − + + ≤  

0
2

0

2 2
,

n t t

i i

n n

e t e e t  (39) 

and the error ( )ie t  is ultimately bounded by ( )ζδ ω− ≤2 / n ie t . Hence, we combine the two results such that 

 ( )ζδ ζδ

ω ω
− ≤ ≤

2 2
,i

n n

e t  (40) 

and eq. (40) is satisfied for any element = ⋯1,2, ,i n , and so we conclude that 

 ( ) ζδ

ω∞
≤

2
e .

n

t  (41) 

This is the end of the proof. ■ 

4. Simulation Results 

The adaptive PD control (APDC) law developed in the previous sections is applied to trajectory tracking of the 2-link robot 
manipulators shown in Fig. 2 to validate its effectiveness, accuracy, and robustness, and compared with the existing nonlinear 
sliding mode controller proposed in [15]. The simulations are carried out in the MATLAB/Simulink environment, using the fixed-
step ode4 Runge-Kutta integrator with the sampling interval of 0.001 sec. 

In this paper, the same nonlinear dynamic equation of the manipulator as used by Boukattaya et al. [15] is considered for 
performance comparison: 

 
( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )
( )

τ

τ

          
          + + = +                         

ɺɺ ɺ ɺ ɺ

ɺɺ ɺ ɺ ɺ

111 12 1 11 12 1 1 1

221 22 2 21 22 2 2 2

q q q,q q,q q
,

q q q,q q,q q

M M q C C q G d

M M q C C q G d
 (42) 

where 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

= + + + + = = + = +

=− =− = =

= + +

ɺ ɺ ɺ ɺ ɺ ɺ ɺ

2 2 2 2
11 1 2 1 2 2 2 1 2 2 1 12 21 2 2 2 1 2 2 22 2 2 2

11 2 1 2 2 2 12 2 1 2 2 2 21 2 1 2 2 1 22

1 1 2 1 1 2 2

q 2 cos ,    q q cos ,    q ,

q,q 2 sin ,    q,q sin ,    q,q sin ,    q,q 0,

q cos co

M m m l m l m l l q J M M m l m l l q M m l J

C m l l q q C m l l q q C m l l q q C

G m m gl q m gl ( ) ( ) ( )+ = +1 2 2 2 2 1 2s ,    q cos .q q G m gl q q

 (43) 

The nominal parameters are selected as 

 = = = = = ⋅ = ⋅2 2
1 2 1 2 1 2
ˆ ˆ ˆ ˆˆ ˆ1 m, 0.8 m, 0.5 kg, 1.5 kg, 5 kg m , 5 kg m ,l l m m J J  (44) 

where ( )= 1,2iq i  is the angular position of the revolute joint i , il  is the length of link i , im  is the mass of link i , iJ  is the 

inertia of link i , respectively, and = 29.81 m/sg  is the acceleration due to gravity. Note that the known terms 1̂l , 2̂l , 1m̂ , 2m̂ , 

1Ĵ , and 2Ĵ  determine the nominal matrices ( )0 qM , ( )ɺ0 q,qC , and ( )0G q  used in eq. (2). The desired trajectories are selected as 

 

− −

− −

 
 − +    = =       + +   

4

,1

4,2

7 7
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5 20q ,
1
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4

t t

d

d
t td

e eq

q
e e

 (45) 

and the initial conditions are 

 ( ) ( ) ( ) ( )
   
   = =      

ɺ
1 0

q 0  rad ,  q 0  rad/s .
1.5 0

 (46) 
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Fig. 2. Architecture of the two-link robot manipulator 

The following external disturbances including high-frequency noise effects are applied to the manipulator: 

 ( )
( )
( )

( ) ( )
( ) ( )

π

π

   +   = =   +      

1

2

2sin 0.5sin 200
d ,

cos 2 0.5sin 200

t td t
t

d t t t
 (47) 

and it is assumed that physical parameters of mass and inertia in eq. (42) are uncertain by 20 % of their nominal values such that 
the real values are 

 
= + = = + =

= + = ⋅ = + = ⋅

1 1 1 2 2 2

2 2
1 1 1 2 2 2

ˆ ˆ ˆ ˆ0.2 0.6 kg,  0.2 1.8 kg,

ˆ ˆ ˆ ˆ0.2 6 kg m , 0.2 6 kg m ,

m m m m m m

J J J J J J
 (48) 

where 1m , 2m , 1J , and 2J  are the real, unknown values. 

Now, let us consider the APDC described in Theorem. The parameters used for the controller are selected as 

 ( )δ η= = = = =*
00.005, 0.1,  0.5,  0 0.5,  4000.K K T  (49) 

As for the damping ratio ζ  and the natural frequency ωn  in the left hand side of eq. (10) that determine the response of the 

controlled, linear dynamics, let us consider the following two cases: 

 
= =
= =

ζ ω

ζ ω

Case I: 1,  5,

Case II: 0.67,  5,
n

n

 (50) 

and both cases use the same control parameter values shown in eq. (49). It is obvious that Case I and Case II yield critically 

damped and underdamped responses, respectively. Also, the nominal mass matrix ( )0 qM  is calculated as 

 ( )
( ) ( ) ( )

( )

 + + + + + =  
 + + 

2 2 2
1 2 1 2 2 2 1 2 2 1 2 2 2 1 2 2
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m m l m l m l l q J m l m l l q

m l m l l q m l J
M  (51) 

Figure 3 plots the variation of − −
∞ ∞=1 1

0 0 2|| (q) || || ( ) ||qM M  as 2q  changes from 0 (rad) to π2  (rad). Since the maximum value of 
−

∞
1

0 2|| ( ) ||qM  is found to be 0.2193 at π=2 0,2q  (rad), from eq. (12) ∞|| u( ) ||t  is bounded by *0.2193T  such that 

= =* *0.2193 877.2U T . Hence, all the conditions given in eq. (21) are met. If a constant nominal matrix =0 0(q)M M  were selected, 

the calculation of *U  would have been a lot simpler. However, a time-varying 0(q)M  was employed in this paper in order to 

show the general procedure to obtain *U . Usually, the first and the second conditions in eq. (21) are immediately satisfied by 

selecting suitable positive parameters and the third condition is easily satisfied by selecting a sufficiently small δ  that increases 

the tracking accuracy as shown by Theorem. The superiority of the conditions proposed in eq. (21) lies in their simplicity and the 

fact that the parameters can be chosen almost independently. 

The simulation results in the presence of the uncertainties eq. (48) and the external disturbances eq. (47) are presented in 

Figs. 4 – 8 for both cases. The positions of joints 1 and 2 in comparison with the desired trajectories are illustrated in Fig. 4. The 

corresponding tracking error signals are shown in Fig. 5. It can be seen that Case II (underdamped) merges to the desired 

trajectories more quickly and the errors asymptotically decay at a desired rate specified by ζ  and ωn , and are ultimately 

bounded within the region ζδ ω∞≤ =|| e(t) || 2 / 0.002n  for Case I and ζδ ω∞≤ =|| e(t) || 2 / 0.00134n  for Case II, as indicated by 

Theorem. Figure 6 depicts the control torques for both cases and shows that the control signals are continuous and smooth. Large 

control torques are initially required for both cases but Case II requires even larger torques. The magnitude of the control torques 

at the initial time can explicitly be calculated by using eqs. (5), (20), (43), and (44) as 
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On Robust Adaptive PD Control of Robot Manipulators  
 

Journal of Applied and Computational Mechanics, Vol. 6, No. SI, (2020), 1450-1466 

1457 

where ≜ 1 2e( ) [ ( ) ( )]Tt e t e t . In Fig. 7 the time history of the gains ( )K t  for Cases I and II are depicted and both gains stay in a 

bounded region. Because of the adaptive mechanism of ( )K t  good tracking performance is guaranteed even if exact information 

about the uncertainties is not a priori known. Figure 8 plots the time history of the control demand ν ( )t  calculated by eq. (16), 

the uncertainty term γ ( )t  defined as = − ɺɺγ Δ qd  with eq. (5), and their sum +ν γ( ) ( )t t  for both cases. It is noted that the control 

input ν ( )t  effectively eliminates the effect of the uncertainty γ ( )t  so that the sum +ν γ( ) ( )t t  remains a small value. 

Accordingly, one can expect from eq. (10) that the error e( )t  would asymptotically converge to a small domain, more specifically 

ζδ ω∞≤|| e(t) || 2 / n , at a desired rate characterized by the values of ζ  and ωn . Roughly speaking, the control parameters ζ  and 

ωn  mainly determine the transient response while the steady-state response is also affected by the other parameters δ , η , and 

0K . Also, Case II yields a faster response and smaller steady-state errors than Case I, at the expense of larger control torques. 

Overall, the simulation results Figs. 4 – 8 corroborate great tracking performance and strong robustness of the proposed APDC 
against the model uncertainties and external disturbances. 

In order to better demonstrate the excellence of the proposed APDC approach, another type of adaptive controller is now 
considered in the simulations for comparison, which is based on adaptive nonsingular fast terminal sliding mode control 

(ANFTSMC) proposed by Boukattaya et al. [15]. The sliding variable ( )s t  and the adaptive control law ( )τ t  designed in [15] are 

given as  

 

Fig. 3. Variation of ( )−

∞

1

0 2
qM  as 2q  changes 

 

Fig. 4. Tracking responses of joints 1 (left) and 2 (right) 

 

Fig. 5. Tracking errors of joints 1 (left) and 2 (right) 
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Fig. 6. Control input torques of joints 1 (left) and 2 (right) 

 

 

Fig. 7. Time history of gain ( )K t  

 

 

 

Fig. 8. Control input ( )ν t , uncertainty ( )γ t , and the sum ( ) ( )+ν γt t  of joints 1 (left) and 2 (right) for Case I (upper) and Case II (lower) 
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where β< <1 2 , α β> , and 1k , 2k , k , ξ , λ0 , λ1 , and λ2  are positive constants. Also, for a real variable vector = 1 2x [ ]Tx x , 

its Euclidean norm is denoted by = +2 2
1 2|| x || x x  and its fractional power is defined as 
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α

α
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and 
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where the signum function is defined as 

 ( )
 >= =− <

1,     if 0

sgn 0,     if 0

1,   if 0

y

y y

y

 (56) 

for a real number y . The vectors q , e , and 0G  and the matrices 0M  and 0C  in eq. (53) are defined in the same way as in 

this paper. In fact, Boukattaya et al. [15] solved exactly the sample problem given in this section with the same initial conditions 
in the presence of the same model uncertainties and external disturbances, but using ANFTSMC. They selected the following 
control parameters to be used in eq. (53): 

 ( ) ( ) ( )α β ξ λ λ λ= = = = = = = = = = = =1 2 0 1 2 0 1 2

5 ˆ ˆ ˆ2,  ,  1,  250,  0.5,  0.01,  0 0 0 0.
3

k k k b b b  (57) 

It must be noticed that the ANFTSMC law described in eq. (53) requires precise knowledge of the nominal dynamic model of the 

controlled system (i.e., 0M , 0C , and 0G ) while the proposed APDC necessitates only 0M  to construct =τ 0uM . For industrial 

robots, the values for 0C  are sometimes negligible, but the gravity terms in 0G  are not. However, upon using the proposed APDC, 

the information about 0G  is not needed thanks to the adaptive mechanism. Also, as shall be shown later, even a poor estimate 

of the nominal inertia matrix 0M  still results in fairly good tracking accuracy. For quantitative comparison purpose, two indices 

are defined to measure the performance: the integral of the absolute values of the errors (IAE) and the integral of the absolute 

values of the control torques (IACT). The IAE is used as a numerical measure of the error tracking performance and the IACT 

shows the energy consumption [15]. They are defined for each joint as follows: 

 ( )∫≜ 0
IAE ,

ft

e t dt  (58) 

 ( )τ∫≜ 0
IACT ,

ft

t dt  (59) 

where tf represents the total running time. 
The tracking performance of each controller (APDC and ANFTSMC) is shown and compared in Fig. 9. As for the APDC, Case I 

(critically damped) using the parameters given in eqs. (49) and (50) was considered. It is observed that the proposed controller 
has faster convergence to the desired signals. This is also verified by Fig. 10 in which the errors in the satisfaction of the desired 
signals are depicted. Obviously, the proposed control law provides faster response than the nonlinear ANFTSMC approach shown 
in [15]. Figure 11 shows the time history of the control torques obtained by using each method. One can see from the zoomed-in 
graphs that the proposed APDC requires smaller control magnitude at the initial time and generates smooth control signals 
throughout the simulation while the sliding mode controller designed in [15] exhibits chattering because of the discontinuous 
signum function involved, which typically appears in sliding mode control. Table 1 presents the comparison of the performance 
indices, where it is clearly seen that the proposed control strategy yields smaller IAE and IACT values than the existing control 
method (except IACT for joint 2). In Table 1 one more performance index is added: computation time (CT). This index indicates the 
computation time to execute each control algorithm for the total running time (tf = 50 sec) and is used as a measure of 
computational cost. The function ‘tic-toc’ in MATLAB was used and the execution for each algorithm was repeated multiple times 
so that the computation time results could be averaged. Obviously, the proposed linear APDC scheme requires more than four 
times shorter computation time than the nonlinear ANFTSMC proposed in [15]. Hence, it is concluded that the simple APDC 
method proposed in this paper requires low computational cost and yields a fast convergence rate, high-precision tracking, no 
chattering, and great robustness against model uncertainties and external disturbances whose upper bounds are not known a 
priori. 

Table 1. Comparison of the performance indices 

Controller  
IAE (rad∙s)  IACT (m∙N∙s) 

 CT (s) 
Joint 1 Joint 2  Joint 1 Joint 2 

Proposed Controller 
 

0.3256 0.4776  227.0 564.7  1.8643 
Boukattaya et al. Controller [15] 0.4222 0.5496  258.7 564.3  7.6010 

 



 H. Cho, Vol. 6, No. SI, 2020 
 

Journal of Applied and Computational Mechanics, Vol. 6, No. SI, (2020), 1450-1466  

1460

 

Fig. 9. Comparison of tracking responses under two types of controllers 

 

Fig. 10. Comparison of tracking errors under two types of controllers 

 

Fig. 11. Comparison of control input torques under two types of controllers 

As mentioned earlier, the proposed control method requires the information of the nominal inertia matrix 0M  to obtain the 

control input torques =τ 0uM , where u  is of PD form as described in eq. (20). However, it can be shown that even a poor 

estimate of 0M  results in fairly good tracking performance. For example, assume that the nominal values of mass and inertia are 

poorly estimated as 30 % of their real values such that 

 
= = = =

= = ⋅ = = ⋅

1 1 2 2

2 2
1 1 2 2

ˆ ˆ0.3 0.18 kg,  0.3 0.54 kg,

ˆ ˆ0.3 1.8 kg m , 0.3 1.8 kg m .

m m m m

J J J J
 (60) 

The poorly estimated values of eq. (60) were used both in the proposed APDC and the ANFTSMC proposed in [15] to control the 

robot manipulator while all the other parameters remained the same. Figures 12 and 13 show the tracking errors and the control 

input torques, respectively, obtained by applying both methods where the same control parameters as in eqs. (49) and (57) were 

used. The proposed method again yields faster convergence to the desired signals and the steady-state errors are much smaller 

than when the ANFTSMC with the poor estimates is applied. Also, the initial magnitude of the control torques is smaller, which is 

expected from eq. (52) with smaller 1m̂ , 2m̂ , 1Ĵ , and 2Ĵ . The chattering-like signals obtained from the APDC in Fig. 13 are 

caused by the attempt to mitigate the high-frequency disturbances given in eq. (47). The performance indices are listed in Table 2. 

Overall, the proposed APDC guarantees smaller tracking errors with similar control effort and requires less computational cost 

than the nonlinear ANFTSMC. Comparing with Table 1, one can see that the proposed method is not sensitive to the variation of 

the nominal values while the performance of the ANFTSMC is deteriorated if the nominal values are poorly selected, which is 
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mainly due to the fact that the equivalent control τ eq  in eq. (53) comprises the nominal matrices 0M , 0C , and 0G . Hence, one 

can conclude that even with a poor estimate of the nominal values for the mass and inertia of the joints, the APDC still exhibits a 

good convergence rate, small tracking errors, and strong robustness. 
Finally, the effects of the control parameters of the proposed control scheme are investigated. In the simulations, each of the 

following parameters is considered to explore its effects on the tracking errors and control torques: (i) ζ  and ωn , (ii) δ , (iii) η , 

and (iv) 0K . 

4.1 Effect of ζ  and ωn  

When the initial tracking errors are nonzero, ζ  and ωn  determine how fast the errors would decay and be stabilized around 

zero. In many cases ζ  can be set as unity (critical damping) for the fastest decay with no overshoot or undershoot. They also 

affect the steady-state errors as indicated by Theorem because the ultimate error bound is calculated as ζδ ω∞≤|| e || 2 / n . In the 

simulations, three cases were considered; the value of ζ  is set as unity for all cases and ωn  is selected as 1, 5, and 10 for each 

case. The tracking errors and the control torques for the three cases are provided in Figs. 14 and 15, respectively, and the 
performance indices are given in Table 3. It is observed that as ωn  increases, the initial error decays more quickly, the steady-

state error gets smaller, but the required control torque becomes higher. Also, it is interesting to see that the IAEs are 
approximately inversely proportional to ωn . For example, the IAEs for both joints with =ζ 1 , =ω 5n  are approximately twice 

the IAEs with =ζ 1 , =ω 10n . 

 

 

Fig. 12. Comparison of tracking errors under two types of controllers with poor estimates for nominal values 

 

Fig. 13. Comparison of control input torques under two types of controllers with poor estimates for nominal values 

 

Fig. 14. Comparison of tracking errors when =ζ 1  and =ω 1,5,10
n
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Table 2. Comparison of the performance indices with poor estimates for nominal values 

Controller  
IAE (rad∙s)  IACT (m∙N∙s) 

 CT (s) 
Joint 1 Joint 2  Joint 1 Joint 2 

Proposed Controller 
 

0.3292 0.4929  224.4 564.7  1.8529 
Boukattaya et al. Controller [15] 0.4442 1.1370  218.7 568.9  7.1346 

Table 3. Comparison of the performance indices when =ζ 1  and =ω 1,5,10
n

 

Parameters  
IAE (rad∙s)  IACT (m∙N∙s) 

Joint 1 Joint 2  Joint 1 Joint 2 

= =ζ ω1,   1
n

 
 

1.6470 2.1991  220.1 570.9 

= =ζ ω1,   5
n

 0.3256 0.4776  227.0 564.7 

= =ζ ω1,   10
n

  0.1640 0.2411  258.4 591.9 

Table 4. Comparison of the performance indices when =δ 0.001,  0.005,  0.01  

Parameters  
IAE (rad∙s)  IACT (m∙N∙s) 

Joint 1 Joint 2  Joint 1 Joint 2 

=δ 0.001  
 

0.3219 0.4148  229.2 564.3 

=δ 0.005  0.3256 0.4776  227.0 564.7 

=δ 0.01   0.3306 0.5583  225.8 565.4 

 

4.2 Effect of δ  

In this simulation, different numbers for δ  ( =δ 0.001,  0.005,  0.01 ) are used to examine its effect on tracking performance 

and control cost while all the other parameters remain the same as in eq. (49). It will affect the steady-state response because the 

ultimate error is bounded by ζδ ω∞≤|| e || 2 / n . Figures 16 and 17 show the tracking errors and the computed input torques for the 

three different δ  values. As expected, the transient response is scarcely affected by the change of the δ  values, however, the 

steady-state response highly depends on the selection of δ . In general, as the value of δ  increases, the steady-state error also 

increases as expected. Also, a larger δ  results in a smaller initial magnitude of the control torques. Table 4 compares the 

performance indices for the three cases in terms of the IAEs and the IACTs. As the value of δ  increases, the corresponding IAE 
also increases, but not very significantly when compared with Table 3. This can be explained by the fact that the transient 
response remains very similar for all cases and the steady-state error mainly contributes to the differences in the IAEs. The 
control cost in terms of the IACTs is not much affected by the variation of the δ  values. 

 

Fig. 15. Comparison of control input torques when =ζ 1  and =ω 1,5,10
n

 

 

Fig. 16. Comparison of tracking errors when =δ 0.001,  0.005,  0.01  
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Fig. 17. Comparison of control input torques when =δ 0.001,  0.005,  0.01  

 

Fig. 18. time history of gain ( )K t  when =η 0.01,  0.1,  1  

 

Fig. 19. Comparison of tracking errors when =η 0.01,  0.1,  1  

4.3 Effect of η  

From eq. (17) one can notice that η  determines how fast the gain ( )K t  changes. If η  is selected too small, ( )K t  cannot 

increase or decrease promptly when needed for error reduction or uncertainty suppression. If η  is chosen too large, ( )K t  may 

have a sudden rise, leading to a drastic change in the control torque from eq. (20), which is usually not desirable. Figure 18 shows 

the time history of ( )K t  when η  is selected as 0.01, 0.1, and 1. For the case =η 0.01 , the rate of change of ( )K t  is severely 

limited, and so the gain is insufficient to reduce the errors and to mitigate the uncertainty effects. If =η 0.1  is chosen, ( )K t  

smoothly increases to reduce the initial errors and finally converges to about 2.3 to stabilize the steady-state errors under the 
time-varying disturbances and model uncertainties. When =η 1 , the gain drastically increases in the initial phase to diminish 

the initial errors and quickly converges to but oscillates (because of the high gain rate η ) around 2.3 to mitigate the uncertainty 

and disturbance effects. Figures 19 and 20 present the tracking errors and the control torques. The transient response is not much 

influenced by the change of η , but a too small η  (0.01) yields larger steady-state errors because ( )K t  could not increase 

sufficiently quickly as seen from Fig. 18. Both =η 0.1  and =η 1  result in quite similar steady-state errors. From Fig. 20 when 

=η 1 , the control torques drastically rise in wrong directions in the initial phase and so require a greater initial magnitude than 

the other two cases. Table 5 compares the performance indices for the three cases in terms of the IAEs and the IACTs. The IAEs 
have the greatest values for case =η 0.01  as expected because of the insufficient gain and the other two cases yield similar IAEs. 

Also, the control cost is not much affected by the selection of η . 



 H. Cho, Vol. 6, No. SI, 2020 
 

Journal of Applied and Computational Mechanics, Vol. 6, No. SI, (2020), 1450-1466  

1464

Table 5. Comparison of the performance indices when =η 0.01,  0.1,  1  

Parameters  
IAE (rad∙s)  IACT (m∙N∙s) 

Joint 1 Joint 2  Joint 1 Joint 2 

=η 0.01  
 

0.3315 0.5794  227.6 565.7 

=η 0.1  0.3256 0.4776  227.0 564.7 

=η 1   0.3278 0.4712  229.1 564.8 

Table 6. Comparison of the performance indices when =
0

0.05,  0.5,  5K  

Parameters  
IAE (rad∙s)  IACT (m∙N∙s) 

Joint 1 Joint 2  Joint 1 Joint 2 

=
0

0.05K  
 

0.3333 0.5024  221.5 564.6 

=
0

0.5K  0.3256 0.4776  227.0 564.7 

=
0

5K   0.3228 0.4342  229.4 564.4 

 

4.4 Effect of 0K  

Let us examine the effect of 0K  on tracking performance and control cost. Three different factors of 0K  (0.05, 0.5, 5) are used 

to control the manipulator and the initial gain ( )0K  is set as the same as 0K . All the other parameters remain the same as 

shown in eq. (49). Figure 21 presents the time history of ( )K t  (left) and ( )− 0K t K  (right). As proven earlier, ( )K t  is always 

greater than or equal to 0K  and monotonically increasing with time in all cases. It is observed that a larger 0K  yields a greater 

( )K t , but the difference ( )− 0K t K  is relatively small between each case. Also, the final value of ( )− 0K t K  approximately 

converges to 1.8 for all cases. Figures 22and 23 depict the tracking errors and the control torques, respectively. One can see that 
the transient responses are very similar but the steady-state error is smaller for a larger 0K , which is expected from Fig. 21 where 

a larger 0K  yields a greater ( )K t  to better suppress the error resulted from the external disturbances. However, the initial 

control magnitude is also huge for a large 0K  value as seen from Fig. 23. Table 6 compares the performance indices for the three 

cases in terms of the IAEs and the IACTs. The IAEs have the smallest values when =0 5K  because the corresponding gain ( )K t  

is the largest among three. Also, the control cost seems to increase as 0K  gets larger, but not significantly. 

 

Fig. 20. Comparison of control input torques when =η 0.01,  0.1,  1  

 

Fig. 21. Time history of ( )K t  and ( )−
0

K t K  when =
0

0.05,  0.5,  5K  
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Fig. 22. Comparison of tracking errors when =
0

0.05,  0.5,  5K  

 

Fig. 23. Comparison of control input torques when =
0

0.05,  0.5,  5K  

5. Conclusion 

In this paper, the trajectory tracking problem of robot manipulators in the presence of model uncertainties and external 
disturbances was investigated and a new adaptive PD control (APDC) method was proposed. This approach has the advantages of 
simple linear control and robust adaptive control without any a priori information about the bounds on the uncertainties or 
disturbances. The control acceleration is a feedback control law that only includes the tracking errors and their derivatives, and 
the corresponding control torque is obtained by multiplying the obtained control acceleration with the nominal inertia matrix. It 
was shown that even a poor estimate of the nominal inertia matrix leads to fairly good tracking performance, which shows little 
sensitivity to the selection of the nominal parameters. On the other hand, the existing sliding mode control approach with 
imprecise nominal values suffers from huge tracking errors. The computational simplicity and easy design of the proposed 
control strategy are another advantage. In the considered numerical example, the APDC performs better than the existing fast 
terminal nonsingular sliding mode control method in terms of faster convergence, better tracking performance, less 
computational cost, and no chattering. In addition, the effects of the various control parameters on tracking accuracy and control 
cost were investigated to provide a direction of how to select good parameters to achieve desired performance. Future work will 
include the experimental validation of the proposed APMC method using a real robotic system. Also, the optimization of control 
parameters to balance between the tracking error and the control effort will be conducted and a novel differentiator will be 
developed to design output feedback control without velocity measurements. 
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