
J. Appl. Comput. Mech., 7(SI) (2021) 1183-1197 
DOI: 10.22055/JACM.2020.34007.2322  

ISSN: 2383-4536 
jacm.scu.ac.ir 

 

Published online: November 10 2020 

 

 

On the Active Vibration Control of Nonlinear Uncertain Structures 

Vasilis K. Dertimanis1 , Eleni N. Chatzi1 , Sami F. Masri2  
 

1 
Institute of Structural Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, 

Stefano-Franscini-Platz 5, Zurich, 8093, Switzerland, Emails: v.derti@ibk.baug.ethz.ch; chatzi@ibk.baug.ethz.ch 
2
 Viterbi School of Engineering, University of Southern California, 3620 South Vermont Ave., Los Angeles, CA 90089, USA, Email: masri@usc.edu 

 

Received June 15 2020; Revised November 09 2020; Accepted for publication November 09 2020. 

Corresponding author: V.K. Dertimanis (v.derti@ibk.baug.ethz.ch) 

© 2021 Published by Shahid Chamran University of Ahvaz 

Abstract. This study proposes an active nonlinear control strategy for effective vibration mitigation in nonlinear dynamical systems 
characterized by uncertainty. The proposed scheme relies on the coupling of a Bayesian nonlinear observer, namely the Unscented 
Kalman Filter (UKF) with a two-stage control process. The UKF is implemented for adaptive joint state and parameter estimation, 
with the estimated states and parameters passed onto the controller. The controller comprises a first task of feedback linearization, 
allowing for subsequent integration of any linear control strategy, such as addition of damping, LQR control, or other, which then 
operates on the linearized state equations. The proposed framework is validated on a Duffing oscillator characterized by light 
damping and an uncertain nonlinear parameter under harmonic and stochastic disturbance. The demonstrated performance 
suggests that the proposed Bayesian approach offers a competitive approach for active vibration suppression in nonlinear uncertain 
systems. 

Keywords: Vibration Mitigation, Nonlinear Adaptive Control, Unscented Kalman Filter, Linear-Quadratic Regulator, Joint State and 
Parameter Identification, State-feedback Linearization. 

1. Introduction 

A particular challenge in the domain of structural vibration control [1]-[4] lies in vibration attenuation of structures that feature 
nonlinear characteristics. Such structures, usually described by nonlinear differential equations of fixed parameters, are oftentimes 
further exposed to some degree of uncertainty [5]; in the sense that these parameters can be partially known, time-varying, or even 
completely unknown. This can be attributed to the inability of existing models to account for complex mechanisms, often relating 
to energy dissipation, or even the divergence of system properties from their design values due to aging, deterioration, 
environmental, or plasticity effects.  

Within this context, the effective mitigation of vibration for nonlinear and uncertain systems calls for adoption of adaptive 
control schemes [6] that are able to account for variability of the system parameters, and more importantly do so, for systems whose 
intrinsic behavior is nonlinear. Such implementations are less commonly met in the field of structural vibration mitigation, where 
often a linear time-invariant assumption is placed on the structural behavior. Previous works in this direction include the fuzzy 
PID-type controller introduced by Guclu and Yazici [7] for the active control of a nonlinear structure by means of a tuned mass 
damper (ATMD), aiming to improve seismic performance. Ashour, O.N., Nayfeh [8] propose a nonlinear adaptive vibration absorber 
to control the vibrations of flexible structures. Adaptivity is ensured via incorporation of a frequency-measurement technique. In 
this sense, system identification enters the loop, related to the scheme introduced herein. Beyond active control, adaptivity has 
been explored in the context of semi-active control schemes [9], which are often preferred due to their potential to match the 
adaptability of the active class with lower power requirements. In a semi-active implementation, Bitaraf and Hurlebaus [10] propose 
an acceleration feedback-based control scheme, with a neural network used for the inverse model of the Magneto-Rheological (MR) 
damper control voltage, to suppress the detrimental effects of earthquakes on an MR-controlled tall building. Weber [11] proposes 
a control-oriented mapping approach to reduce modelling effort of the inverse MR damper behavior, which compensates for the 
main steady-state nonlinearity of the MR damper force and thereby linearizes the plant. A robust force-tracking control scheme is 
introduced to tackle the issue of model imperfections and parameter uncertainties by employing parallel proportional and integral 
feedback gains. Cetin et al. [12] employ nonlinear filters in conjunction with Lyapunov-based parameter estimators to compensate 
for uncertainties in both the structural system and the damper characteristics. The proposed controller has been experimentally 
validated on a six-degree-of-freedom structure, which is tested on a shake table. In this work adaptivity will rely on the fusion of a 
system identification technique with an appropriate control law. 

For incorporation within the active control loop, the system identification task will need to be accomplished in real-time, while 
accommodating for nonlinearity and uncertainty. Therefore, schemes that can handle Joint State and Parameter Estimation (JS&PE) 
for nonlinear systems are necessary. In treating a problem of this nature, techniques relying on use of nonlinear Bayesian filters 
form the norm. This includes implementations with the Extended Kalman Filter (EKF) [12]-[14], the Unscented Kalman Filter 
(UKF) [13][15], as well as Sequential Monte Carlo or Particle Filter methods [16]-[19]. The UKF is a nonlinear variant of the Kalman 
Filter, made possible via use of the Unscented Transform (UT), which was introduced by Julier and Uhlmann [20], and forms an 
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improvement to the popularly used EKF method, which relies on linearization [21]-[23]. The UKF is the system identification tool 
adopted in this work [24]-[27].  

Within the context of adaptive control, the UKF has previously been coupled with control strategies [28], particularly for the 
case of robotics applications. For the majority of these works, the UKF is primarily exploited as a state estimator. Marafioti [29] 
carries out a cross-assessment of UKF versus the EKF for model predictive control (MPC), with results favoring adoption of a UKF 
approach. Sunderhauf [30] draws a similar conclusion when employing the two for autonomous airship control. Wang [31] 
implements fuzzy control of nonlinear systems via use of the UKF as the nonlinear state estimator. In [32] control of an autoclave 
reactor is enforced via a UKF based multi-variable nonlinear model predictive control algorithm. Beyond estimation of dynamic 
states, the adoption of the UKF for additionally estimating the uncertain parameters of a nonlinear system is less common. Araki 
and Okada [33] exploit the UKF for parameter identification of an Acrobot system, which is then controlled via an energy-based 
approach, while Bisgaard et al. [34] utilize the UKF for identifying the slung load states of a helicopter system. Both works 
accomplish the parameter identification task separately to state estimation. The fusion of the UKF with a control approach under 
a joint state and parameter estimation scheme, for the purpose of structural vibration mitigation, remains less explored in existing 
literature [35], with a first step accomplished in previous work of the authoring team [36].  

Under the assumption of measured states, a class of methods for nonlinear control relies on feedback linearization [37],[38]. 
The underlying concept is quite simple and aims at transforming a nonlinear system into a linear one, by adding a component to 
the control force that cancels the nonlinear dynamics. When this succeeds, the state equation becomes linear and classical control 
methods can be applied. This strategy is adopted in this work, while the Linear Quadratic Regulator (LQR) is selected as the control 
tool; a choice that proves popular for vibration mitigation purposes [39],[40]. The LQR controller requires full-state feedback, i.e., the 
estimation of the full vector of dynamical states. The direct measurement of the states is practically infeasible, due to obvious 
restrictions in terms of availability of sensors, but also due to limitations in the reachability of certain structural locations. To 
overcome this issue, the LQR is typically coupled with a state estimator. In the linear case, this results in the well-known Linear 
Quadratic Gaussian (LQG) control scheme [41],[42]. When however discussing adoption for nonlinear dynamical systems, this 
reasoning needs to be extended via adoption of nonlinear filters; a coupling which remains relatively less explored [43]-[46]. In this 
work, we explore coupling of an LQR with a nonlinear estimator, for the purpose of both state and parameter identification, thereby 
tackling systems which further to nonlinearity are compromised by uncertainty in their defining parameters.  

The linear sub-problem, i.e., the treatment of a linear system with uncertain parameters, although still open to research, has 
been treated to a large extent, both in an active [47] and semi-active [48],[49] setting. In these previous works of the authors, it has 
been shown that the use of an appropriate Bayesian filter can effectively account for the presence of parametric uncertainties in 
real-time. The extension of this scheme to nonlinear systems is, nevertheless, non-trivial. This is mainly due to the additional 
complexity that is imposed by the nonlinear dynamics, which render the design of a controller a difficult task. We explore this 
problem and introduce an active nonlinear vibration control framework that is simple, straightforward and implementable in real-
time. Following the results received for implementation in the linear case of vehicle vibration suppression [47], we propose the 
architecture of Fig. 1. The measured structural excitations and responses, ,d ku and ky , respectively, are fed to an unscented Kalman 

filter (UKF), which is implemented for adaptive joint state and parameter estimation, while the estimated states kξ and parameters 

θ are then forwarded to the controller. 
The adopted control law comprises two tasks; firstly, application of feedback linearization for canceling the nonlinear dynamics 

of the system, which allows for subsequent adoption of any conventional linear control strategy on the linearized state equations, 
such as addition of damping, LQR control, etc. The combined control forces ,c ku  accordingly serve as additional excitations to the 

system, while are further “copied” to the UKF, in order to ensure consistency between the closed-loop dynamics and the Bayesian 
observer. The proposed framework is validated on a Duffing oscillator with light damping and uncertain nonlinear parameter. The 
transient and the steady-state behavior of the closed loop dynamics is investigated under harmonic and chirp disturbance, and we 
comment on the performance of the UKF with respect to the JS&PE task. The paper is structured as follows: Sec. 2 defines the 
problem statement. Sec. 3 overviews the components of the proposed methodology. Section 4 describes the application study, while 
in Sec. 5 directions for further research along this direction are outlined. 

2. Problem Statement 

Assume a nonlinear structure, which is actively controlled, per the setting illustrated in Fig. 1. The system described by the 
following nonlinear equation of motion: 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ), , c cd dt r t t t t+ = +Mx x x P u P uɺɺ ɺ θ θ θ  (1) 

where , , n∈x x xɺ ɺɺ ℝ  denotes the displacement vector and its derivatives; the velocity and acceleration respectively r  denotes 

the nonlinear restoring force, which forms a function of the displacement and velocity vectors, as well as the parameter vector 
p∈ ℝθ . The latter describes the vector of system parameters and may include parameters, which define a linear dependence, e.g. 

viscous damping, as well as coefficients of nonlinear terms, e.g. cubic or hysteretic nonlinearities. n n×∈M ℝ denotes the mass 

matrix, and cdn nT

cd
+ = ∈ u u u ℝ defines the combined input vector, which comprises an external disturbance term du and the 

applied control force vector cu , with the selection vectors , cdP P  further defining the degrees of freedom these forces are applied 

to.  
The former nonlinear dynamics eq. (1) may be brought into a nonlinear state-space form, via introduction of the state vector 
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Cf is the nonlinear function defining the process equation, expressed in the continuous time domain. It will later be shown that 

the control force is chosen so as to cancel the nonlinear portion of the state equation, resulting in a nonlinear function of the 

dynamic states and parameter vector: ( ) ( )*, ,c =−u ξ ξθ θN . 
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Fig. 1. Layout of the proposed nonlinear vibration control scheme.  

The system is assumed to be monitored, with measurements of response quantities delivered in the form of displacement, 

velocities or accelerations, aggregated in the vector m∈y ℝ , defined, in turn, as a nonlinear function ch  of the dynamic state vector

ξ , the driving input forces summarized in u , and the parameter vectorθ : 

( ) ( )( ), ( ), , ,c ch t t h==y x x uɺ ξθ θ  (3) 

The previous set of process and observation equations is expressed in the continuous domain. However, we assume that a 
discretization scheme can be adopted for bringing these equations into a discretized form. In this work, we opt for a simple forward 
Euler (explicit) scheme, which proves sufficient for the implementation of the system identification and control schemes. This 
yields the following set of equations in the discrete time domain 

( )
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, ,

k d k k k

c k k kk
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+ =
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where k denotes the current time step and df denotes the discretized nonlinear state-space equation. 

3. Method 

3.1 The Unscented Kalman Filter for Joint State & Parameter Estimation (JS&PE) 

The assumption that the model description (state-space equation) and the observations that are extracted from the system 
(measurements) are inherently characterized by uncertainty. To achieve estimation of the underlying states in the face of these 
uncertainties, it is necessary to explicit account for these in the problem statement. To this end, a Bayesian filtering approach is 
adopted, whereby the previous set of equations is expanded to account for the so-called process and measurement noise sources 

,k kw v respectively:  

( )
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Both noise sources are assumed to be normally distributed as ( )0,k Nw Q∼ , and ( )0,k N Rv ∼ , with 2 2 ,n n m m× ×∈ ∈RQ ℝ ℝ , denoting the 
associated covariance matrices. The process noise serves for representing uncertainties that affect the governing equation of the 
dynamic system (state equation). These stem from model discrepancy, and additionally could reflect uncertainties in the input 
driving the system, whose measurement is often corrupt with noise. The measurement noise on the other hand reflects the 
uncertainty in the observation equation, and may again be linked to modeling discrepancies, and noise corruption of the 
feedforward term, as well as noise corrupting the observation itself (due to limited senor precision, etc). Our specific estimation 
goal here lies in inference of both the unknown dynamic states kξ , which are not directly observed, as well as the unknown system 
parameters that have been aggregated in vector kθ . This is feasible in the context of the previously outline framework, via simple 
augmentation of the of the dynamic state vector kξ  into the augmented vector [ ]

T

k k k=ξ ξ θ , which has been expanded to include 
the parameter vector kθ . In doing so, the evolution of the parameters must be defined. To this end, a fictitious random–walk 
equation for the unknown parameter vector is introduced as 

1 ,k k kθ+ = +wθ θ  (6) 

where ,kθw is a zero mean Gaussian process noise of covariance matrix p p×∈ ℝΘ . The zero mean Gaussian process noise kw of 
covariance matrix Q is assumed uncorrelated with ,kθw . The augmented nonlinear equations then become: 
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,f h now denote the augmented set of functions which account for inclusion of the parameters kθ in the augmented state vector kξ . 

As a result of the uncorrelatedness between ,Q Θ , the augmented process noise ,a kw also results as zero mean with a covariance 

matrix that is expressed as diag{ , }a =Q Q Θ  

Due to the nonlinear form of the state-space equations the adoption of a nonlinear Bayesian filter is proposed herein for the 

purpose of joint state and parameter estimation, namely, the Unscented Kalman Filter (UKF). The Unscented Kalman filter is chosen 

herein in place of simpler formulations, as for example the Extended Kalman Filter (EKF) [5],[50], since it has proven more adept in 

the handling of higher order nonlinearities and noise contamination [51].  
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Table 1. The general scheme of the UKF algorithm for joint state and parameter estimation. 
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removed for simplicity: 
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Update stage: 
5. Calculation of Kalman gain: 
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6. Improve the predictions of the state (posterior estimates) using the latest observations: 
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The UKF functions by modeling the state as a Gaussian random variable whose distribution can be approximated by a structured 

set of sample points; the sigma points. By means of the Unscented Transform (UT) [20], the sigma points capture the prior mean 

and covariance of the state and when propagated through the nonlinear function, provide an improved posterior estimate of the 

transformed state. For reasons of completeness, the steps of the UKF are briefly summarized in Table 1, however the interested 

reader is pointed to [52],[53] for a more elaborate description of the UKF formulation for joint state and parameter identification in 

nonlinear systems. 

3.2 State-Feedback Linearization 

The basic idea of linearization using feedback is described in [54]. The main idea is to design the feedback control signal, so as 

to linearize the state equation, i.e., effectively cancel out the nonlinear term. In order to elaborate on this procedure we split the 

general nonlinear state function ( ), ,Cf uξ θ  from equation (2) into four components, as follows: 

( ) ( ) ( ) ( ) ( ), , ,C c cd df= ⇒ = + + +u A u uɺ ɺξ ξ ξ ξ ξ Β Βθ θ θ θ θN  (8) 

The above equation splits the nonlinear state equation into four individual contributions, namely a term expressing linear 

dependence on the state ( )A ξθ , a term expressing nonlinear dependence on the state ( ),ξ θN , and the two terms , c cd du uΒ Β  

expressing dependence on the disturbance and control force, respectively. The input matrices , cdΒ Β are associated to the input 

matrices of the original dynamic equation (eq.(1)) in the displacement space x as [ ] [ ],
T T

c cd d= =0 P 0 PΒ Β , with dependence on 

the parameter vectorθ  omitted for simplicity. Following the elaboration offered by Wagg and Neild [54], for the general case,

( ),ξ θN can be rewritten as ( ) ( ) ( )*, ,c=ξ θ Β θ ξ θN N , thus leading to the following formulation: 
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Setting ( )*
, ,c NL =−u ξ θN linearizes the nonlinear state equation, and therefore determines the desired feedback linearization 

control signal for the system. It is assumed that the system states in the expression *
N can be readily accessed for use in the 
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control signal ,c NLu . Nonlinear dynamical systems, which can be expressed in the form of equation (9) can be linearized using the 

feedback control signal. This formulation comprises a subset of the more general form, which was utilized for elaboration of the 

joint state and parameter identification framework. This implies that the JS&PE scheme continues to apply, per the definition 

offered in section 3.1. The control signal may include additional control tasks, such as the addition of damping. Beyond its 

functionality for cancellation of the nonlinear terms, the general control input is chosen as ( ) ( )*
, , ,c c NL c L c= + =− +u u u iξ θN , 

where ( )c i  is the desired control function, e.g. the compensation required for vibration mitigation. If the underlying linear system 

is inherently unstable, then the control function should be chosen so as to ensure a stable linear control after cancellation of the 

nonlinear terms. 

In what we propose herein, an adaptive framework is followed since ( ) ( )*
, , ,c NL =−u ξ ξθ θN also depends on system parameters

θ , which are estimated via the JS&PE scheme, i.e., via use of the UKF. An alternative to this approach would be the adaptive scheme 

proposed by Wagg and Neild in [54] (§3.7.1), where a set of time varying control gains is inserted in the expression of cu . In contrast 

to the latter approach, the UKF based scheme we propose separates the estimation step of the uncertain parameters from the 

calculation of the adaptive control gain. The latter is succeeded via an LQR approach, where the gain is calculated using only the 

linear portion of the state equation ( )A ξθ , upon removal of the nonlinear term via state-feedback linearization. 

3.3 Linear-Quadratic Regulator (LQR) 

We describe adoption of the LQR on the linear system obtained via feedback linearization, which comprises the following state-
space form (in discrete-time): 

( ) ( ) ( )

( ) ( ) ( )
1 , , ,

, ,

k k d k c L k

k c L k

cd
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+
= + +

= + +

A B u B u

uy C D i
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ξ

θ θ θ

θ θ
 (10) 

where ( ) ( ) ( ), ,c dA B Bθ θ θ  are the discretized state and input matrices, obtained via use of a zero-order hold scheme applied on the 

continuous matrices ( ) ( ) ( ), ,c dA B Bθ θ θ of eq. (8), 
du  is the disturbance vector, 

,c Lu  is the linearized control force, i.e., the 

component of the force that is applied additionally to the term 
,c NLu , which served for cancellation of the nonlinear state 

components, and 1, 2, 3, ...,k T=
 
are the time discrete time steps. In order to proceed with implementation of the LQR scheme, the 

observation function ( ), ,c k k kh uξ θ  is segregated into a linear ( ) ( ) , ,k c L k
+ uC Cξθ θ and nonlinear (remainder) part ( )NL i .  

The LQR control scheme is established on the principle of minimizing the following cost function J   

( ), , , , , ,

0

2T T

k k c L k

T

c L k c L kk

k

L Q LQR L RQ RJ
∞

=

= + +∑ NQ u R u uξ ξξ  (11) 

where, , ,LQR LQR LQRQ R N  designate positive definite weighting parameters [55],[56]. From Lublin and Athans [57] (Theorem 17.2), it can 

be shown that  

( ) ( )
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Q C C
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θ θ
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whereR is a free selection matrix. The optimal control force vector is estimated by adopting 

( ), ,c L k k=−u K ξθ  (13) 

( )K θ  is the optimal feedback gain, which minimizes the cost function J , and is obtained via the equation 

( )
LQR c

T T T
Lc QRc + = +B B B AS R K S N . The optimality condition for the LQR heavily relies on the selection of the weight factors 

, ,LQR LQR LQRQ R N , which define the value of the variable S via solution of the discrete time algebraic Riccati equation (DARE), where 

dependence onθ is omitted for simplicity. 

( )( ) ( )
1

Q
T TT T T

LQR L R LQR L Rc c Qc c

−
= + + + + +B B B BS A SA A S N S R SA N Q  (14) 

For further information on the linear quadratic regulator the interested reader is referred to [55]. In case the liner matrices do not 

form a function of the parameter vectorθ , the Ricatti equation is solved only once in the beginning of the computation. In case of 

dependence of these matrices on θ  an online, recursive implementation of eq. (14), based on the current value ofθ , is provided 

in [47]. 

4. Case Studies  

4.1 The Duffing oscillator 
For assessing the efficacy of the proposed method, the Duffing oscillator is first considered. The equation of motion reads 

3( ) ( ) ( ) ( ) ( ) ( )cdx t x t x t x t u t u tδ β α+ + + = +ɺɺ ɺ  (15) 

where α , β and δ are parameters that control the nonlinear stiffness, the linear stiffness and the damping ratio, respectively, and

( )du t and ( )cu t are the disturbance excitation and control force, respectively. Under harmonic disturbance, eq. (15) offers a very broad 

vibrating behavior, ranging from non-harmonic periodic to purely chaotic, depending on the amplitude of the excitation. In the 

following, α is assumed as the uncertain parameter, while the rest admit the values listed in RRRR, adopted from [54] (see example 

2.6). Notice that the model is characterized by negative linear stiffness. 
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Table 2. Parameters used for the simulation and control of the Duffing oscillator. 

Parameter     Symbol     Values Unit 

Linear Stiffness β  -1.000 N/m 

Nonlinear stiffness (nominal) α  +1.000 N/m3 

Damping δ  +0.400 Ns/m 

Sampling period s
T  1/4096 s 

Simulation time end
T  60 s 

Augmented state-space: process noise covariance matrix aQ  
3

810− I  - 

Augmented state-space: measurement noise variance 2

vv
σ  1010−  - 

Augmented state vector: initial mean 
0 ξ̂  [ ]0 0 0.8α  - 

Augmented state vector: initial covariance matrix 0P  
3

810− I  - 

LQR controller parameter  R  1 - 

 
Simulations are conducted by numerical integration of eq. (15) via a 4th-order Range-Kutta scheme, at a fixed sampling period 

and for 60s. The availability of noise-corrupted vibration acceleration response at 2% noise-to-signal ratio is assumed. The 
numerical values of all the parameters associated to the UKF and LQR tasks are also provided in RRRRR and kept unaltered for all 
the cases considered below, unless otherwise specified. Regarding the UKF, the augmented discrete-time state and output variables 
are calculated by 

 

( )
1, 1 1, 2,

3
2, 1 2, 2, 1, 3, 1, , ,

3, 1 3,

sk k k

s s sk k k k k k d k c k

k k

T

T T u T u

ξ ξ ξ

ξ ξ δξ βξ ξ ξ

ξ ξ

+

+

+

= +

= + − − − + +

=

 (16) 

3
2, 1, 3, 1, , ,k k k k k d k c ky u uδξ βξ ξ ξ=− − − + +  (17) 

where ,c ku is the control force 

1, 3
, 3, 1,

2,

k

c k k k k

k

u
ξ

ξ ξ
ξ

  =− +  
K  (18) 

and kK the LQR control gain. In comparing the performance of the UKF, the EKF is also tested as an alternative Bayesian filter, using 

the same parameters listed in Error! Reference source not found..  
Figures 2-5 present the results for a harmonic disturbance of the form 

( ) sin(2 )du t ftγ π=  (19) 

with 0.6γ = and 0.286f = Hz. At this amplitude, the motion is non-harmonic periodic [54], with a non-zero-mean steady-state 

response. This is depicted in Fig. 2, left plot, where the uncontrolled displacement is displayed in black. The proposed method 
exhibits a quite satisfying performance, succeeding at both linearizing the uncertain equation of motion and suppressing the 
vibration levels due to the harmonic disturbance. This is apparent not only in the time-series of Fig. 2, but also in the phase planes 
of Fig. 3, where a clear shift to linearity is observed after the transient effects, at around half the vibration levels, compared to the 
uncontrolled system. At this excitation level, the UKF and the EKF produce identical results. 

The behavior of the filters is, though, quite different regarding the estimation of the uncertain parameter. As indicated in Fig. 4, 
the UKF manages to keep the estimate of the uncertain parameter within a relative small range of the actual value, whereas the 
EKF-based estimate is characterized by a strong “oscillating” performance, with a mean value that is around 2, e.g. 100% over the 
actual value. Despite this inconsistency, the linearization and disturbance attenuation tasks are as good as the ones of the UKF. This 
is justified by plotting the restoring force, defined as 

3( ) ( ) ( )F t x t x tβ α=− −  (20) 

In the uncontrolled case, Fig. 5 left, it is observed that at the resulted range of uncontrolled displacements the restoring force is 
rather linear and thus the nonlinear term has small effects on the measured vibration acceleration response, rendering the 

identification of α a difficult task. The perfect linearity of the restoring force is confirmed in the middle (UKF) and right (EKF) plots 
of Fig. 5. 

  

Fig. 2. Uncontrolled (in black) and controlled (UKF in red, EKF in blue) states for a harmonic disturbance with 0.6γ = and 0.286f = Hz. Left: 

displacement. Right: velocity (Duffing oscillator). 
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Fig. 3. Uncontrolled (left, in black) and controlled (middle: UKF, in red, right: EKF, in blue) phase plane for a harmonic disturbance with 0.6γ = and

0.286f = Hz (Duffing oscillator). 

 

Fig. 4. Nominal (in black) and estimated (UKF in red, EKF in blue) parameter α for a harmonic disturbance with 0.6γ = and 0.286f = Hz. In this 

subcase, the variance of the uncertain parameter has been increased to 10-3 instead of 10-8, as the latter led to extremely slow convergence (Duffing 
oscillator). 

   

Fig. 5. Uncontrolled (left, in black) and controlled (middle: UKF, in red, right: EKF, in blue) restoring force for a harmonic disturbance with 0.6γ = and

0.286f = Hz (Duffing oscillator). 

  

Fig. 6. Uncontrolled (in black) and controlled (UKF in red, EKF in blue) states for a harmonic disturbance with 1.8γ = and 0.286f = Hz. Left: 

displacement. Right: velocity (Duffing oscillator). 

   

Fig. 7. Uncontrolled (left, in black) and controlled (middle: UKF, in red, right: EKF, in blue) phase plane for a harmonic disturbance with 1.8γ = and

0.286f = Hz. 
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Fig. 8. Uncontrolled (left, in black) and controlled (middle: UKF, in red, right: EKF, in blue) restoring force for a harmonic disturbance with 1.8γ = and

0.286f = Hz (Duffing oscillator). 

 

Fig. 9. Nominal (in black) and estimated (UKF in red, EKF in blue) parameter α for a harmonic disturbance with 1.8γ = and 0.286f = Hz (Duffing 

oscillator). 

  

Fig. 10. Uncontrolled (left, in black) and controlled (middle: UKF, in red, right: EKF, in blue) phase plane for a harmonic disturbance with 1.8γ = and

0.286f = Hz (Duffing oscillator). 

Increasing the amplitude to 1.8γ = causes a purely chaotic uncontrolled response, as shown in the time-series of Fig. 6 (in black) 

and the phase plane of Fig. 7 left. Again, the active controller has an excellent performance for both the UKF and the EKF, cancelling 
the nonlinearity and reducing the overall vibration levels from around ±2 m to approximately ±0.5 m (as indicated in the x-axis of 
the phase planes of Fig. 7, middle and right, for the UKF and the EKF, respectively). The result of the applied control is a zero-mean 
harmonic vibration displacement response in the steady-state (Fig. 6, left, in red and blue). Notice that at this excitation levels the 
uncontrolled restoring force exhibits a fully nonlinear behavior. This is depicted in Fig. 8, left, and allows for the correct estimation 
of the uncertain parameter. As Fig. 9 illustrates, the UKF again outperforms the EKF, both in terms of convergence rate and accuracy. 

The nonlinear operating point of the system at this excitation levels further allows for an examination of the effects of the 
initial value for the uncertain parameter. In Fig. 10, the evolution of the estimate during the first 5s of the simulation is plotted, 
when the initial value is set at 0%, 20%, 40%, 60% and 80% of the true value. It is noted that for this set of simulations, the variance 
of the uncertain parameter has been increased to 10-6. The performance of both filters is quite similar, succeeding to quickly 
converge to the true value regardless the initial “guess”. The UKF, however, manages to maintain the converged value of the 
uncertain parameter after the occurrence of the transient effects (around the 4ths), in contrast to the EKF, which tends to destabilize. 

In investigating the performance of the controller over a disturbance with much richer frequency content, Fig. 11-Fig. 14 display 
the results for a chirp signal with amplitude 1.8N and linear frequency increase from 0 to 2Hz. Within this band, the response of 
the uncontrolled oscillator contains several subharmonics and non-integer harmonics. In this case, the main contributions of the 
controller are (i) to bring the mean value of the steady-state displacement response to zero; and (ii) to reduce the overall transient 
vibration levels, both in displacement and velocity. The uncertain parameter is slightly overestimated from both the UKF and the 
UKF; this is shown in Fig. 13. 

As a final note on the performance of the UKF and EKF, Table 3 displays the computational load of the filters during simulation, 
by measuring the total time required for code execution during each loop. The computational load is interpreted as mean value 
and variance and, expectedly, indicates that (i) the EKF requires slightly fewer recourses compared to the UKF; and (ii) the EKF 
appears as more “computationally consistent”, as its variance is one order of magnitude smaller than the one of the UKF. Still, the 
latter filter succeeds in performing calculations at one order of magnitude less than the sampling period (1/4096=2.4414×10-4 s), 
implying thus no effects on the stability of the control loop, while it must be mentioned that no UKF code optimization was carried 
out. 

4.2 The Bouc-Wen model 
The second case study considered pertains to the Bouc-Wen model, which is described by the structural equation 

( )( ) ( ) ( ) 1 ( ) ( ) ( )cdmx t cx t kx t kz t u t u tα α+ + + − = +ɺɺ ɺ  (21) 
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Table 3. Mean elapsed time and associated variance for the execution of the UKF and EKF during each of the excitation cases of the Duffing oscillator. 

Excitation 
    UKF     EKF 

mean variance mean variance 

Sinusoidal ( 0.6γ = and 0.286f = Hz) 4.91×10-5 4.41×10-9 4.44×10-5 1.27×10-10 

Sinusoidal ( 1.8γ = and 0.286f = Hz) 5.05×10-5 1.77×10-9 4.48×10-5 1.92×10-10 

Chirp excitation  5.06×10-5 3.19×10-9 4.50×10-5 1.84×10-10 
 

  

Fig. 11. Uncontrolled (in black) and controlled (UKF in red, EKF in blue) states for a chirp disturbance. Left: displacement. Right: velocity (Duffing 
oscillator). 

   

Fig. 12. Uncontrolled (left, in black) and controlled (middle: UKF, in red, right: EKF, in blue) phase plane for a chirp disturbance (Duffing oscillator). 

 

Fig. 13. Nominal (in black) and estimated (UKF in red, EKF in blue) parameter α for a chirp disturbance (Duffing oscillator). 

   

Fig. 14. Uncontrolled (left, in black) and controlled (middle: UKF, in red, right: EKF, in blue) restoring force for a chirp disturbance (Duffing oscillator).               

where, as previously, ( )du t and ( )cu t are the disturbance excitation and control force, respectively, c and k correspond to viscous 

damping and linear stiffness, respectively, α is the ratio of post-yield to pre-yield stiffness and ( )z t is the hysteretic displacement 

that follows the equation 

( ){ }( ) ( ) ( ) ( ) ( )
n

z t x t A sign z t x t z tβ γ = − +  
ɺ ɺ ɺ  (22) 

in which A , β , γ and n are parameters that control the hysteretic behavior of the model and ( )sign ⋅ is the signum function. 

Simulations are conducted by numerical integration of eqs. (21)-(22) via a 4th-order Range-Kutta scheme, at a fixed sampling period 
and for 20s. It is assumed that β and γ are the uncertain parameters that must be estimated via the UKF. The augmented discrete-

time state and output variables thus read 
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Table 4. Parameters used for the simulation and control of the Bouc-Wen model. 

Parameter     Symbol     Values Unit 

Mass m  65 N/m 

Damping c  150 Ns/m 

Linear Stiffness k  4×104 N/m 

Post-yield / pre-yield stiffness ratio α  10-1 - 

Bouc-Wen parameter A A  1 - 

Bouc-Wen parameter n n  2 - 

Sampling period s
T  1/4096 s 

Simulation time end
T  20 s 

Augmented state-space: process noise covariance matrix aQ  10-8I5 - 

Augmented state-space: measurement noise variance 2

vv
σ  10-10 - 

Augmented state vector: initial mean 
0 ξ̂  [0 0 0 0 0]T - 

Augmented state vector: initial covariance matrix 0P  10-8I5 - 

LQR controller parameter  R  10-12 - 
  

( )

( )( )( )

1, 1 1, 2,

2, 1 2, 2, 1, 3, , ,

3, 1 3, 2, 4, 2, 3, 3, 5, 3,

4, 1 4,

5, 1 5,

1

sk k k

s s
sk k k k k d k c k

n

sk k k k k k k k k

k k

k k

T

k T Tc k
T u u

m m m m m

T A sign

ξ ξ ξ

αα
ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ ξ ξ ξ

ξ ξ

ξ ξ

+

+

+

+

+

= +

 −  = + − − − + +   

 = + − +  

=

=

 
(23) 

( )
2, 1, 3, , ,

1 1 1
k k k k d k c k

kc k
y u u

m m m m m

αα
ξ ξ ξ

−
=− − − + +  (24) 

with eq. (24) corresponding to vibration acceleration data, corrupted at 2% noise-to-signal ratio. The control force is calculated by 

( )
1,

, 3,
2,

1
k

c k k k
k

u k
ξ

α ξ
ξ

  =− + −  
K  (25) 

where kK is the LQR control gain, while the disturbance is again assumed periodic of the form 

( ) 4000sind

k
u t t

m

  =   
 (26) 

e.g. the excitation frequency equals the natural frequency of the linearized system. The numerical values of the involved parameters 
are listed in Table 4. 

The performance of the method for the Bouc-Wen model is illustrated in Fig. 15-Fig. 18. It is noted that at this parameter space 
the EKF fails to converge, and thus no comparisons are presented. In contrast, the UKF performs quite efficiently. In specific, the 
method succeeds in cancelling the nonlinearity and reducing the overall vibration levels approximately 50% (as observed in the 
displacement time-series of Fig. 15 and the x-axes of the phase planes of Fig. 16), while the uncertain parameters are estimated 
with high accuracy and relative fast convergence. As in the Duffing oscillator, the nonlinear hysteretic restoring force in the 
uncontrolled model is replaced by a linear curve of sufficiently lower range and this can be confirmed by comparing the y-axes of 
Fig. 18. The mean elapsed time and its variance in this case is 5.43×10-5s and 5.35×10-10, respectively, confirming the potential of the 
UKF to be implemented as a real-time filter. An issue that deserves further attention is the range of the transient response of the 
controlled displacement (Fig. 15, left plot, red curve), which results amplified, indicating an “overshoot” before it reaches the steady-
state. This is attributed to the transient second-order dynamics of the resulted controlled system and could be suppressed by 
placing a PID controller in parallel to the system.        

  

Fig. 15. Uncontrolled (in black) and controlled (in red) states for a harmonic disturbance. Left: displacement. Right: velocity (Bouc-Wen model). 
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Fig. 16. Uncontrolled (left, in black) and controlled (right, in red) phase plane (Bouc-Wen model). 

  

Fig. 17. Nominal (in black) and estimated (in red) parameters. Left: β , right: γ (Bouc-Wen model). 

  

Fig. 18. Uncontrolled (left, in black) and controlled (right, in red) restoring force (Bouc-Wen model). 

 

Fig. 19. Sketch of the quarter-car model of a passenger vehicle. 

 

4.3 The quarter-car vehicle 
The final paradigm used for the assessment of the method corresponds to a quarter-car model of a passenger vehicle, shown 

in Fig. 19. The tire is modelled as an unsprung mass ( um ) of equivalent stiffness ( wk ) and damping ( wc ) and it is connected to the 

chassis (sprung mass sm ) through a nonlinear suspension. The equations of motion are 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

u u w s u s s w w anl

s s s u s s anl

m x t k k x t k x t f t k r t c r t f t

m x t k x t k x t f t f t

=− + + − + + +

= − + −

ɺɺɺ

ɺɺ
 (27) 

where ( )r t is the road surface profile, ( )af t is the applied active control force and ( )nlf t is the nonlinear suspension force, given by 

( )( )
2

( ) ( ) ( ) ( ) ( )s u s u snlf t c sign x t x t x t x t= − −  (28) 
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Table 5. Parameters used for the simulation and control of the hquarter-car model. 

Parameter     Symbol     Values Unit 

Unsprung mass u
m  38 kg 

Sprung mass s
m  238 kg 

Tire stiffness w
k  135×103 N/m 

Tire damping w
c  0 Ns/m 

Suspension stiffness s
k  157×102

 N/m 

Suspension damping s
c  200 Ns2/m2 

Sampling period s
T  1/4096 s 

Simulation time end
T  30 s 

Augmented state-space: process noise covariance matrix aQ  10-8I5 - 

Augmented state-space: measurement noise variance 2

vv
σ  10-10 - 

Augmented state vector: initial mean 
0 ξ̂  [0 0 0 0 0 0]T - 

Augmented state vector: initial covariance matrix 0P  10-8I5 - 

LQR controller parameter  R  10-10 - 

 
with sc denoting a damping constant. Equation 27 describes a damper with a simple orifice allowing fluid flow, frequently met in 

practical applications, in which the nonlinear force arises as the result of dynamic energy dissipation in the fluid. 
As in the previous case studies, simulations are conducted by numerical integration of eq. (27) via a 4th-order Range-Kutta 

scheme, at a fixed sampling period and for 30s, assuming the tire stiffness as the uncertain parameter and the chassis acceleration 
as the noise-corrupted measured output (2% noise-to-signal ratio). The augmented discrete-time state-space mode is formulated 
as 
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,
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s a k

s

k k

T f
m

ξ ξ+

−

=

 
(29) 
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2

1, 2, 3, 4, 3, 4, ,

1s s s
k k k k k k k a k

s s s s

k k c
y sign f

m m m m
ξ ξ ξ ξ ξ ξ= − + − − −  (30) 

for a control force 
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f c sign

ξ
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       =− + − −       

K  (31) 

where kK is the LQR control gain. The road surface profile is generated in accordance to the Draft-ISO formulation [58] and 

corresponds to the average-quality one dimensional time-series of Fig. 20. The numerical values of all other parameters are listed 
in Table 5.  

The behavior of the proposed active control strategy is expanded over Fig. 21-Fig. 23. As in the case of Bouc-Wen model, the EKF 
fails to converge using the parameter values of Table 5. On the contrary, the objective of improving passenger comfort is satisfied. 
In more detail, the chassis vibration levels are significantly reduced, as shown in Fig. 21 (top/bottom right plots): in particular, the 
controlled velocity (state 4ξ ) indicates that the chassis vibration acceleration, which is intimately related to the passenger comfort, 

is negligible. Expectedly, the controlled displacement and velocity of the tire are not reduced in a consistent manner. This is merely 
attributed to the absence of tire damping ( 0wc = ). 

 

Fig. 20. The average-quality road profile applied as disturbance to the quarter-car control problem. 
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Fig. 21. Uncontrolled (in black) and controlled (in red) states for the road profile disturbance of Fig. 20. Top left: tire displacement. Top right: chassis 
displacement. Bottom left: tire velocity. Bottom right: chassis velocity (quarter-car model). 

  

Fig. 22. Left: nominal (in black) and estimated (in red) tire stiffness. Right: evolution of the active control force of eq. (31) (quarter-car model). 

  

Fig. 23. Uncontrolled (left, in black) and controlled (right, in red) damping force vs. rattle space velocity (quarter-car model). 

The estimation of the uncertain parameter (Fig. 22, left) is very accurate and is succeeded within the first 2s of the process, 
confirming the efficacy of the UKF, especially under stochastic disturbances with reach frequency content, as the one of Fig. 20. 
Notice that the time-series of the active control force (Fig. 22, right) follow the one of the road disturbance, and that the control 
amplitude levels are not very high, implying that the energy requirements are reasonable (indicatively the equivalent “weight” of 
the control force reaches approximately 30 kg, which is around the weight of the sprung mass). This result is closely related to the 
feedback linearization part (Fig. 23), which results in a linear damping force of lower range, compared to its nonlinear, uncontrolled 
counterpart. The computational cost of the active loop for this case study is 4.81×10-5s and 1.18×10-9, in terms of mean elapsed time 
and variance, respectively, again confirming the potential of the UKF to be implemented as a real-time filter. 

5. Conclusion 

We present a framework for the active control of nonlinear systems characterized by inherent uncertainties. Our method 
proceeds by isolating the nonlinear components and applying feedback linearization, under the assumption that the nonlinearities 
have well-defined mathematical expressions. The uncertain parameters are estimated via an augmented state-space model, while 
the associated nonlinear state estimation task is accomplished via the implementation of a nonlinear Bayesian estimator, namely 
the UKF. Accordingly, the active control force comprises two components: a first component ensuring removal of the nonlinear 
terms that are present in the state equation, and a second component implementing a typical LQR control law, for suppressing any 
external disturbance. The demonstrated results on the example case studies, across a broad range of nonlinear descriptions, suggest 
that the proposed Bayesian approach for nonlinear vibration control proves adept in the handling of uncertain systems. 

The promising results of the proposed method introduce a path for further research. It would be interesting to compare the 
presented concept against other established, state-of-the art methods, such as the H-infinity, the model predictive and the three-
stage controllers. This is a task, in which the authors are currently elaborating on. Moreover, the adopted assumption on the 
Gaussian nature of the process and measurement noise is an issue that should be further investigated. In this regard, previous work 
of the authoring team has shown that the UKF performs well, even for experimentally tested systems where this strict assumption 
may not hold [15],[59]. The unscented transform offers flexibility in this respect. Formulations for sigma points that are able to 
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capture the third moment (the skew) of an arbitrary distribution and the fourth moment (the kurtosis) of a symmetric distribution, 
shifting further away from the normal distribution assumption have also been developed [60]. In the event though where the noise 
distribution, and the resulting state statistics, shifts further away from Gaussianity, the more general Particle Filter, which is 
designed for this purpose ought to be used. These effects are elaborated upon in dedicated works of the authoring team [61],[62],[63], 
and do not pose a focus of this current work, where the normal distribution assumption is maintained for simplicity. 

Finally, as the main aim of our study is to assess the feasibility of the proposed approach, a theoretical investigation on the 
stability, convergence, and robustness of the method is not developed. This remains an open issue that is currently considered by 
the authors, along with an experimental validation of the method. 
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