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Abstract. The actual problem of increasing the flight range of line thrower projectile which is a container with a line (thin rope) 
inside. The line leaves the container during the flight, i.e. the projectile has a variable mass. Mathematical model of the projectile 
flight is constructed using the Lagrange equations of the second kind. The projectile is considered as a material particle, the line 
considered as an elastic thread with the tensile Cauchy strain. An approximation of the projectile flight trajectory is introduced in 
terms of three generalized coordinates. The dependence of the projectile’s flight distance on the projectile departure angle is 
constructed for several values of the tensile rigidity of the line. 
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1. Introduction 

An important task for modern engineering practice is to increase the throwing distance of the projectile with a thin elastic 
rope (line). The line throwers are an example of these devices which allow ship to ship line deployment, for instance, to launch a 
line from a ship in distress to a rescue ship. The Ocean Engineering field is an extraordinary source of interesting dynamical 
problem. In this paper problem is selected to illustrate how extended Lagrange equation can help modeling tasks and 
interpretation. According to the International Convention for the Safety of Life at Sea, SOLAS-74, the safe distance between ships 
is 230 m in a storm. In such a situation, it is necessary to use the line thrower to guide navigation (Fig. 1).  

Pneumatic line-thrower is similar to a pneumatic gun, the main unit of which is a quick-acting valve (Fig. 2).  
Testing pneumatic line gauges is extremely expensive and time consuming. For this reason, mathematical modeling can be 

used in the design of line throwers. Mathematical modeling of the dynamics of such projectiles requires account for the variable 
mass of the projectile since the line leaves the container during the flight.  

A fairly large number of works are devoted to the problems of motion of bodies with variable mass. However, even now the 
solution of these mechanical problems is of scientific and practical interest due to the relevance of the topic. 

 

Fig. 1. Marine rescue.  
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Fig. 2. Line thrower scheme. 
 

The dynamics of mechanical systems with variable mass is considered in [1, 2]. Some problems of the stability of flying bodies 
are considered in [3, 4]. The classical Meshchersky equation for a body with variable mass is presented in [5, 6] by a variational 
statement which greatly expands the application possibilities. The study of dynamics of rotating bodies with increasing mass 
allows one to apply the approaches to rotors and drums, cf. [7]. The dynamics of body after separation of its part as well as the 
research results are explored and summarized in [8, 9]. The problem of dynamics of a falling chain is considered in [10, 11]. The 
Lagrange equations are used in [12, 13] for solving the Cambridge problem of the classical falling chain. The generalized canonical 
Hamilton equations are used to describe the dynamics of a body of variable mass in [14]. 

The present paper addresses the application of Lagrange equations to construct a mathematical model for the flight of a 
projectile with a thin line leaving it. The work continues the research begun by the authors [15]. In addition to analyzing the flight 
of line thrower projectile, the tensile strain arising in the line during flight was calculated. In this regard, we acknowledge the 
works by Fabio Casciati and Lucia Faravelli devoted to dynamics of the tensioned cables of cable-stayed bridges [16, 17] and the 
estimation of tension [18]. 

2. Mathematical Statement 

The container is considered to be a material point connected with an elastic line. Model takes into account the tensile strain 

of the line. The part of a line stretched out of the projectile is considered as an elastic thread consisting of material particles with 

translational degrees of freedom. For marking each particle of the thread, the material (Lagrangian) coordinate s is introduced in 

the unstressed reference configuration. The thread motion is determined by the position vector r(s,t), whereas the inertial 

property of the thread is determined by the linear mass ( ),s tρ .  

Let us now consider the scheme for calculating the flight of the projectile and the line in the vertical plane, see Fig. 3. The 

origin s = 0 of the curvilinear coordinate is taken at the projectile. The front end of the launcher is characterized by ( )s tσ= , thus, 

this function determines the length of the line stretched out of the flying projectile. Let us introduce Cartesian coordinates x and 

y. 

 

Fig. 3. Flight of the line thrower projectile in vertical plane.  
 

Equations of flight of a body thrown with initial velocity 0v  at angle γ  to the horizon describe a parabola 
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This trajectory is taken an approximation to the actual configuration of the system consisting of the projectile and the line: 

( , ) ,ix s q sσ= − 2( , ) ( ) ( ) , 1,2,3.iy s q s s iα σ β σ= − − − =  (2) 

Three generalized coordinates 1 2 3, ,q q qσ α β= = =  are introduced here [19]. They are the sought-for functions of time. This 

assumption implies that the deformed line has the shape of a parabola whose coefficients are time-dependent.  

The adopted approximation (2) is best suited for describing flat shooting characterized by low initial angle of the projectile 

and the small curvature of the trajectory. 

The expressions for the kinetic and potential energies are needed for Lagrange equations [20]. The kinetic energy of the 

projectile and the line is given by 
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where v and (0, )p t=v v  denote velocity of the line particles and the projectile, respectively, and pm  stands for the projectile 

mass. The velocity vector is determined in terms of the position vector of the line particles 

,  ( , ), 0 ( ).i
i i

q s t s t
q

σ
∂

= = ≤ ≤
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ɺ
r

v r r  (4) 

The potential energy is an additive function, that is П П Пg ε= + . The first term is due to the gravity 

( ) ( )П

0

( ) , 0,g pi i iq g y s q ds m y q
σ

ρ
  = +    
∫  (5) 

The second one is associated to stretching the line 
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where B denotes the tensile stiffness and ε  is the Cauchy tensile strain 

2
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rather than the linear tensile strain 1lin d dsε = −r / , cf. [16]. 

The Lagrange equations read as  
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The projectile is subject to quadratic drag from air resistance, the drag force is given by: 

,k=− ɺ ɺF r r   
1

,
2

k CSη=  (9) 

where C is the coefficient of frontal air resistance, S is area of the projectile mid-section and η  denotes the density of air, cf. [21, 

22]. 
The air drag of the projectile (9) yields the following generalized forces: 

1 2 3 ,pA Q Q Qδ δ δσ δα δβ= ⋅ ≡ + +F r  

( )1 2 ,p px pyQ k v v α σβ = − + −  v
 2 ,p pyQ k v σ=− v  2

3 ,p pyQ k v σ= v  

(10) 

where the subscripts x and y denote the corresponding projections.  

The derived equations need the initial conditions for ,i iq qɺ . At the initial moment of time t = 0 the container with the line flies 

out from the origin of the coordinate frame with the speed 0v  at angle γ  to the horizon 

0 :t =     0,x = 0,y= 0 cos ,x v γ=ɺ 0 sin .y v γ=ɺ  (11) 

Taken the adopted approximation (2), these conditions are satisfied if ( )0 0,σ =  ( ) ( )00 cos , 0 tanvσ γ α γ= =ɺ . Comparing the 

dependence y (x) of the trajectories of the free body (1) and the container (2), it is reasonable to assume that ( ) 2 2
00 / 2 cosg vβ γ= . 

The remaining initial conditions are taken as follows: (0) 0, (0) 0α β= =ɺɺ . Numerical calculations showed that the nontrivial values 

of (0), (0)α βɺɺ  change only the initial part of the flight trajectory rather than the overall flight distance. 

3. Numerical Calculation 

The solution of the problem was found numerically by the Mathematica package using the “ExplicitRungeKutta” method with 

the “StiffnessSwitching” option [23]. Calculations have been performed with the parameters 0 0.5m =  kg, 0.3lρ =  kg, S = 20 cm2, 

С = 0.8, 1.2η =  kg/m3, initial velocity 0 84v =  m/s. The flight range of the projectile versus the initial angle γ  is plotted in Fig. 4 

for several values of the tensile stiffness of the line. 
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Fig. 4. The flight range vs. the initial angle for some values of the line rigidity  
B = 0 N (curve 1), B = 100 N (curve 2), B = 103 N (curve 3), B = 104 N (curve 4). 

 

 

Fig. 5. The projectile trajectory (1) and the line position at some time instants of the flight:  
t = 0.2T (curve 2), t = 0.4T (curve 3), t = 0.6T (curve 4), t = 0.8T (curve 5), t = 0.97T (curve 6), T = 3.1 sec. 

 

Analyzing the graphs, we can draw the following conclusion: the lower the tensile stiffness of line, the greater the flight range 
of projectile. When designing a line thrower, one needs to find a compromise between the required line stiffness and the flight 
distance. 

One sees that angle of the projectile departure ensuring the maximum range of flight increases as rigidity B decreases. The 
values of these optimal angles are summarized in Table 1 for some values of the line rigidity along with the corresponding values 
of the flight range.  

The line may break during the flight, thus it is necessary to estimate the line strain. Inserting the adopted approximation (2) in 
eq. (7) we obtain the following expression for the tensile strain of the line 

( ) ( ) ( )
21

, 2 .
2

x t t x tε β α = −   (12) 

Table 1. Optimal angle and flight range 

Line rigidity B 

(N) 

Optimal angle γ  

(degree) 

Flight range 

(m) 

0 30 396 
100 30 357 
103 18 224 

104 9 119 
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Fig. 6. Tensile strain of the line at some time instants of the flight:  
t = 0.2T (curve 1), t = 0.4T (curve 2), t = 0.6T (curve 3), t = 0.8T (curve 4), t = 0.97T (curve 5), T = 3.1 sec. 

 

 

Fig. 7. Layout of a free line section in a throwing container: 
1 – container cap, 2 – container, 3 – freely laid line, 4 – knot, 5 – outlet of the cap, 6 – inlet of the cap. 

 

Let us obtain the strain values at different time instants for the line with rigidity B = 103 N at the departure angle 18γ = � . In 

this case the overall flight time of the projectile is T = 3.1 seconds. Figure 5 displays the deformed state of the line at some time 
instants while Fig. 6 shows the tensile strain as functions of x coordinate for the same time instants. 

One can see from the graphs that the tensile strain in the line is always the greatest at the launcher (the origin of coordinates) 
and reaches the maximum value at the moment of launch.  

4. Model Refinement 

At the time instant of the shot, significant pressure is exerted on the end of container in the line thrower barrel, and this can 
cause the line to break. To avoid this, a cap is placed into the projectile, which a line is laid into and drawn through the outlet (Fig. 
7). The outlet diameter is less than the line diameter, this is, pulling the line causes some resistance. 

Length *L  of the line in the cap should be sufficient to prevent exit of the container cap in the barrel as it causes jamming 

and breakage. During the flight, the knot on the line pulls the cap and then the remaining line is unwound without any resistance. 

To calculate the container flight it is enough to make minimal changes to the developed model. We find the time instant t1 of 

the cap breakaway from the condition that the length of the unwound part of the line is equal to the prescribed value ( )1 *t Lσ = . 

In equations of Section 2 we insert use the line stiffness as the function of time: 

( ) 1 1

1

,
,

0,

B t t
B t

t t

 ≤=  >
 (13) 



Modeling of flight of the line thrower projectile  
 

Journal of Applied and Computational Mechanics, Vol. 7, No. SI, (2021), 1070-1076 

1075 

 

Fig. 8. The flight range vs. the initial angle for some values of the line length in bung  

*
0L = m (curve 1), 

*
2L = m (curve 2), 

*
6L = m (curve 3), 

*
10L = m (curve 4), 

*
L  equals the total line length (curve 5).  

where B1 is the line stiffness before the cap breakaway.  
The refined dependences of the flight range on shot angle of the line thrower are shown in Figure 8 for several values of the 

length *L  of the line laid in the cap. The line stiffness is B1=104 N.   
Obviously, all the curves lie between curve 1 which corresponds to a line with zero rigidity and curve 5 which corresponds to 

the case when the entire line is completely laid in a cap (this is curve 4 from Fig. 4). 
Table 2 shows the calculated values of the optimal shot angles providing the maximum flight range for the model with a cap. 
Our calculations confirmed the parameters which have been experimentally determined for the line thrower: the best 

technically possible value of length *L  is 2 meters, and the maximum flight range of 265 m is provided at the shot angle of 18 
degrees. 

Table 2. Optimal angle and flight range in model with a cap 

Length
*

L (m) Optimal angle γ (degree) Flight range (m) 

2 18 265 
6 17 220  

10 15 187 

5. Conclusion 

Mathematical modeling of the flight of a line thrower projectile is carried out by means of the Lagrange equations of the 
second kind. The solution to the Cauchy problem is found numerically using Mathematica package. The dependence of range of 
the projectile flight on the angle of projectile departure is found. The tensile stiffness of the line was shown to affect significantly 
the flight range. The results were elaborated for the container with a cap. The resulting equations can be applied to the design 
and use of marine rescue equipment. 
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