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Nonlinear dynamics and stability of a homogeneous model of tall
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Abstract. Ahomogeneousmodel of beam-like structure, roughly portraying themechanical behavior of a tall building,
is considered to address nonlinear dynamic response in case of external resonant excitation. A symmetric layout of
the building is considered, so as to allow the existence of an in-plane response, whose features are evaluated bymeans
of theMultiple Scale Method and accounting for internal resonance, necessarily occurring in themodel. Furthermore,
to take into account the three-dimensional nature of the problem, stability of the in-plane response to out-of-plane
disturbances is addressed, solving the associated parametrically excited linear system.
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1. Introduction

Homogeneous formulation can often represent a convenient alternative to detailed, refined and costly models, when the target
is to roughly describe themechanical features of very complicated lattice bodies. In this framework, equivalent continua are suitably
used to model periodic [1, 2] and pantographic structures [3, 4]. In specific cases where the periodic repetition of a cellular module
takes place in a single direction, homogeneous beam-like structures are successfully drawn up [5]. Civil engineering applications are
also typical in this context, as in [6], where multiple-bay frames response is consistently reproduced by that of continuum models.
The same assumptions are used in [7, 8], where tall steel-frame or reinforced-concrete building are dynamically analyzed through
equivalent continua, in order to identifymodal properties. Response to wind solicitations on tall buildings are evaluated in [9] where
a calibration procedure permits to characterize the free dynamics. Extending the wind analysis to nonlinear field, homogeneous
shear-beams are used to analyze the in-plane dynamic behavior of single [10] and coupled towers [11], even considering possible
internal resonance [12] or in presence of base isolation system [13]. In case of three-dimensional frames, shear-shear-torsional
equivalent beams are used in [14, 15, 16] to address aeroelastic effects on tower buildings, where systematic assessment of the
bending to shear contribution to the deformation of the structure is carried out.

Drawing inspiration from [17], a shear-shear-torsional beam able to fulfill static nonlinear analysis of a tall building is proposed
in [18, 19], and an elastic energy comparison between the rough and the detailed models is used to evaluate the main equivalent
elastic parameters. On the same research line, buckling analysis is carried out in [20, 21], whereas improvements to the model are
introduced in [22], where shear and flexural factors are used to consider possible floor deformation.

In [23], the free and forced dynamical features of a linear beam, derived from the same shear-shear-torsional model proposed
in [18], are addressed, pointing out the special organization of the natural frequencies in triplets, which inevitably induce internal
resonances, as well as the decomposition of normal modes to floor components, which are three, and axis-line components, gov-
erned by the wave number. Moving from [23], it appears compelling to give a first insight to nonlinear dynamics and stability of the
proposed homogeneous model. In particular, in this paper, the nonlinear response to external resonant excitation is addressed in
case of symmetric configuration of the building with respect to a principal axis of the floor. The specific shape and load produce
an in-plane response, which is evaluated and analyzed applying the Multiple Scale Method [24] to the partial differential equation
of motion of the beam. Then, in order to take into account the three-dimensional nature of the system, stability of the obtained
in-plane solution to out-of-plane disturbances is addressed. The latter analysis is carried out consistently analyzing the linear vari-
ational equations, which turn out to be parametrically excited by a multi-frequency solicitation produced by the in-plane response
itself. The nature of the in-plane response and its stability are then figured out on a numerical example, constituted by a 9-story
building under uniformly distributed and resonant transverse load.

The paper is organized as follows: in Section 2., a brief recall to the main features of the homogeneousmodel is given; in Section
3. the in-plane nonlinear response is evaluated; in Section 4. the stability to out-of-plane disturbances is addressed; in Section 5.
numeric results on a case-study are shown; finally, in Section 6. some conclusions are drawn.
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2. The model

The model of shear-beam analyzed here is taken from [18], where details on its formulation are addressed. Here, for the sake
of completeness, the model is briefly summarized, with specific considerations related to the pursued focus on nonlinear dynamic
analysis: first, the hypothesis under which the model is formulated is recalled; then, the differential equations ruling the kinematic
and equilibrium problems are presented; after that, the nonlinear elastic law, which comes from the homogenization procedure, is
shown. With the sake of addressing a minimal model, where nonlinear contributions are only due to the elastic law, the equations
of motions are obtained and then reduced to the case of symmetric building.

Amodular tall building, i.e. realized by assemblingmany identical cells (stories) along the vertical direction, is considered (Fig. 1).
As showed in [18, 23], the use of a homogeneousmodel of shear-beam to (coarsely) describe the building behavior is justifiedwhen the
geometrical and mechanical properties assume values so that the following hypothesis is satisfied: the ratio between bending and
shear deformation energy of the building is small enough. For instance, in case the building is constituted by a three-dimensional
frame of equal stories, each of one realized by a horizontal rigid slab and N = 9 vertical columns, arranged in 3 equally spaced
rows, that ratio is estimated as rbs ≃ 10.8

(λb
λc

)2, where λb, λc are the building and column slenderness, respectively. In particular,
indicating the inter-story height as h, the total height of the building as l = nh, the largest radius of inertia of the column cross-
sections as ρ and a characteristic linear dimension of the story of the building as b, the column and building slenderness are defined
as:

λc :=
h

ρ
, λb :=

l

b
(1)

As a consequence, in order to fulfill that specific energetic requirement, the columns should generally tend to be slender (large λc)
and the building squat (small λb).
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Fig. 1. Scheme of the n-story building. In red, the module of the j-th story.

Stated the aforementioned hypothesis, the homogeneous model considered here for the multi-story building is a shear-shear-
torsional beam, constituted by an axis-line connected to the center of mass of infinite many, planar, rigid cross-sections (Fig. 2).
Points of the axis-line perform displacement, whilst cross-sections perform twist. The current configuration at a generic time t is
described by the axis-line displacement vector u(s, t) = u(s, t)ax + v(s, t)ay + w(s, t)az and the cross-section twist vector θ(s, t) =
θ(s, t)ax, where s ∈ [0, l] is the abscissa which runs along the axis line, l is its length and (ax,ay ,az) are unit orthogonal vectors of
the canonical basis.

The strain components of the beam [17] are defined as:

ε(s, t) = u′(s, t)

γy(s, t) = v′(s, t) cos(θ(s, t)) + w′(s, t) sin(θ(s, t))

γz(s, t) = −v′(s, t) sin(θ(s, t)) + w′(s, t) cos(θ(s, t))

κt(s, t) = θ′(s, t)

(2)

where ε is the axial strain, γy , γz are the shear strain components along ay and az , respectively, κt is the torsion curvature and the
prime stands for derivative with respect to s.

The normal and shear force components are N(s, t), Ty(s, t), Tz(s, t) and the torsion moment is M(s, t); they balance external
transverse loads (px(s, t), py(s, t), pz(s, t)) along the three canonical directions, and torsional couples c(s, t) about ax. The equilibrium
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Fig. 2. Scheme of the shear beam.

equations read:

N ′ + px = 0

(Ty cos θ − Tz sin θ)′ + py = 0

(Ty sin θ + Tz cos θ)′ + pz = 0

M ′ + Ty(v
′ sin θ − w′ cos θ) + Tz(v

′ cos θ + w′ sin θ) + c = 0

(3)

where dependence on s, t is omitted for brevity.
Boundary conditions for the case of clamp at s = 0 (cross-section A) and free tip at s = l (cross-section B) are considered as well:

uA = 0

vA = 0

wA = 0

θA = 0

(4)

and:

NB = Px

TyB cos θ − TzB sin θ = Py

TyB sin θ + TzB cos θ = Pz

MB = Cx

(5)

where (Px(t)Py(t), Pz(t), Cx(t)) are assigned tip forces and couple.
The nonlinear elastic constitutive law is obtained from the homogenization process, which moves from writing the elastic

potential energy of the assembly of columns and (assumed) rigid slabs (referred to as refinedmodel) in terms of kinematic parameters
of the shear-shear-torsional beam (referred to as coarse model), thorough kinematic maps (see [18]); at the end of the procedure, it
reads: 

N

Ty

Tz

M

 = h


D 0 0 0

0 Sz 0 −zSSz

0 0 Sy ySSy

0 −zSSz ySSy C




ε

γy

γz

κt

+ f2(e) + f2(e) (6)

where:

f2 (e) :=
6

5
hD


1
2
γ2
y + 1

2
γ2
z + 1

2
ϱ2Gκ2

t − zEγyκt + yEγzκt

(γy − zEκt) ε

(γz + yEκt) ε(
ϱ2Gκt + yEγz − zEγy

)
ε

 (7)

and:

f3 (e) :=
36

35
hD



0

γy(γ2
y + γ2

z ) + κt[2γyγzyE − zE(3γ2
y + γ2

z )]

+κ2
t [γy(ϱ

2
yy + 3ϱ2zz)− 2γzϱ2yz ]− κ3

t [ϱ
3
yyz + ϱ3zzz ]

γz(γ2
y + γ2

z ) + κt[yE(γ2
y + 3γ2

z )− 2zEγyγz)]

+κ2
t [γz(3ϱ

2
yy + ϱ2zz)− 2γyϱ2yz ] + κ3

t [ϱ
3
yyy + ϱ3yzz ]

(yEγz − zEγy)(γ2
y + γ2

z )

+κt[γ2
y(ϱ

2
yy + 3ϱ2zz) + γ2

z (3ϱ
2
yy + ϱ2zz)− 4γyγzϱ2yz ]

−3κ2
t [γy(ϱ

3
yyz + ϱ3zzz)− γz(ϱ3yyy + ϱ3yzz)] + κ3

tϱ
4
GG


(8)

having indicated e := (ε, γy , γz , κt)T .
The parameters D,Sy , Sz , C, yS , zS , yE , zE , ϱG, ϱyy , ϱzz , ϱyz , ϱyyy , ϱyyz , ϱyzz , ϱzzz , ϱGG are related to the shape and elastic prop-

erties of the frame. Specifically, D is the total extensional stiffness, Sy , Sz are the shear stiffness in the two orthogonal directions,
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respectively, C is the torsion stiffness, yS , zS are the coordinates of the shear center S of the cross-section, yE , zE are the coordinates
of the extensional center E of the cross-section (the centroid of extensional stiffness of the columns), the ϱ’s are inertia radii of the
extensional stiffness, of second, third and fourth order, evaluated with respect to the centroid G. The expression of all the involved
coefficients is given in Appendix A.

In the specific case that is addresses in this paper, no axial loads are considered (px = 0, Px = 0), since only transversal loads
are applied to the beam. As a consequence, from Eq. (3-a) and Eq. (5-a), it is N ≡ 0 and, from Eq. (6), it turns out that:

ε = −
3

5

(
γ2
y + γ2

z + ϱ2Gκ2
t − 2zEγyκt + 2yEγzκt

)
(9)

Eq. (9) entails that ε is a second order variable, slave of the other strain components: this means that a uniform stretch of the
columns is required to induce a normal force on them, which balances (and vanishes) the resulting normal force induced during
transversal displacement or twist of the slabs. Substitution of Eq. (9) in Eq. (6) produces a statically condensed version of the following
constitutive law, which is strictly cubic (i.e., no quadratic terms in the master strain components appear):Ty

Tz

M

 = h

 Sz 0 −zSSz

0 Sy ySSy

−zSSz ySSy C


γy

γz

κt

+ g(e) (10)

where:

g(e) =
18

175
Dh



3γy(γ2
y + γ2

z ) + 3κt[2yEγyγz − zE(3γ2
y + γ2

z )]

+κt[14zE(yEγz − zEγy)

+γy(10ϱ2yy − 7ϱ2G + 30ϱ2zz)− 20γzϱ2yz ]

+κ3
t [7zEϱ2G − 10(ϱ3yyz + ϱ3zzz)]

3γz(γ2
y + γ2

z )− 3κt[2zEγyγz − yE(γ2
y + 3γ2

z )]

+κ2
t [γy(14yEzE − 20ϱ2yz)

+γz(10ϱ2zz − 14y2E − 7ϱ2G)]

−κ3
t [7yEϱ2G − 10(ϱ3yyy + ϱ3yzz)]

3(yEγz − zEγy)(γ2
y + γ2

z )

+κt[γy(28yEzEγz + γy(10ϱ2yy − 14z2E − 7ϱ2G))

−γz(40γyϱ2yz + γz(14y2E + 7ϱ2G − 30ϱ2yy))

+10ϱ2zz(3γ
2
y + γ2

z )]

+3κ2
t [7ϱ

2
G(zEγy − yEγz) + 10γz(ϱ3yyy + ϱ3yzz)

−10γy(ϱ3yyz + ϱ3zzz)]

+κ3
t [10ϱ

4
GG − 7ϱ4G]



(11)

In order to consider the simplest possible model, even featuring the stronger nonlinear behavior, the following approximation
is carried out: linearized versions of kinematic and equilibrium equations are used, whereas the only nonlinear contributions are
given by the condensed constitutive law Eq. (10) (details on the order of magnitude of the nonlinear terms are given in [18]). Under
these assumptions, Eqs. (2) and (3) become:

γy = v′

γz = w′

κt = θ′
(12)

and

T ′
y + py −mv̈ − cv v̇ = 0

T ′
z + pz −mẅ − cwẇ = 0

M ′ + c− IGθ̈ − cθ θ̇ = 0

(13)

respectively, with boundary conditions

vA = 0

wA = 0

θA = 0

(14)

and

TyB = PyB

TzB = PzB

MB = CB

(15)

where, in Eqs. (13), d’Alembert formula is used for expressing inertia and damping force, with m the linear mass density of the
beam, IG the mass inertia moment about the centroid G of the cross-section of the beam, cy , cz , cθ the damping coefficients. It is
worth noticing that m and IG are obtained as the total mass and mass inertia moment of the module of the building, divided by the
inter-story height h.

Substituting Eqs. (12) in (10), and then the latter in (13), the equations of motion are obtained. Combining them with boundary
conditions (14) and (15), they turn out to be:

−Mü−Cu̇+Ku′′ + n3(u,u,u) = −p

uA = 0

Ku′
B + b3(uB ,uB ,uB) = P

(16)
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where the mass, damping, (algebraic part of) stiffness matrices and load column matrix are:

M :=

m 0 0

0 m 0

0 0 IG

 , C :=

cy 0 0

0 cz 0

0 0 cθ

 , K := h

 Sz 0 −zSSz

0 Sy ySSy

−zSSz ySSy C

 ,

p :=

py

pz

c

 , P :=

PyB

PzB

CB

 , u :=

v

w

θ


(17)

The expression for b3(u,u,u) is easy obtained substituting Eqs. (12) in Eq. (11); then, it can be evaluated at section B to get the
nonlinear term in Eq. (16-c). Moreover, s-differentiation of b3(u,u,u) provides n3(u,u,u), for Eq. (16-a).

In case of proportional damping, the free linear dynamics of the system is ruled from Eqs. (16) after dropping the nonlinear
terms n3, b3, the forcing terms p,P and the damping term Cu̇. It is worth noticing that, due to the specific form of the obtained
system, the free dynamics has peculiar features, as shown in detail in [23]. Specifically, using the variable separation and assuming
the solution u(s, t) = ϕ(s) exp(iωt), the differential boundary value problem that rules free linear oscillations is:

Kϕ′′ + ω2Mϕ = 0 (18)

ϕA = 0 (19)

Kϕ′
B = 0 (20)

A trial solution for Eq. (18) is:

ϕ(s) = a sin
(
kπ

2l
s

)
, k = 1, 3, 5, . . . (21)

where a is a column vector of three elements, which collects amplitudes of the components of motion (v-translation, w-translation
and twist θ). Substituting Eq. (21) in (18) gives the following algebraic eigenvalue problem:

(K − λM)a = 0 (22)

with:

λ :=
4l2

k2π2
ω2 (23)

which provides the following characteristic equation:

det (K − λM) = 0 (24)

Due to the positive definiteness of matrices K,M , three positive characteristic roots λj (j = 1, 2, 3) are obtained and, consequently,
the natural frequencies are evaluated from Eq. (23) for any chosen k:

ωkj =
kπ

2l

√
λj k = 1, 3, 5, . . . , j = 1, 2, 3 (25)

By summarizing, the systemadmits a triplet of frequencies for eachwave-number k, (or semi-wavelength 2l/k). Once determined
the first triplet of frequencies (ω11, ω12, ω13) by means of the three solutions of the associated characteristic equation (24) and k = 1,
the successive natural frequencies are simply evaluated as multiple of the first ones:

ωkj = ω11, ω12, ω13; 3ω11, 3ω12, 3ω13; 5ω11, 5ω12, 5ω13; . . . (26)

Consistently, the modes can be decomposed in axis-line and cross-section ones: the latter are the same for any triplet of fre-
quency, whilst the former change their wave-number at each triplet. This means that, independently of the value of k, the eigen-
vector aj associated to each eigenvalue λj is found from Eq. (22), for j = 1, 2, 3; it describes the cross-section natural mode. In other
words, there exist three amplitude vectors a1, a2 ,a3, which repeat themselves for any wave-number k = 1, 3, 5, . . .; they represent
the cross-section modal components and contribute to the beam natural modes as follows:

ϕkj (s) = aj sin
(
kπ

2l
s

)
for k = 1, 3, 5, . . . , j = 1, 2, 3 (27)

The natural frequency organization given by Eq. (26) produces internal resonance conditions.

3. Nonlinear in-plane response for symmetric buildings

Here, the case of a symmetric layout of the columns about the ay axis is considered. In this case, Eq. (22) admits solution

a1 = (1, 0, 0)T and the corresponding natural frequencies are ωk1 = kπ
2l

√
hSz
m

, with k = 1, 3, 5, . . .. Moreover, only loads which respect
the same symmetry conditions are assumed to be applied to the building. Therefore, attention is paid on vibrations occurring in the
(ax,ay) plane, as caused by a resonant external excitation; however, stability of the in-plane solution to out-of-plane disturbances
is analyzed as well.

Consistently with the notation adopted in [23], the in-plane frequencies are denoted by ωk1 = kω11, k = 1, 3, 5, . . ., and the
out-of-plane frequencies by ωkj = kω1j , k = 1, 3, 5, . . ., j = 2, 3.

When the building oscillates in the considered plane of symmetry, the equations of motion (16) reduce to:

h

[
Szv

′(s, t) +
54

175
Dv′3(s, t)

]′
−mv̈(s, t)− cy v̇(s, t) + αpy(s, t) = 0

vA = 0

h

[
Szv

′
B +

54

175
Dv′3B

]
= PyB(t)

(28)
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where the load multiplier α is introduced.
It is considered an excitation constituted by distributed forces, py(s, t) = py(s) cosΩt (while PyB(t) ≡ 0).
Nondimensional independent and dependent variables are defined as follows:

t̃ := ωt, s̃ :=
s

l
, ṽ :=

v

l
(29)

Consequently it turns out that
d

dt
= ω

d

dt̃
,

d

ds
=

1

l

d

ds̃
(30)

where ω := ω11. After substitution of Eq. (29) and (30) in Eq. (28), the following system is obtained:

−¨̃v − 2ξ ˙̃v + κṽ′′ +
η

3

(
ṽ′3
)′

+ αp cos(Ω̃t̃) = 0

ṽA = 0

κṽ′B +
η

3
ṽ′3B = 0

(31)

where the following nondimensional parameters are defined:

ξ :=
cy

mω
, κ :=

hSy

mω2l2
, η :=

162hD

175mω2l2
,

p :=
py

mω2l
, Ω̃ :=

Ω

ω
, ω̃kj :=

ωkj

ω

(32)

and now prime and dots stand for differentiation with respect to s̃ and t̃, respectively. Furthermore, the subscript ()A indicates
evaluation at s̃ = 0 and ()B at s̃ = 1. The symbol tilde is omitted below.

TheMultiple ScaleMethod is used and the case of primary resonancewith the in-plane frequency of the first triplet is considered,
i.e.:

Ω = 1 + ϵσe (33)

with 0 < ϵ ≪ 1 and σe a order-1 detuning (the index e denoting external).
By ordering damping and forces as ξ → ϵξ, α → ϵ3/2α, and rescaling the displacement as v → ϵ1/2v, Eqs. (31) read:

−v̈ + κv′′ − ϵ
[
2ξv̇ −

η

3

(
v′3
)′ − αp cos(Ωt)

]
= 0

vA = 0

κv′B + ϵ
η

3
v′3B = 0

(34)

Introducing independent time-scales t0 = t, t1 = ϵt, . . ., and expanding the response as:

v = v0 (s, t0, t1, . . .) + ϵv1 (s, t0, t1, . . .) + . . . (35)

the following perturbation equations are obtained:

∂2
0v0 − κv′′0 = 0

v0A = 0

κv′0B = 0

(36)

at order ϵ0 and

∂2
0v1 − κv′′1 = −2∂0∂1v0 − 2ξ∂0v0 +

η

3

(
v30
)′

+ αp cos(Ωt)

v1A = 0

κv′1B = −
η

3
v′30B

(37)

at order ϵ1, in which ∂n
j = ∂n

∂tnj
.

Due to the internal resonance between the first mode (k = 1, directly excited, ω11 = 1) and the second mode (k = 3, companion,
ω31 = 3), a generating solution with two components for Eq. (36) is considered, other resonances appearing at orders higher than 3:

v0 = A1(t1)ϕ11(s)e
iω11t0 +A3(t1)ϕ31(s)e

iω31t0 + cc (38)

where A1, A3 are complex amplitudes, ϕ11(s) = sin
(
πs
2

)
, ϕ31(s) = sin

(
3πs
2

)
and cc stands for complex conjugate. When Eq. (38) is

substituted in Eq. (37), this latter reads:

∂2
0v1 − κv′′1 =

{
−2iω11ϕ11∂1A1 − 2iξω11ϕ11A1 + η[3ϕ′2

11ϕ
′′
11A

2
1Ā1

+ (2ϕ′2
31ϕ

′′
11 + 4ϕ′

11ϕ
′
31ϕ

′′
31)A1A3Ā3 + (ϕ′2

11ϕ
′′
31

+ 2ϕ′
31ϕ

′
11ϕ

′′
11)A3Ā

2
1] +

αp

2
eiσet1

}
eiω11t0

+
{
−2iω31ϕ31∂1A3 − 2iξω31ϕ31A3

+ η[ϕ′2
11ϕ

′′
11A

3
1 + (2ϕ′2

11ϕ
′′
31 + 4ϕ′

11ϕ
′
31ϕ

′′
11)A1A3Ā1

+ 3ϕ′2
31ϕ

′′
31A

2
3Ā3]

}
eiω31t0 +NRT

v1A = 0

κv′1B = 0

(39)
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where the overbar indicates complex conjugate and NRT stands for non resonant terms. Solvability requires that: (i) the coefficients
of eiω11t0 are orthogonal to ϕ11(s), and (ii) the coefficients of e3iω11t0 are orthogonal to ϕ31(s) [24]. From these two orthogonality
conditions, two amplitude modulation equations in the unknown amplitudes arise: once one comes back to the original and not
rescaled variables, they read:

Ȧ1 = c1A1 + ic111̄A
2
1Ā1 + ic1̄1̄3Ā

2
1A3 + ic133̄A1A3Ā3 + αic0e

iσet

Ȧ3 = c3A3 + ic111A
3
1 + ic11̄3A1Ā1A3 + ic333̄A

2
3Ā3

(40)

where:

c1 = −ξ, c111̄ =
3ηπ4

128ω11
, c1̄1̄3 =

3ηπ4

128ω11
, c133̄ =

9ηπ4

32ω11
,

c3 = −ξ, c111 =
ηπ4

128ω31
, c11̄3 =

9ηπ4

32ω31
, c333̄ =

243ηπ4

128ω31

c0 = −
1

2ω11

∫ 1

0
p(s)ϕ11(s)ds

(41)

The complex Eqs. (40) are equivalent to four non-autonomous real equations in amplitude and phase, obtained by putting A1 =
1
2
q1(t) exp(iφ1(t)), A3 = 1

2
q3(t) exp(iφ3(t)) and separating real and imaginary parts. They are more conveniently rewritten in terms

of the phase-differences:

γe :=σet− φ1

γi :=3φ1 − φ3
(42)

in which γe accounts for the (detuned) external resonance, and γi for the (perfectly tuned) internal resonance. Using the definitions
above, Eqs. (40) become:

q̇1 = c1q1 − 2c0α sin γe +
1

4
c1̄1̄3q

2
1q3 sin γi

q̇3 = c3q3 −
1

4
c111q

3
1 sin γi

q1γ̇e = q1σe −
1

4
c111̄q

3
1 −

1

4
c133̄q1q

2
3 − 2c0α cos γe −

1

4
c1̄1̄3q

2
1q3 cos γi

q1q3γ̇i =
(3
4
c111̄ −

1

4
c11̄3

)
q31q3 +

(3
4
c133̄ −

1

4
c333̄

)
q1q

3
3 + 6c0αq3 cos γe

−
1

4
c111q

4
1 cos γi +

3

4
c1̄1̄3q

2
1q

2
3 cos γi

(43)

The set of four amplitudes and phases are denoted as γ := (q1, q3, γe, γi)
T . In the new variables, by naming Φ1 := ω11t + φ1,

Φ3 := 3ω11t+ φ3 the total phases, they turn out to be:

Φ1 =ω11t+ σet− γe = Ωt− γe

Φ3 =3ω11t+ 3φ1 − γi = 3ω11t+ 3σet− 3γe − γi = 3 (Ωt− γe)− γi
(44)

so that, remembering the expressions for ϕ11(s) and ϕ31(s), at the leading order:

v(s, t) =
1

2
q1 sin

(πs
2

)
ei(Ωt−γe) +

1

2
q3 sin

(
3πs

2

)
ei(3Ωt−3γe−γi) + cc

= q1 sin
(πs

2

)
cos(Ωt− γe) + q3 sin

(
3πs

2

)
cos(3Ωt− 3γe − γi)

(45)

The equilibrium points γ̇ = 0 of the dynamical system (43) are periodic motion for the building, which will be denoted by ve(s, t).
In them, amplitudes and phases depend on the intensity of the load via q1 = q1(α), q3 = q3(α), γe = γe(α), γi = γi(α).

It should be noticed that no uncoupled solutions are admitted, since the external force excites the k = 1 mode (Eq. (43-a) and
this, in turn, excites the k = 3 mode, by the way of the q31-term (Eq. (43-b). Equilibrium solutions can only be evaluated numerically.

4. Stability of the in-plane response to out-of-plane disturbances

4.1 The variational equation

To analyze stability of the planar periodic response (45), incremental variables v̂, ŵ, θ̂, are introduced so that v = ve + v̂, w = ŵ,
θ = θ̂ and the equations of motion are linearized around the increments. Such linear equations, of course, are unable to provide
quantitative information on the evolution of perturbation; however, they give a correct qualitative answer to the question of stability.
Accordingly, the periodic motion (45) is stable when perturbations tend to zero, and unstable when they diverge. A more accurate
description of the postcritical behavior would require obtaining nonlinear amplitude modulation equations including all possible
modes, planar and non-planar, involved in the instability phenomenon, but that is out of the scope of this paper.

Consistently with Eqs. (29) and (30) and defining w̃ = w
l
, θ̃ = θ, the following nondimensional parameters are introduced:

κw = κ
Sy

Sz
, κwθ = κ

SyyS

Szl
, κθw = κ

SyySml

SzIG
, κθ = κ

Cm

SzIG
,

ηw = κ
54D

175Sz
, ηwθ = κ

54DyE

175lSz
, ηθw = κ

54DlmyE

175IGSz

ηθ = κ
Dm

SzIG

(
−
18ρ2G
25

+
36ρ2yy

25
+

108ρ2zz
35

)
, ξw =

cz

mω
, ξθ =

cθ

IGω

(46)
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and, accounting for the symmetry of the systems, which entails zS = zE = 0, the linearized (variational) equations in the out-of-
plane increments, with hat and tilde symbol omitted, read

−

1 0 0

0 1 0

0 0 1


 v̈

ẅ

θ̈

−

2ξ 0 0

0 2ξz 0

0 0 2ξθ


 v̇

ẇ

θ̇



+

κ 0 0

0 κw κwθ

0 κθw κθ


v′′

w′′

θ′′

+

v′2e (s, t)

η 0 0

0 ηw ηwθ

0 ηθw ηθ


v′

w′

θ′



′

=

0

0

0


(47)

Similarly, the boundary conditions read:
vA = 0, wA = 0, θA = 0 (48)

and: κ 0 0

0 κw κwθ

0 κθw κθ


v′B
w′

B

θ′B

 =

0

0

0

 (49)

in which v′2e (l, t) = 0 is accounted for. It is worth noticing that the stiffness algebraic operator in Eq. (47) and (49) appears as non-
symmetric, even if the system is Hamiltonian (excluding damping and external force), only as a consequence of the division of the
second and third equations by the relevant inertial coefficients, m and IG, respectively, and the used definition of nondimensional
variables.

Since ve(s, t) is a known function of space and time, Eqs. (47)-(49) represent a non-autonomous linear system, with periodic in
time coefficients.

By accounting for the expression (45), system (47)-(49) can be rewritten as follows:

−ü−Ξu̇+Θu′′ +

 ∑
r=0,2,4,6

fr (s;γ) eirΩt + cc

Nu′

′

= 0

uA = 0

Θu′
B = 0

(50)

whereΞ andΘ are the 3×3 damping and stiffnessmatrices, andN the 3×3 parametric excitationmatrix, all defined by comparison
with Eqs. (47); moreover:

f0(s;γ) :=
(π
4

)2
q21 cos2

(πs
2

)
+

(
3π

4

)2

q23 cos2
(
3πs

2

)
f2(s;γ) :=

(π
4

)2
q21e

−2iγe cos2
(πs

2

)
+

3π2

8
q1q3e

−i[2γe+γi] cos
(πs

2

)
cos

(
3πs

2

)
f4(s;γ) :=

3π2

8
q1q3e

−i[4γe+γi] cos
(πs

2

)
cos

(
3πs

2

)
f6(s;γ) :=

(
3π

4

)2

q23e
−i[6γe+2γi] cos2

(
3πs

2

)
(51)

are (complex) known function of space, depending on amplitude and phases of the planar solution, which describe the magnitude
and distribution of the parametric excitation. It is worth noting that a multi-frequency parametric excitation appears, as generated
by the combination of the two harmonics Ω and 3Ω which are contained in the periodic planar motion.

4.2 Perturbation analysis

To solve Eqs. (50), again use the Multiple Scale Method is made. Since the parametric excitation depends on the squared am-
plitudes, the rescaling fr → ϵfr , together with Ξ → ϵΞ is used. Moreover, time-scales t0 = t, t1 = ϵt, . . . are introduced and the
displacements are expanded as:

u = u0 + ϵu1 (52)

thus obtaining the following perturbation equations:

Θu′′
0 − ∂2

0u0 = 0

u0A = 0

Θu′
0B = 0

(53)

after collecting terms at order ϵ0, and:

Θu′′
1 − ∂2

0u1 = 2∂0∂1u0 +Ξ∂0u0 −

 ∑
r=0,2,4,6

fr(s;γ)e
irΩt0 + cc

Nu′
0

′

u1A = 0

Θu′
1B = 0

(54)

at order ϵ1.
In expressing the generating solution to Eqs. (53), all modes which are involved in the parametric resonance phenomenon are

included. Since the excitation is multifrequent, and internal resonances exist, several modes can be involved in the response,
rendering the analysis very difficult. To limit the difficulties, the following hypotheses are introduced:
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1. Only modes which are in principal parametric resonance are considered. This occurrence is verified when the excitation
frequency, rΩ, (r = 2, 4, 6) is double of the natural frequency ωkj . Since Ω ≃ ω11, this happens when

ωkj

ω11
= 1, 2, 3. Note that

this requirement concerns the frequency, not the mode, so that any k can (in principle) be associated to the parametrically
excited mode.

2. Due to the multifrequency excitation, more than a single out-of-plane mode can be parametrically excited; however, to limit
the possible cases, only one out-of-plane mode involved in parametric resonance is considered.

According to the previous discussion, the generating solution is:

u0 = B(t1)aj sin
(
kπs

2

)
eiωkjt0 + cc (55)

where B(t1) is a complex modulating amplitude, the columnmatrix aj is a (real, normalized) natural mode ((Θ−λjI)aj = 0, where
I is the identity matrix), and the associated natural frequency satisfies:

2ωkj = rω11 + ϵσp = rΩ+ ϵ (σp − rσe) r = 2, 4, 6 (56)

in which σp is a new detuning (p remembering parametric excitation) and where Eq. (33) is accounted for.
By substituting the generating solution into the ϵ-order field perturbation equations (54-a), this latter becomes:

Θu′′
1 − ∂2

0u1 = iωkj [2aj∂1B +ΞajB]eiωkjt0 sin
(
kπs

2

)
+ cc

−
kπ

2

 ∑
r=0,2,4,6

(fr(s;γ)e
irΩt0 + cc)(Beiωkjt0 + cc) cos

(
kπs

2

)′

Naj

(57)

Among terms of the sum, just one (for the hypotheses introduced) is resonant, namely that corresponding to the value of r which
satisfies condition (56). Therefore, the previous equation also reads:

Θu′′
1 − ∂2

0u1 = iωkj [2aj∂1B +ΞajB]eiωkjt0 sin
(
kπs

2

)
−
{
kπ

2
Naj

[
2Bf0 + B̄fre

it0(rσe−σp)
]
cos

(
kπs

2

)}′
eiωkjt0 + cc+NRT

(58)

Solvability of Eq. (58) requires that the right hand member is orthogonal to ǎj sin
(

kπs
2

)
, where ǎj is solution to (ΘT − λjI)ǎj , i.e.:

−iωkj ǎ
T
j [2aj∂1B +ΞajB]

∫ 1

0
sin2

(
kπs

2

)
ds

+
kπ

2
ǎT
j Naj

[
2B

∫ 1

0

(
f0 cos

(
kπs

2

))′
sin
(
kπs

2

)
ds

+ B̄eit0(rσe−σp)

∫ 1

0

(
fr cos

(
kπs

2

))′
sin
(
kπs

2

)
ds

]
= 0

(59)

or, by accounting for ǎT
j aj = 1 and integrating:

iωkjB
′ = −

1

2
iωkjcjB +

kπnj

2

(
2BF0k + B̄Frke

i(rσe−σp)t

)
(60)

where the following positions have been introduced:

cj := ǎT
j Ξaj , nj := ǎT

j Naj ,

Frk (γ) :=

l∫
0

[
fr (s;γ) cos

(
kπs

2l

)]′
sin
(
kπs

2l

)
ds

(61)

By letting B := BR + iBI and separating real and imaginary parts, Eq. (60) becomes:(
ḂR

ḂI

)
=

 − cj
2

+
knjπFrkI

2ωkj

rσe−σp

2
+

knjπ

2ωkj
(2F0k − FrkR)

− rσe−σp

2
− knjπ

2ωkj
(2F0k + FrkR) − cj

2
− knjπFrkI

2ωkj

(BR

BI

)
(62)

where FrkR and FrkI are the real and imaginary parts of Frk, respectively; they read:

F2kR = −
kπ3

128
q21 cos(2γe), F2kI = −

kπ3

128
q21 sin(2γe),

F4kR = 0, F4kI = 0,

F6kR = −
9kπ3

128
q23 cos(3γe + γi), F6kI = −

9kπ3

128
q23 sin(3γe + γi),

(63)

The eigenvalues of the 2 × 2 matrix appearing in Eq. (62) decide about the decaying or diverging evolution of the amplitude of
perturbation B, from which the stability of the planar motion.
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a)
y

x

py cos(Ωt)

b)

G y

z

py cos(Ωt)

Fig. 3. The case-study: a) front of the building; b) layout of the generic story, which is symmetric with respect to y-axis.

5. Numerical results

The case-study considered here is shown in Fig. 3, and is constituted by a building of n = 9 stories, with interstory height h = 3m;
N = 9 squared and equal columns are present at each story, symmetrically positionedwith respect to the ay-axis but asymmetrically
with respect to az-axis. The columns have sides of lenght 0.4 m and the material is concrete (Young modulus E = 30 GPa). At each
story, a rigid horizontal squared slab represents the floor of the shear-type frame, which has total surface of 8.0×8.0m2. The building
slenderness is λb = 3.375 while the column slenderness λc = 26.0, providing rbs ≃ 0.18, which is about an upper limit to consider
suitable the shear-beam model. The nondimensional parameters which define the system are: ξ = 0.05, κ = 4/π2, η = 21.1. The
distributed load is assumed as uniform along s, and its nondimensional amplitude is p = 0.013 (corresponding to the dimensional
value py = 700 kN/m). Besides thementioned values, which allow one to perform the in-plane analysis, the values of the parameters
required for the stability to out-of-plane disturbances are:

κw =
4

π2
, κwθ = 0.004, κθw = 2.43, κθ = 4.50,

nw = 7.03, nwθ = 0.065, ηθw = 42.2, ηθ = 326.32

(64)

Morover, ξw = ξθ = ξ = 0.05 is assumed. With the adopted parameters, the eigenvectors are:

a1 =

1

0

0

 , a2 =

 0

0.999

−0.594

 , a3 =

 0

0.023

25.449

 (65)

which correspond to ω11 = 1, ω12 = 0.99, and ω13 = 3.33, respectively, indicating a weak but not vanishing coupling between w and
θ due to the asymmetry of the generic story with respect to the az-axis.

Focusing the attention to in-plane behavior first, equilibrium solutions of Eqs. (43) are sought as functions of σe, for a specific
value of the load amplitude parameter, α = 1, in order to evaluate amplitudes of periodic motions in v(s, t), as given by Eq. (45)
(leaving a complete analysis of the nonlinear response for different values of α to future papers). For this purpose, use is made of
the software Auto [25], and solutions are shown in Fig. 4 in terms of q1 and q3, where stability is indicated by the solid line and
instability by a dashed line: as it is previously stated considering Eq. (43), it is evident how, for all the values of σe in the consistent
range, always coupled responses (q1 ̸= 0, q3 ̸= 0) occur; moreover softening behavior for q1 occurs, as well as multiple coexisting
solutions in the range σe ∈ [0.15, 0.3]. Furthermore, a loop of the equilibrium paths occurs in the range σe ∈ [0.23, 0.29] (see the
corresponding windows in Fig. 5), where a further stable solution appears, whose stability is limited by a Hopf bifurcation point
at σe = 0.252. From it, a time-periodic solution in q1, q3 emanates, as confirmed by numeric integration of Eqs. (43) (see Fig. 6,
for σe = 0.250, giving rise to quasiperiodic solution in v), where the amplitude of the limit cycle is shown by the blue region in
Fig. 5. Further light decreasing of the value of σe from the 0.250 produces a cascade of successive bifurcations, which increase the
complexity of the solution, with a sequence of period doubling up to chaotic evolution (see Figs. 7 for σe = 0.249, Figs. 8 for σe = 0.248,
Figs. 9 for σe = 0.245), as confirmed by power spectra. When even smaller values of σe are attained, the solution jumps back to the
stable upper or lower equilibrium branches, in dependence of the initial conditions.

As second step, the stability of the in-plane solution to out-of-plane disturbances is analyzed. Specifically, the absolute value of
the complex functions fr , r = 0, 2, 4, 6 as defined in Eq. (51), is shown in Fig. 10, where it is evident how the larger contributions to
the parametric excitation in system (50) come from f0 and f2, whereas those from f4 and f6 are almost negligible.

Furthermore, the evolution of the eigenvalues of the Jacobian matrix of system (62) is shown in Fig. 11, where it is evident
how, in the region σe ∈ [0.03, 0.1] the real part of one of them becomes positive, indicating instability of the in-plane solutions to
disturbances. In the same region, the eigenvalues change their nature, from complex conjugate to real and distinct. The instability
occurrence is highlighted in Fig. 12, where the region in which the response-frequency function of the in-plane motion becomes
unstable to out-of plane disturbances is marked in pink.
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σe

q1

HB

σe

q3

HB

Fig. 4. Frequency response functions in q1 and q3. Solid line: stable; dashed line: unstable; HB: Hopf bifurcation.

σe

q1

HB

σe

q3

HB

Fig. 5. Frequency response functions in q1 and q3. Solid line: stable; dashed line: unstable; HB: Hopf bifurcation; blue region: quasi-periodic solutions.

a)

q1

q3

b)

ω

Sq1

Fig. 6. Periodic solution in q1, q3 for σe = 0.250, which produces quasiperiodic solution in v. a) Phase plot; b) power spectrum Sq1
for q1.
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a)

q1

q3

b)

ω

Sq1

Fig. 7. Periodic solution in q1, q3 for σe = 0.249, which produces quasiperiodic solution in v. a) Phase plot; b) power spectrum Sq1
for q1.

a)

q1

q3

b)

ω

Sq1

Fig. 8. Quasiperiodic solution in q1, q3 for σe = 0.248, which produces quasiperiodic solution in v. a) Phase plot; b) power spectrum Sq1
for q1.

a)

q1

q3

b)

ω

Sq1

Fig. 9. Chaotic solution in q1, q3 for σe = 0.245, which produces quasiperiodic solution in v. a) Phase plot; b) power spectrum Sq1
for q1.
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∥fr∥

f0

f2

f4

f6

Fig. 10. Absolute value of the complex components of the parametric excitation.

a)
σe

Reλ

b)
σe

Imλ

Fig. 11. Eigenvalues of the Jacobian matrix of system (62): a) real part, b) imaginary part.

σe

q1

σe

q3

Fig. 12. Frequency response functions in q1 and q3. Solid line: stable; dashed line: unstable; pink region: unstable to out-of-plane disturbances.
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6. Conclusions

Nonlinear response and stability of a homogeneousmodel of tall building is analyzed in the paper. First, recall on the hypotheses
under which the homogeneous model of shear-shear-torsional beam is considered as suitable to roughly describe the dynamics of a
building is given. Then, a symmetric configuration with respect to a principal axis of the generic story is assumed, so as to focus the
attention to the nonlinear in-plane response under external resonant excitation. The Multiple Scale Method is used, considering
the internal 1:3 resonance which is a natural occurrence due to the features of the system. Then, stability of the in-plane response
to out-of-plane disturbances is analyzed as well, where the relevant variational system, which is linear and parametrically excited
by a multi-frequency solicitation, is still tackled via the Multiple Scale Method. A numerical example is proposed, showing the
occurrence of multi-modal periodic coexisting solution, which all involve frequency 1 and 3 components. Secondary bifurcations
produce quasi-periodic and chaotic solutions as well. Finally, the out-of-plane disturbances are proved to be able to make the in-
plane solution unstable in a certain range of frequency.
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Appendix A Expression of the elastic coefficients

The expression of the elastic and geometric coefficients in Eq. (6) is given here for the case of a building where the generic story is
constituted by N slender columns, whose centerline is initially located at a positions xi = yiay + ziaz , i = 1, . . . N , height h, with
rectangular cross-sections of sides bi, hi, aligned to ay and az , respectively, area Ai = bihi, second principal area moments
Iiy = bih

3
i /12, Iiz = b3i hi/12, torsion inertia moment Ji = βbih

3
i (β = 0.1406 for bi = hi), Young modulus E, transversal elasticity

modulus G.
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Defining the column axial stiffness Di = EAi/h, shear stiffness Siy = 12EIiy/h
3 and Siz = 12EIiz/h

3, and torsion stiffness
Ci = GJi/h, the elastic coefficients in Eqs. (6)-(8) are:

D :=

N∑
i=1

Di, Sy :=

N∑
i=1

Siy , Sz :=

N∑
i=1

Siz , C :=

N∑
i=1

(Ci + Siyy
2
i + Sizz

2
i ) (66)

The coordinates of the extensional and shear center are:

yE :=
1

D

N∑
i=1

Diyi, zE :=
1

D

N∑
i=1

Dizi, yS :=
1

Sy

N∑
i=1

Siyyi, zS :=
1

Sz

N∑
i=1

Sizzi (67)

The inertia radii are:

ϱ2yy :=
1

D

N∑
i=1

Diy
2
i , ϱ2yz :=

1

D

N∑
i=1

Diyizi, ϱ2zz :=
1

D

N∑
i=1

Diz
2
i

ϱ3yyy :=
1

D

N∑
i=1

Diy
3
i , ϱ3yyz :=

1

D

N∑
i=1

Diy
2
i zi, ϱ3yzz :=

1

D

N∑
i=1

Diyiz
2
i

ϱ3zzz :=
1

D

N∑
i=1

Diz
3
i , ϱ2G :=

1

D

N∑
i=1

Di

(
y2i + z2i

)
, ϱ4GG :=

1

D

N∑
i=1

Di

(
y2i + z2i

)2
(68)
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