
تعداد نشریات | 31 |
تعداد شمارهها | 1,032 |
تعداد مقالات | 9,139 |
تعداد مشاهده مقاله | 10,473,168 |
تعداد دریافت فایل اصل مقاله | 8,644,234 |
ساخت نانوالیاف توخالی کامپوزیتی SnO2/ZnO به روش الکتروریسی و بررسی خواص ساختاری و فوتوکاتالیستی آنها | ||
پژوهش سیستم های بس ذره ای | ||
مقاله 5، دوره 10، شماره 2 - شماره پیاپی 25، شهریور 1399، صفحه 53-66 اصل مقاله (898.58 K) | ||
نوع مقاله: مقاله پژوهشی کامل | ||
شناسه دیجیتال (DOI): 10.22055/jrmbs.2020.15938 | ||
نویسندگان | ||
عبدالمحمد قلمبر دزفولی* 1، 2؛ مهناز حفیظی مکان3؛ زهرا صیدالی لیر3، 2 | ||
1گروه فیزیک، دانشکده علوم ، دانشگاه شهید چمران اهواز، اهواز ایران | ||
2مرکزتحقیقات لیزر و پلاسما، دانشگاه شهید چمران اهواز، اهواز، ایران | ||
3گروه فیزیک، دانشکده علوم، دانشگاه شهید چمران اهواز، اهواز، ایران | ||
چکیده | ||
در این مقاله تولید نانوالیاف توخالی SnO2/ZnO با استفاده از روش سادۀ الکتروریسی گزارش میشود. جهت بررسی میزان بهبود خواص کاربردی و همچنین نحوه تشکیل نانوالیاف توخالی کامپوزیتی، میزانهای متفاوتی از پیشمادۀ ZnO بهصورت نسبتی از SnO2 مورد مطالعه قرار گرفتند. در اینکار، خواص ساختاری و نوری نانوالیاف توخالی تولید شده از طریق میکروسکوپ الکترونی روبشی (SEM)، الگوی پراش اشعۀایکس (XRD)، طیفسنج تبدیل فوریه (FT-IR) و طیفسنج فرابنفش-مرئی (UV-Vis) مورد بررسی قرار می-گیرد. نتایج حاصل از XRD نشاندهندۀ تغییرات شدت قلههای مربوط به ZnO و SnO2 با افزایش و یا کاهش نسبت موجود در کامپوزیت است. طیف حاصل از FT-IR نیز نشان دهندۀ کاهش شدت نسبی نوار مربوط به SnO2 با افزایش میزان نسبی ZnO در کامپوزیت است. علاوه بر این طیفهای مرئی-فرابنفش، پهن شدگی قله را با اضافه نمودن ZnO نشان میدهد. در نهایت در بررسی خواص فوتوکاتایستی برای نسبتهای مختلف، نسبت ZnO/SnO2 =1/2 بیشترین تجزیۀ رنگ در 2 ساعت تحت تابش پرتو فرابنفش به میزان 62% را نشان میدهد. | ||
کلیدواژهها | ||
نانوالیاف توخالی؛ الکتروریسی؛ SnO2/ZnO؛ فوتوکاتالیست؛ کامپوزیت | ||
مراجع | ||
[1] S.S. Arbuj, U.P. Mulik, D.P. Amalnerkar, Synthesis of Ta2O5/TiO2 Coupled Semiconductor Oxide Nanocomposites with High Photocatalytic Activity, Nanoscience and Nanotechnology Letters 5(2013) 968-973. https://doi.org/10.1166/nnl.2013.1648
[2] S. Wu, H. Cao, S. Yin, X. Liu, X. Zhang, Amino Acid-Assisted Hydrothermal Synthesis and Photocatalysis of SnO2 Nanocrystals, The journal Of Physical Chemistry 113(2009) 17893-17898. https://doi.org/10.1021/jp9068762
[3] P. Ghadak, G. Asadollahfardi, A. Mirbagheri, Application of reverse osmosis membrane in refinery wastewater treatment, Modares Civil Engineering Journal, 15 (2015) 91-101. https://msa.modares.ac.ir/article-16-6891-en.pdf
[4]Y. Zheng, G. Yao, Q. Cheng, S. Yu, M. Liu, C. Gao, Positively charged thin-film composite hollow fibers nanofiltration membrane for the removal of cationic dyes through submerged filtration, Desalination 328 (2013) 42-50. https://doi.org/10.1016/j.desal.2013.08.009
[5] S. Aoudj, A. Khelifa, N. Drouiche, M. Hecini, H. Hamitouche, Electrocoagulation process applied to wastewater containing dyes from textile industry, J. of Chemical Engineering and Processing 44 (2005) 461-470. https://doi.org/10.1016/j.cep.2010.08.019
[6] K. Asokan, J.Y. Park, S.W. Choi, S.S. Kim, Nanocomposite ZnO–SnO2Nanofibers Synthesized by Electrospinning Method, Nanoscale Res Lett 5 (2010) 747-752. https://doi.org/10.1007/s11671-010-9552-y
[7] J. Wang, Z. Chen, Y. Liu, C. Shek, C.M.L. Wu, J.K.L. Lai, Heterojunctions and optical properties of ZnO/SnO2 nanocomposites adorned with quantumn dots, Solar Energy Materials & Solar Cells 128 (2014) 254-259. https://doi.org/10.1016/j.solmat.2014.05.038
[8] I. Sheikhshoaie, N. Zarei, M. Khaleghi, Synthesis and structural investigation of Tin nano oxides Sn (II)/Sn (IV) by Sol-Gel method and investigation of their biological properties, Journal of applied chemistry 12 (2017) 69-80. https://chemistry.semnan.ac.ir/article_2378.html
[9] H.W. Jun, S.E. Paramonov, J.D. Hartgerink, Biomimetic self-assembled nanofibers, Soft Matter 2 (2006) 177–181. https://doi.org/10.1039/B516805H
[10] X. Xia, X. J. Dong, Q.F. Weil, Y.B. Cail, K.Y. Lu, Formation mechanism of porous hollow SnO2 nanofibers prepared by one-step electrospining, Express Polymer Lettrs 6(2012) 169-176. http://www.expresspolymlett.com/articles/EPL-0002811_article.pdf
[11] W. Wang, J. Zhou, S. Zhang, J. Song, H. Duan, M. Zhou, C. Gong, Z. Bao, B. LU, X. Li, W. Ln, E. Xia, A novel method to fabricate silica nanotubes based on phase separation effect, Journal of Materials Chemistry 20 (2010) 9068-9072. https://doi.org/10.1039/C0JM02120B
[12] P. Mohanapriya, H. Segawa, K. Watanabe, K. Watanabe, S. Samitsu, T.S. Natarajan, N.V. Jaya, N. Ohashi, Enhanced Ethanol-Gas Sensing Performance of Ce-Doped SnO2 Hollow Nanofibers Prepared by Electrospinning, Sensors and Actuators B:Chemical, 188 (2013) 872-848 https://doi.org/10.1016/j.snb.2013.07.016
[13] Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications, Journal Of Physics: ondensed Matter 16 (2004) 829-858. https://iopscience.iop.org/article/10.1088/0953-8984/16/25/R01
[14] S.Wei, Y. Zhang, M. Zhou, Toluene sensing properties of SnO2–ZnO hollow nanofibers fabricated from single capillary electrospinning, Solid State Communications 151 (2011) 895–899. https://doi.org/10.1016/j.ssc.2011.03.031
[15] Y.H. Chiu, T.F.M. Chang, C.Y. Chen, M. Sone, Y.J. Hsu, Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts, Catalysts 9 (2019) 430. https://doi.org/10.3390/catal9050430
[16] T. Wei, J. Wang, P. Yao, X. Li, Hollow hierarchical SnO2-ZnO composite nanofibers with heterostructure based on electrospinning method for detecting methanol, Sensors and Actuators B: Chemical 192 (2014) 543-549. https://doi.org/10.1016/j.snb.2013.11.003
[17] T. Lopez, R. Gomez, Photocatalytic Activity in the 2,4-Dinitroaniline Decomposition Over TiO2 Sol-Gel Derived Catalysts, Journal of Sol-Gel Science and Technology 22 (2001) 99-107. https://doi.org/10.1023/A:1011272521955
[18] A.A. Firooz, A.R. Mahjoub, A.A. Khodadadi, Hydrothermal Synthesis of ZnO/SnO2 Nanoparticles with High Photocatalytic Activity, International Scholarly and Scientific Research & Innovation (2011).
[19] Q. Kuang, Z.Y. Jiang, Z.X. Xie, S.C. Lin, Z.W. Lin, S.Y. Xie, R.B. Huang, L.S. Zheng. Tailoring the optical property by a three-dimensional epitaxial heterostructure: a case of ZnO/SnO2, Journal of the American Chemical Society 127 (2005) 11777-11784. https://doi.org/10.1021/ja052259t
[20] S.K. Sinha, Tunable structural, optical and electrical properties of annealed ZnO-SnO2 composite thin films deposited by pulsed laser deposition, Advanced Materials 7 (2016) 319-324. https://doi.org/10.5185/amlett.2016.6155
[21] Z. Wei, Y. Liu, Y. Yang, P. Wu, Band gap engineering of SnO2 by epitaxial strain: experimental and theoretical investigations, The Journal of Physical Chemistry C 118 (2014) 6448-6453. https://doi.org/10.1021/jp500546r
[22] M.T. Uddin, Y. Nicolas, C. Olivier, T. Toupance, L. Servant, M.M. Muller, H.J. Kleebe, J. Ziegler, W. Jaegermann, Nanostructured SnO2–ZnO heterojunction photocatalysts showing enhanced photocatalytic activity for the degradation of organic dyes, Inorganic chemistry 51 (2012) 7764-7773. | ||
آمار تعداد مشاهده مقاله: 615 تعداد دریافت فایل اصل مقاله: 397 |