
تعداد نشریات | 31 |
تعداد شمارهها | 1,032 |
تعداد مقالات | 9,139 |
تعداد مشاهده مقاله | 10,473,168 |
تعداد دریافت فایل اصل مقاله | 8,644,234 |
مطالعة نظری اثر تعداد استخلاف ژرمانیم و سیلیکون در C20 کاسهای بر خواص ترمو الکتریکی | ||
پژوهش سیستم های بس ذره ای | ||
مقاله 11، دوره 10، شماره 2 - شماره پیاپی 25، شهریور 1399، صفحه 135-147 اصل مقاله (665.8 K) | ||
نوع مقاله: مقاله پژوهشی کامل | ||
شناسه دیجیتال (DOI): 10.22055/jrmbs.2020.15922 | ||
نویسندگان | ||
فرّخ رؤیا نیکمرام* 1؛ مریم قلی زاده آرشتی2 | ||
1گروه شیمی، دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد یادگار امام خمینی(ره) شهرری، تهران، ایران | ||
2گروه فیزیک، دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد یادگار امام خمینی(ره) شهرری، تهران، ایران | ||
چکیده | ||
امروزه با کاربرد گستردۀ مواد ترموالکتریک، توجه به مطالعۀ تئوریک خواص ترموالکتریکی اهمیت خاصی دارد. در این تحقیق با محاسبۀ ضریب سیبک Sو فاکتور شایستگیZ برای ساختارهای کاسه ای شکل(n=1-5) C20-nGen و C20-nSin، سامانۀ ترموالکتریکیِ مناسب، پیش بینی گردیده است. محاسبات به روش کوانتومی در سطح محاسباتیLSDA/6-31G، انجام شده است. در این ساختارها با افزایش دما ازk 278 تا 400k، ضریب سیبک در نیمرساناهای نوع p کاهش و در نیمرساناهای نوع n افزایش می یابد. بزرگترین فاکتور شایستگی با مقدار 78/1 برای C19Ge1 در دمایk 278 و برای C17Si3 در دمای 400k با مقدار 03/1 نتیجه شده است. بنابراین ساختار C19Ge1 به عنوان نیمرسانای نوع p و C17Si3 به عنوان نیمرسانای نوع n با اختلاف دمائی بزرگتر را می توان برای ساخت سامانۀ ترمو الکتریکی انتخاب نمود. ساختارهایِ C20-nGen با تعداد استخلافِ n=1,2,5 بعنوان هر دو نوع نیمرسانای n و p و ساختارهایِ C20-nSin با تعداد استخلاف n=3 وn=1,3 به ترتیب به عنوان نیمرسانای نوع n و نوع p، که فاکتور شایستگی بزرگتر از یک دارند، را می توان در ساخت سامانۀ ترموالکتریکی استفاده نمود. | ||
کلیدواژهها | ||
فولرن کاسه ای؛ Si؛ Ge؛ محاسبات کوانتومی؛ خواص ترمو الکتریکی | ||
مراجع | ||
[1] M. Zare Jafar Abadi, H. Ramin, R. Hoseini Abardeh, Optimization of Segmented Thermoelectric Generator and Calculation of Performance, AmirKabir Journal of Mechanical Engineering 45 (2013) 83-91. DOI: 10.22060/MEJ.2013.8 [2] B.C. Sales, D. Mandrus, R.K. Williams, Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials, Science 72 (1996) https://doi.org/10.1126/science.272.5266.1325 [3] B.X. Chen, J.H. Xu, C. Uher, D.T. Morelli. G.P. Meisner, J.P. Fleurial, T. Caillat, A. Borshchebskyet, Low- temperature transport properties of the filled skutterudites CeFe4−x Cox Sb12S, Physical Review B 55 (1997) 1476. https://doi.org/10.1103/PhysRevB.55.1476 [4] M. Lee, L. Viciu, L. Li, Y. Wang, M.L. Foo, S. Watauchi, R.A. Pascal, R.J. Cava, N.P. Ong, Large enhancement of the thermopower in NaxCoO2 at high Na doping, Nature Materials 5 (2006) 537–540. https://doi.org/10.1038/nmat1669 [5] Y. Wang, N.S. Rogado, R.J. Cava, N.P. Ong, Spin entropy as the likely source of enhanced thermopower in Na(x)Co2O4, Nature 423 (2003) 425-428. https://doi.org/10.1038/nature01639 [6] J.W.G. Bos, H.W. Zandbergen, M.H. Lee, N.P. Ong, R.J. Cava, Structures and thermoelectric properties of the infinitely adaptive series (Bi2)m(Bi2Te3)n, Physical Review B 75 (2007) 195203. https://doi.org/10.1103/PhysRevB.75.195203 [7] R.T. Littleton, T.M. Tritt, C.R. Feger, J. Kolis, M.L. Wilson, M. Marone, Effect of Ti substitution on the thermoelectric properties of the pentatelluride materials M1−xTi xTe5 (M=Hf, Zr), Journal of Applied Physics Letters 72 (1998) 2056-2058. https://doi.org/10.1063/1.121406 [8] A. Saramat, G. Svensson, A.E.C. Palmqvist, C. Stiewe, E. Mueller, D. Platzek, S.G. Williams, D.M. Rove, J.D. Bryan, G.D. Stucky, Large thermoelectric figure of merit at high temperature in Czochralski-grown clathrate Ba8Ga16Ge30, Journal of Applied Physics 99 (2006) 023708. https://doi.org/10.1063/1.2163979 [9] S.H. Yang, T.J. Zhu, T. Sun, J. He, S.N. Zhang, X.B. Zhao, Nanostructures in high-performance (GeTe)(x)(AgSbTe(2))(100-x) thermoelectric materials, Nanotechnology 19 (2008) 245707. DOI: 10.1088/0957-4484/19/24/245707 [10] h. Khalatbari Impact of increasing the number of molecules in thermopower properties of C20 molecule,Journal of Research on Many-body Systems 8 (2018)97-103. https://dx.doi.org/10.22055/jrmbs.2018.13938 [11] F. Lin, E. Srensen, C. Kallin, A.J. Berlinsky, C20, the Smallest Fullerene, Handbook of Nanophysics: Clusters and Fullerenes, Taylor & Francis Publisher, CRC Press, (2009). [12] M. Alcamí, G. Sánchez, S. Díaz-Tendero, Y.Wang, F. Martín, Structural patterns in fullerenes showing adjacent pentagons: C20 to C72, Journal of nanoscience and nanotechnology 7(2007) 1329-1338.https://doi.org/10.1166/jnn.2007.311 [13] Y. Lei, H. Zhou, Structure and thermoelectric performance of Ti-filled and Te-doped skutterudite TixCo4Sb11.5Te0.5 bulks fabricated by combination of microwave synthesis and spark plasma sintering, Materials Letters 233 (2018) 166-169. https://doi.org/10.1016/j.matlet.2018.08.157 [14] M. Scharber, D. M€uhlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Design Rules for Donor Bulk Heterojunction Solar Cells-Towards 10% Energy-Conversion Efficiency, Advanced Materials 18 (2006) 789-794. https://doi.org/10.1002/adma.200501717 [15] H. Liu, H. Ma, T. Su, Y. Zhang, High-thermoelectric performance of TiO2-X fabricated under high pressure at high temperatures, Journal of Materiomics 3 (2017) 286-292. https://doi.org/10.1016/j.jmat.2017.06.002 [16] D. Nozaki, H. Sevençli, W. Li, R. Gutiérrez, G. Cuniberti, Engineering the figure of merit and thermo power in single-molecule devices connected to semiconducting electrodes,Phys. Rev.B 81 (2010)235406. https://doi.org/10.1103/PhysRevB.81.235406
[17] T.M. Tritt, Encyclopedia of Materials: Science and Technology, Thermoelectric Materials: Principles, Structure, Properties, and Applications, Elsevier Science Ltd, (2002). [18] L. Wang, C. Pan, A. Liang, X. Zhou, W. Zhou, T. Wan, The effect of the backbone structure on the thermoelectric properties of donor–acceptor conjugated polymers, Polym. Chem 8 (2017) 4644-4650. https://doi.org/10.1039/C7PY01005B [19] H. Rahnama Ali Abad, S. Ramezani, The optoelectronic and thermoelectric spectrums of DyMnO3 by DFT, The Journal of Quantum Chemistry And Spectroscopy 5 (2015) 25-34. [20] F. Wu, W. Wang, X. Hu, M. Tang, Thermoelectric properties of I-doped n-type Bi2Te3-based material prepared by hydrothermal and subsequent hot pressing, Progress in Natural Science: Materials International 27 (2017) 203-207. https://doi.org/10.1016/j.pnsc.2017.02.009 [21] M. Salim, SH Sharifi, SJ Hashemifar, Quantum mechanical computation of structural, electronic, and thermoelectric properties of AgSbSe2, Iranian Journal of Physics Research 15 (2015) 97-104. [22] K. F. Liu, S. Q. Xia, Recent progresses on thermoelectric Zintl phases: Structures, materials and optimization, Journal of Solid State Chemistry 270 (2019) 252-264. https://doi.org/10.1016/j.jssc.2018.11.030 [23] C. Godart, A.P. Gonçalves, E.B. Lopes, B. Villeroy, Role of Structures on Thermal Conductivity in Thermoelectric Materials, Properties and Applications of Thermoelectric Materials, NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB), (2008). https://doi.org/10.1007/978-90-481-2892-1_2 [24] A. Bensmain, H. Tayoub, B. Zebntout, Z. Benamara, Investigation of Performance Silicon Heterojunction Solar Cells Using a-Si: H or a- SiC: H at Emitter Layer Through AMPS-1D Simulations, Sensors & Transducers 27 (2014) 82-86. [25] N. Memarian, M.K. Omrani, M. Minbashi, Improving the heterojunction silicon solar cell efficiency by using GaP intrinsic layer, Journal of Research on Many-body Systems 7 (2017) 103-112. https://dx.doi.org/10.22055/jrmbs.2017.18151.1203 [26] A. Nozariasbmarz, A. Agarwal, Z.A. Coutant, Thermoelectric silicides: A review, Japanese Journal of Applied Physics 56 (2017)05DA04. DOI: 10.7567/JJAP.56.05DA04 [27] M. Thesberg, H. Kosina, N. Neophytou, On the Lorenz number of multiband materials, Phys. Rev. B 95 (2017) 125206 . https://doi.org/10.1103/PhysRevB.95.125206 [28] A.F. Ioffe, L.S. Stil'bans, E.K. Iordanishvili, T. S. Stavitskaya, A. Gelbtuch, Semiconductor Thermoelements and Thermoelectric Cooling, Physics Today 12 (1959) 42. https://doi.org/10.1063/1.3060810 [29] S. Shimizu, J. Shiogai, N. Takemori, S. Sakai, H. Ikeda, R. Arita, T. Nojima, A. Tsukazaki, Y.Iwasa, Giant thermoelectric power factor in ultrathin FeSe superconductor, Nature Communications 10 (2019) 825. [30] X. Hu, P. Jood, M. Ohta, Power generation from nanostructured PbTe-based thermoelectrics: comprehensive development from materials to modules, Energy Environ. Sci 9 (2016) 517-529. https://doi.org/10.1039/C5EE02979A [31] S. Li, X. Li, Z. Ren, Q. Zhang, Recent progress towards high performance of tin chalcogenide thermoelectric materials, Journal of Materials Chemistry.A6 (2018)2432-2448. https://doi.org/10.1039/C7TA09941J [32] L.D. Hicks, M.S. Dresselhaus, Thermoelectric figure of merit of a one-dimensional conductor, Physical Review B 47 (1993) 16631. https://doi.org/10.1103/PhysRevB.47.16631 [33] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature 413 (2001) 597-602. https://doi.org/10.1038/35098012 [34] D. Vashaee, A. Shakouri, Electronic and thermoelectric transport in semiconductor and metallic superlattices, Journal of Applied Physics 95 (2004)1233. https://doi.org/10.1063/1.1635992 [35] G. Zeng, X. Fan, C. LaBounty, E. Croke, Y. Zhang, J. Christofferson, D. Vashaee, A. Shakouri, J.E. Bowers, Thermal Nanosystems and Nanomaterials, MRS Proc, (2003). https://doi.org/10.1007/978-1-4419-9278-9_9 [36] S. Tada, Y. Isoda, H. Udono, H. Fujiu, S. Kumagai, Y. Shinohara, Thermoelectric Properties of p-Type Mg2Si0.25Sn0.75 Doped with Sodium Acetate and Metallic Sodium, J. Electron. Mater 43 (2014)1580. https://doi.org/10.1007/s11664-013-2797-3 [37] M.M. Wienk, M. Turbiez, J. Gilot, R.A.J.Janssen, Narrow- Bandgap Diketo-pyrrolopyrrole Polymer Solar Cells: The Effect of Processing on the Performance. Advanced Materials 20 (2008) 2556-2560. https://doi.org/10.1002/adma.200800456 [38] S.H. Vosko, L. Wilk, M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Canadian J. Phys 58 (1980) 1200-1211. https://doi.org/10.1139/p80-159 [39] H. Aryani Mohamadieh, M.A. Ghazee, M. Izadi Fard, Study of magnetic and electronic properties of NdMnO3 manganite using LSDA and LSDA+U approximations, Journal of Research on Many-body Systems 3 (2013) 25-37. [40] M. Dadsetani, R. Momeni Feili, A. Beiranvand, Electronic and optical properties of Cu2-II-IV-VI4(II=Zn, Cd; IV=Ge, Sn; VI=S, Se, Te) quaternary chalcogenides using GGA and mBJ-GGA approximations, Journal of Research on Many-body Systems 3 (2013) 9-24. [41] H. Salehi, A. Abdollahi, Calculation of electronic and optical properties of Na2S in the orthorombic phase, Journal of Research on Many-body Systems 7 (2017)145-152. https://dx.doi.org/10.22055/jrmbs.2017.13023 [42] M. Qasemnazhand, F. Marsusi, Theoretical Study of Opto-Electronic properties of Silafulleranes Using Density Functional Theory, Journal of Research on Many-body Systems 7 15 (2017) 77-87. https://dx.doi.org/10.22055/jrmbs.2017.13328 [43] S.M. Sze, Kwok K. Ng, Physics of Semiconductor Devices, John wiley and Sons,(2007). [44] F.R. Nikmaram, M. Gholizadeh Arashti, S. Ketabi, Study of the Electronic Properties of C20-nSin and C20-nGen (n=1-5) nano structures by the approach of Density Functional Theory, Journal of Research on Many-body Systems 8 19 (2018) 206-217. https://dx.doi.org/10.22055/jrmbs.2018.13969 [45] J. W. Precker, Experimental estimation of the band gap in silicon and germanium from the temperature–voltage curve of diode thermometers, American Journal of Physics 70 (2002)1150-1153. https://doi.org/10.1119/1.1512658 [46] K.P. Pipe, R.J. Ram, A. Shakouri, Bias-dependent Peltier coefficient and internal cooling in bipolar devices, Physical Review B 66 (2002) 125316. https://doi.org/10.1103/PhysRevB.66.125316 [47] M. Lundstrom, Fundamentals of carrier transport, Cambridge University Press, (2000). https://doi.org/10.1017/CBO9780511618611 | ||
آمار تعداد مشاهده مقاله: 746 تعداد دریافت فایل اصل مقاله: 378 |