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Abstract. The aim of this paper is to analyze the problem of magneto hydrodynamic Jeffrey-Hamel flow (JHF) with nanoparticles. 
The governing equations for this problem are reduced to an ordinary differential equation and it is solved using new analytical 
method (NAM) and fourth-order Runge-Kutta Method (RK ∼ 4). The NAM is an iterative method that relies mainly on derivatives 
with Taylor expansion interference. In addition, the velocity profile has been computed and shown for various values of physical 
parameters. The objective of the present work is to investigate the effect of the angles between the plates, Reynold number, 
magnetic number and nanoparticles volume fraction on the velocity profile. 

Keywords: Magneto hydrodynamic flow, Jeffrey-Hamel flow, Nanoparticle, non-linear ordinary differential equation, Analytical 
solution. 

1. Introduction 

The incompressible viscous fluid flow through convergent-divergent is one of the most applicable cases in fluid mechanics, 
civil, environmental, mechanical and Bio-mechanical engineering. In fluid dynamics JHF is a flow created by a converging or 
diverging channel with a source or sink of fluid volume at the point of intersection of the two planes walls. The mathematical 
investigations of this problem were pioneered by Jeffery [1] and Hamel [2] and so, it is known as Jeffery-Hamel problem. Ass 
known, most scientific problems such as Jeffery-Hamel flows and other fluid mechanic problems are inherently nonlinear. In 
most cases, these problems do not admit analytical solution, so these equations should be solved using special techniques. In 
recent decades, much attention has been devoted to the newly-developed methods to construct an analytic solution of equation; 
such as Perturbation techniques which are too strongly dependent upon the so-called small parameters (SP) [3]. Many other 
different methods have been introduced to solve nonlinear equations [4–22] such as the Adomian decomposition method (ADM), 
homotopy perturbation method (HPM), variational iteration method (VIM), differential transformation method (DTM), homotopy 
asymptotic method (HAM) and etc. The main purpose of this study is to apply new analytical method to find approximate 
analytical solutions (A-AS) of the velocity profile on MHD Jeffery-Hamel flow with nanoparticles. The present article aims at 
analyzing the problems concerning with the Jeffery-Hamel flow over a convergent-divergent channel in the fluid. The differential 
equations which represent the Jeffery-Hamel flow between nonparallel walls are nonlinear, therefore, analytical approximations 
of nonlinear equations are inconceivable. In order to obtain the solutions of the considered problem, we propose a new strategy, 
Taylor expansion based on a mathematic technique, namely, differential evolution algorithm to analyze show the flow behavior 
reduces. Furthermore, the competency and reliability of the methods are inspected by employing a fourth -order Runge-Kutta 
method. The velocity profile is verified graphically through implementation of these two methods. Also, tables are presented for 
comparing the numerical results at different pertinent parameters. A comparative study has also been done with the previous 
results and found to be in good compatibility. 

 
 

Table 1. Properties of nanofluid and nanoparticles. 

Material ρ(kg/m3) CP (J/kgK) k(W/mK) 

Al2O3 3970 765 40 

TiO2 4250 686.2 8.9538 

Cu 8933 385 401 

Fluid phase (water) 997.1 4179 0.613 
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2. Mathematical Formulation 

We consider the steady two-dimensional flow of an incompressible conducting viscous fluid from a source or sink at the 
intersection between two nonparallel plane walls. The boundary layer flow of an electrically conducting viscous fluid with 
nanoparticle is considered. A clear conclusion can be drawn from the numerical method (NUM) results that the NAM provides 
highly accurate solutions for nonlinear differential equations magnetic field acts transversely to the flow. The problem is 
described in Figure 1. The velocity is purely radial and depends on �̃ and �� only. The governing equations in polar coordinates 
follows as [9, 10]; 

����̃ 	�̃ 
� �
�� = 0, (1a) 


� 	
�	�̃ + 1���
	�	�̃ − ��� �	�
�	�̃� − 1�̃ 	
�	�̃ − 1�̃ 	�
�	�̃� + 
��̃� + ��������̃ 
� = 0, (1b) 

1����̃ 	�	�� − 2����̃� 	
�	�� = 0, (1c) 

where �� is the electromagnetic induction, 
� is the velocity along radial direction, � is fluid pressure, � is the conductivity of the 
fluid, ��� is the density of fluid and ��� is the coefficient of kinematic viscosity. By presenting � as a solid volume fraction, fluid 
density, dynamic viscosity and the kinematic viscosity of nanofluid can be written as follows: 

��� = ��
1 −  � + �! , (2a) 

"�� = "�
1 −  ��.$, (2b) 

%�� = "���� ,  (2c) 

By using dimensionless parameters and from Equation (1a) 

&'
�� =  
�
�̃, ���,  (3a) 

&(
)� = &'
��&'*+, , ) = �-,  (3b) 

Substituting Equation (2b) into Equations (1b) and (1c), we obtain an ordinary differential equation for the velocity profile f(η): 

./&(.)/ + 2-01 2
1 −  � + �!��  3 
1 −  ��.$&( .&(.) + 
4 − 
1 −  �5.�$67�-� .&(.) = 0, (4) 

the subject boundary conditions as follows; 

&(
0� = 0, .&(
0�.) = 0, &(
1�  = 0 , (5) 

the Hartmann and Reynold numbers respectively are 

67 = 8������ , Re = &'*+,-�  ;.<%1�=1>?sAℎ7>>1C 
DE�: - > 0, &'*+, > 0AH>%1�=1>?sAℎ7>7C 
EE�: - < 0, &'*+, < 0J (6) 

 

 

Fig. 1. The nanofluid JHF (a) 2D view and (b) schematic setup of problem. 
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3. The Basic Steps of the New Analytical Method 

In this section, review of the basic steps of the NAM is presented. We start by considering the following differential equation: 

K ;), .&(
)�.) , .�&(
)�.)� , ./&(
)�.)/ , … , .�M5&(
)�.)�M5 , .�&(
)�.)� J = 0, (7) 

where K is a differential operator, &( is an unknown function, η is an independent variable. Rewriting Equation (3.1) as follows 

N O&(
)�P + Q O&(
)�P + R O&(
)�P + =
)� = 0, (8) 

where L is the highest-order derivative which is assumed to be invertible, J is a linear differential operator of less order than L, N 
represents the nonlinear terms and g(η) is a known analytical function. The series approximate-analytical solution is 

&(
)� = S &(*
)�,T
*U�  (9) 

Integrating Equation (8) with respect to η on [0, η] yields 

&(
)� = S &(
V�
0��M5
VU�

)V<! + NM5=
)� + NM5QX&(
)�Y + NM5ZX&(
)�Y, (10) 

where, 

ZX&(
)�Y = R O&(
)�P , NM5 = [ [ [ 
.)��\�\�\� , (11) 

where n−1 for the series solution, can be easily be found by the following recursive process: 

 &(�
)� = S &(
V�
0��M5
VU�

)V<! + NM5=
)�,  (12) 

 Z�X&(
)�Y = R[&(
)�]  (13) 

&(5
)� = NM5QX&(�
)�Y + Z�_NM5X&(
)�Y, 
&(*`5
)� = NM5QX&(*
)�Y + Z*NM5X&(
)�Y, a = 1.2, …, (14) 

Assume that 

Z*X&(
)�Y = ∑ 
c\�d
�! edf
�(g
\��e\d*�U� − ∑ 
c\�d

�! edfO�(g
\�Pe\d*M5�U� , a = 1,2, …,  (15) 

Substituting equation (15) in equation (14), we obtain 

&(*`5
)� = NM5QX&(*
)�Y + NM5
S 
Δ)��>! .�R O&(�
)�P.)�
*
�U� − S 
Δ)��>! .�R O&(�
)�P.)�

*M5
�U� �, 

(16) &(�
)� = NM5QX&(5
)�Y + NM5 
c\�i
5! efO�(g
\�Pe\i , &(/
)� = NM5QX&(�
)�Y + NM5 
c\�j

�! ejfO�(g
\�Pe\j ,  

&(k
)� = NM5QX&(/
)�Y + NM5 
Δ)�/3! ./R O&(�
)�P.)/ , . , &(*
)� = NM5QX&(*M5
)�Y + NM5 
Δ)�*M5
a − 1�! .*M5R O&(�
)�P.)*M5 , 
We focus on computing the derivatives of R with respect to ) which is the crucial part of the proposed method. Let’s start 
calculating R[&(
)�], R′[&(
)�], R′′[&(
)�],…, 

RX&( 
)�Y = O&(
)�, e�(
\�e\ , ej�(
\�e\j , en�(
\�e\n , … , edoi�(
\�e\doi , ed�(
\�e\d P,  (17) 

R′X&( 
)�Y = S R�(
poi�
&(\�
VM5�,�
VU5  (18) 
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R′′X&( 
)�Y = S S R�(
qoi��(
poi�
�

VU5 
&(\�
rM5�
&(\�
VM5� +�
rU5 S R�(
poi�
&(\\�
VM5�,�

VU5  (19) 

  RsssX&( 
)�Y = S S S R�(
toi��(
qoi��(
poi�
�

VU5 
&(\�
uM5�v&(\w
rM5�v&(\w
VM5� +�
rU5

�
uU5 S S R�(
qoi��(
poi�

�
VU5 
&(\\�
rM5�
&(\�
VM5� +�

rU5 S R�(
poi�
&(\\\�
VM5�,�
VU5  (20) 

We see that the calculations become more complicated in the second and third derivatives because of the numerous calculations. 
Consequently, the systematic structure on calculation is extremely important. Fortunately, due to the assumption that the 
operator R and the solution &( are analytic functions then the mixed derivatives are equivalent. We note that the derivative 
function to f˜ is unknown, so we suggest the following hypothesis: 

&(\ = &(5
)� = NM5QX&(�
)�Y + NM5RX&(�
)�Y,   

(21) 

&(\\ = &(�
)� = NM5QX&(5
)�Y + NM5 
c\�i
5! R′X&(�
)�Y,  

&(\\\ = &(/
)� = NM5QX&(�
)�Y + NM5 
c\�j
�! R′′X&(�
)�Y, 

&(\\\\ = &(k
)� = NM5QX&(/
)�Y + NM5 
Δ)�/3! R′′′X&(�
)�Y, 
⋮ 

Therefore equations (12) to (15) are evaluated  

RX&(� 
)�Y = ;&(
)�, .&(�
)�.) , .�&(�
)�.)� , ./&(�
)�.)/ , … , .�M5&(�
)�.)�M5 , .�&(�
)�.)� J, (22) 

R′X&(� 
)�Y = S R�(g
poi�
&(5�
VM5�,�
VU5  (23) 

R′′ X&(�
)�Y = ∑ ∑ R�(g
qoi��(g
poi��VU5 
&(5�
rM5�
&(5�
VM5� +�rU5 ∑ R�(g
poi�
&(��
VM5�,�VU5   (24) 

RsssX&(� 
)�Y = S S S R�(g
toi��(g
qoi��(g
poi�
�

VU5 
&(5�
uM5�v&(5w
rM5�v&(5w
VM5� +�
rU5

�
uU5  S S R�(g
qoi��(g
poi�

�
VU5 
&(��
rM5�
&(5�
VM5� +�

rU5 S R�(g
poi�
&(/�
VM5�,�
VU5  (25) 

Substitution Equations (22)-(25) in Equation (9), the required analytical approximate solution for the Equation (7) can be achieved. 

4. The Application of NAM for JHF with Nanoparticles 

The NIM described in the previous section is implemented for solving third or- der nonlinear differential Equations (4) can be 
consider from the required information as follows 

QX&(
)�Y = 
4 − 
1 −  �5.�$67�-� .&(
)�.) , ZX&(
)�Y =  2-01 2
1 −  � + �!��  3 
1 −  ��.$&(
)� .&(
)�.) , 
=
)� = 0, NM5 = y y y 
.)�/\

�
\

�
\

� ,  
(26) 

The solution of the given equation involves the extraction of the components of &(
)� and the study of the effect of the parameters 
on them. So solving the approximate analytical series be as listed 

&(
)� = &(�
)� + &(5
)� + &(�
)� + ⋯,  (27) 

initial conditions are used when the inverse operator NM5 is applied on Equation (27) to obtain 

&(�
)� = {� + {5) + {� )�2!,  (28) 

whereas 

&(
0� = {�, &s| 
0� = {5, &(ss
0� = {�,  (29) 

for the components of f˜(η), can be easily be found by the following iterative 
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&(�
)� = 1 + {� )�2!,  (30) 

&(5 
)� = 
4 − 
1 −  �5.�$67�-� .&(�.) +  2-01 2
1 −  � + �!��  3 
1 −  ��.$&(�
)� .&(�.) , (31) 

&(� 
)� = 
4 − 
1 −  �5.�$67�-� .&(5.) +  NM5 
∆)�51! .R[&(�].) , (32) 

&(/ 
)� = 
4 − 
1 −  �5.�$67�-� .&(�.) + NM5 
∆)��2! .�R[&(�].)� , (33) 

&(k 
)� = 
4 − 
1 −  �5.�$67�-� .&(/.) +  NM5 
∆)�/3! ./R[&(�].)/ , (34) 

&($ 
)� = 
4 − 
1 −  �5.�$67�-� .&(k.) +  NM5 
∆)�k4! .kR[&(�].)k , (35) 

Now, we start the calculation of the derivatives of N with respect to η which considers on the basis of 

RX&( 
)�Y = ;&(
)�, .&(
)�.) , .�&(
)�.)� , ./&(
)�.)/ , … , .�M5&(
)�.)�M5 , .�&(
)�.)� J, (36) 

R′X&( 
)�Y = S R�(
poi�
&(\�
VM5�,�
VU5  (37) 

R′′ X&( 
)�Y = S S R�(
qoi��(
poi�
�

VU5 
&(\�
rM5�
&(\�
VM5� +�
rU5 S R�(
poi�
&(\\�
VM5�,�

VU5   (38) 

RsssX&( 
)�Y = S S S S R�(
toi��(
qoi��(
poi�
�

VU5 v&(\w
uM5�v&(\w
rM5�v&(\w
VM5��
VU5 +�

rU5
�

uU5  

∑ ∑ R�(
qoi��(
poi��VU5 
&(\\�
rM5�
&(\�
VM5� +�rU5 ∑ R�(
poi�
&(\\\�
VM5�,�VU5   

(39) 

We note that the derivatives of &( with respect ) that are given in (21), can be computed by Equations (36)-(39) as 

RX&(� 
)�Y ;&(
)�, .&(�
)�.) , .�&(�
)�.)� , ./&(�
)�.)/ , … , .�M5&(�
)�.)�M5 , .�&(�
)�.)� J, (40) 

R′X&(� 
)�Y = S R�(g
poi�
&(5�
VM5�,�
VU5  (41) 

RssX&(�
)�Y = S S R�(g
qoi��(g
poi�
�

VU5 v&(5w
rM5�v&(5w
VM5� +�
rU5 S R�(g
poi�v&(�w
VM5�,�

VU5  (42) 

RsssX&(� 
)�Y = S S S S R�(g
toi��(g
qoi��(g
poi�
�

VU5 v&(5w
uM5�v&(5w
rM5�v&(5w
VM5��
VU5 +�

rU5
�

uU5  

S S R�(g
qoi��(g
poi�
�

VU5 
&(��
rM5�
&(5�
VM5� +�
rU5 S R�(g
poi�
&(/�
VM5�,�

VU5  

(43) 

After performing NAM, we will obtain the required approximate analytical solution for Equation (4). 

5. Analysis of the Convergence 

We study the analysis of convergence (AC) for the analytical approximate solution (AAS) that are resulted from the 
application of new power series approach for solving the problem of MHD squeezing fluid flow between two parallel plates in 
porous medium with slip boundary. 
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Definition 5.1. Suppose that 6 is Banach space, ℛ is the real numbers and ZX&(Y is a nonlinear operator defined by ZX&(Y: 6 → ℛ, 
then the sequence of the solutions generated by a NAM can be written as 

&(�`5 = �X&(�Y, �X&(�Y = QX&(�Y + ZX&(�Y, &(� = S &(u , > = 0,1,2, … ,�
uU�  (44) 

where �X&(Y satisfies Lipschitz condition (LC) such that for � > 0, � in ℛ, we have 

��X&(�Y − �X&(�M5Y� ≤ ��&(� − &(�M5�, (45) 

Theorem 5.1. Let series &(
)� = ∑ &(
)� TuU� is AAS generated by NAM converge if the following condition is satisfied: 

�&(� − &(*� → 0, 7�  a → ∞  &H� 0 ≤ � < 1   

Proof. From the above definition, we have 

�&(� − &(*� = �S &(u�
uU� − S &(u*

uU� �, 
= �&(� + S
NM5Q[&(u
)�]�M5

uU� + NM5Zu �&(
)�P − &(� + S
NM5Q[&(u
)�]*M5
uU� + NM5Zu �&(
)�P� 

= �S NM5QX&(u
)�Y�M5
uU� + NM5
NM5
S 
Δ)�u�! .uR O&(�
)�P.)u

�M5
uU� − S 
Δ)�u�! .uR O&(�
)�P.)u

�M�
�U� �  

S NM5QX&(u
)�Y*M5
uU� + NM5
NM5
S 
Δ)�u�! .uR O&(�
)�P.)u

*M5
uU� − S 
Δ)�u�! .uR O&(�
)�P.)u

*M�
�U� ��,  

= �XNM5�[∑ &(u]�M5uU� Y − XNM5�[∑ &(u]*M5uU� Y�,  
≤ |NM5|��[∑ &(u]�M5uU� − �[∑ &(u]*M5uU� �,  

≤ |NM5|��[&(�M5] − �[&(*M5]�, 
≤ ��&(�M5 − &(*M5� 

 

 
since K [&(] satisfies LC. Let n = m + 1, then 

�&(� − &(*� ≤ ��&(�M5 − &(*M5�, (46) 

Hence 

�&(* − &(*M5� ≤ ��&(*M5 − &(*M�� ≤ ⋯ ≤ �*M�&(5 − &(��,  (47) 

from Equation (47), we get 

 �&(� − &(5� ≤ ��&(5 − &(��, 
�&(/ − &(�� ≤ ���&(5 − &(��, 
�&(k − &(/� ≤ �/�&(5 − &(��, 

⋮ 
�&(* − &(*M5� ≤ �*�&(5 − &(��, 

 

Using triangle equality 

�&(� − &(*� = �&(� − &(�M5 − &(�M� − ⋯ − &(*`5 − &(*�, 
≤ �&(� − &(�M5� + �&(�M5 − &(�M�� + ⋯ + �&(*`5 − &(*� 

≤ [��M5 + ��M� + ⋯ + �*]�&(5 − &(��, 
= �*[��M*M5 + ��M*M� + ⋯ + 1]�&(5 − &(��, 

≤ �*1 − � �&(5 − &(��, 
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Table 2. The values of � by using condition convergence. 

 ρs = 3970, Ha = 0, Re = 10, α = 3, φ = 0.01 ρs = 8933, Ha = 600, Re = 30, α = 5,   = 0.02 

 || . ||2 || . || || . ||2 || . || � 0.04368886675 0.036811329680 0.03486541970 0.03750562458 �� 0.00103423553 0.000955994608 0.00200575022 0.00205646732  �/ 0.00001848515 0.000015704533 0.00018352086 0.00018579125 ⋮ ⋮ ⋮ ⋮ ⋮ 
Table 3. The convergence of B3 when Ha = 0, Re = 10, α = 3,   = 0.01. 

 Al2O3 TiO2 Cu 

Approximation B3 B3 B3 

1 order -2.1497888 -2.1502136 -2.15733520 

2 order -2.1470085 -2.1474182 -2.15428091 

3 order -2.1469425 -2.1473516 -2.15420414 

4 order -2.1469438 -2.1473528 -2.15420567 

5 order -2.1469438 -2.1473528 -2.15420567 

6 order -2.1469438 -2.1473528 -2.15420567 

Table 4. The convergence of B3 when Ha = 600, Re = 30, α = 5,   = 0.02. 

 Al2O3 TiO2 Cu 

Approximation B3 B3 B3 

1 order -1.96940561 -1.97275131 -2.029852 

2 order -1.97099525 -1.97454545 -2.034925 

3 order -1.97101228 -1.97456162 -2.034842 

4 order -1.97101201 -1.97456126 -2.034738 

5 order -1.97101201 -1.97456126 -2.034738 

6 order -1.97101201 -1.97456126 -2.034738 

5.1. Convergence of the Solution for JHF with Nanoparticles 

In practice, the theorem (5.1) suggests to compute the value of ϕ as described in the following definition 
 

Definition 5.2. For j= 1, 2, 3, … 

�r =
⎩⎨
⎧�&(r`5 − &(r� �&(5−&(�� ,    �&(5 − &(�� ≠ 0

0,                        �&(5 − &(�� = 0     

Note that the Definition (5.2) of convergence condition is achieved through applying it on MHD squeezing fluid flow between two 
parallel plates in porous medium with slip boundary to find convergence, the values of ϕ can be summarized in the following 
table: 

 

Now, we can be say the series ∑ &(u
)�TuU�  converges to the solution &(
)� when 0 < �, �5, ��, … . < 0. 
6. Results and Discussion 

Now, this section contains the discussions over different flow parameters on velocity profile &(
)�. These parameters are 
Hartmann, Nano fluid volume fraction and Reynold numbers. Tables 3 and 4 show the convergence of B3. In Tables 5-8, the 
results of the imposed method are presented a compared with the numerical solution and the collocation method solution. 
These tables clearly indicate that the solutions are completely compatible. This accuracy gives high confidence to us about 
validity of this problem and reveals an excellent agreement of engineering accuracy. This investigation is completed by depicting 
the effects of some important parameters to evaluate how these parameters influence the fluid. The effect different values of 
active parameters is shown in Figures 2-4. 

Figure 2. Follow for Material Al2O3. 

In Figure 2a the effect of Hartmann number on the velocity profiles of divergent and convergent channels. The results show 
increasing Hartmann number leads to the velocity profiles of convergent and divergent channels is increased. So it can be seen 
by increasing Hartmann number that no backflow is occurred in both channels. Figure 2b shows that the fluid velocity decreases 
with Reynolds numbers in the case of divergent channels but increases with Reynold number in the case of convergent channels. 
Noticeably of all, by increasing nanofluid volume fraction, the fluid velocity decreases in the case of divergent channels but 
increases with nanofluid volume fraction in the case of convergent as depicted in Figure 2c. 

Figure 3. Follow for Material TiO2. 

In Figure 3a, increasing Hartmann number on the velocity profiles of divergent and convergent channels is shown. This leads 
to decrease the velocity profiles of convergent and divergent channels. So in both channels, increasing Hartmann number no 
backflow is occurred. Figure 3b shows that the fluid velocity decreases with Reynolds numbers in the case of divergent and 
convergent channels. By increasing nanofluid volume fraction, the fluid velocity decreases in the case of divergent channels but 
decreases with nanofluid volume fraction in the case of convergent as depicted in Figure 3c. 
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Table 5. The profile of f(η) for Cu when Ha = 0, Re = 50, α = 5,   = 0. 

η Present solution HPM [12] Reference [13] Reference [23] SHPM [12] RK ∼ 4 

0.00 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 

0.25 0.894649 0.894960 0.894242 0.894243 0.894242 0.894650 

0.50 0.628312 0.627220 0.266948 0.626953 0.626948 0.628384 

0.75 0.303771 0.302001 0.301991 0.301998 0.301990 0.304761 

1.00 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

Table 6. The profile of f(η) for Cu when Ha = 750, Re = 10, α = −5,   = 0.05. 

η Present solutions Collocation method [9] 

0.00 1.000000000 1.000000000 

0.10 0.994237767 0.994278317 

0.20 0.976518907 0.976670165 

0.30 0.945519431 0.945855446 

0.40 0.898941811 0.899546175 

0.50 0.833382035 0.834341990 

0.60 0.744151771 0.745536091 

0.65 0.688792461 0.690394661 

0.70 0.625067799 0.626869073 

0.75 0.551934739 0.553888111 

0.80 0.468230004 0.470248161 

0.85 0.372665147 0.374605389 

0.90 0.263823428 0.265469361 

0.95 0.140159099 0.141198775 

1.00 0.000000000 0.000000000 

Table 7. The profile of f(η) for Cu when Ha = 600, Re = 30,α = 5,   = 0.02. 

η Present solutions RK ∼ 4 Absolute error 
0 1 1 0 

0.05 0.997316914 0.997316914 5.0 ×10−10 
0.1 0.989837623 0.989831339 0.989838538 
0.2 0.959481313 0.959484798 0.959484798 
0.3 0.909286554 0.909293747 0.909273894 
0.4 0.839725036 0.839713174 0.839736189 
0.5 0.751210824 0.751225047 0.751200975 
0.6 0.643867387 0.643882692 0.643859464 
0.7 0.51723661 0.517250595 0.51722988 
0.75 0.446299608 0.446312228 0.446293494 
0.8 0.369919206 0.369930217 0.369913902 
0.85 0.287698312 0.287707601 0.287693905 
0.9 0.199115412 0.199122776 0.199111677 
0.95 0.103499625 0.103504315 0.103504315 

1 0 0 0 

Table 8. The profile of f(η) for Al2O3 when Ha = 0, Re = 10 , α = 3,  = 0.01. 

η Present solutions Numerical method [9] Collocation method [9] 

0.10 0.9892747583 0.9892747583 2.10×10−9
 

0.15 0.975894713 0.975894718 5.00×10−9 

0.2 0.957211638 0.957211647 9.00×10−9 

0.25 0.933273423 0.933273437 1.44×10−8 

0.3 0.904140089 0.904140111 2.20×10−8 

0.35 0.869882653 0.869882686 3.32×10−8 

0.4 0.830581769 0.830581821 5.20×10−8 

0.45 0.78632617 0.786326255 8.54×10−8 

0.5 0.737210915 0.73721106 1.45×10−7 

0.55 0.683335479 0.683335727 2.41×10−7 

0.6 0.624801686 0.624802106 4.19×10−7 

0.65 0.561711523 0.561712214 6.91×10−7 

0.7 0.494164834 0.494165934 1.10×10−6 

0.75 0.422256931 0.422258619 1.68×10−6 

0.8 0.346076117 0.346078608 2.49×10−6 

0.85 0.265701137 0.265704674 3.53×10−6 

0.9 0.181198571 0.181203403 4.83×10−6 

0.95 0.092620147 0.092626497 6.34×10−6 

1 0 0.0.000008010 8.01×10−6 

Figure 4. Follow for Material Cu. 

The influence of Hartmann number on the velocity profiles of divergent and convergent channels is shown in Figure 4a. Note 
that decreasing the velocity profiles of convergent and divergent channels with increasing Hartmann number. In addition, in 
both channels by increasing Hartmann number that no backflow is occurred and can be seen clearly. Figure 4b proves that the 
fluid velocity decreases with Reynolds numbers in the case of divergent channels but increases with Reynold number in the case 
of convergent channels. The increasing nanofluid volume fraction in the case of divergent channels leads to a decrease in fluid 
velocity but in the case of convergent increases with nanofluid volume fraction as depicted in Figure 4c. 
Physically, the influence of the Reynolds number on the velocity distribution are owing to increased viscosity leading to fluid 
motion resistance at the boundary, thus momentum boundary layer increases. The nanofluid volume fraction effects on velocity 
and illustrates a gradual decrease in velocity profile as nanofluid volume fraction increases. As depicted in this plot, when  = 0 it 
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shows the transport of the fluid through the channel without nanofluid volume fraction. Nanofluid volume fraction effects on the 
fluid and reduces momentum boundary layer thickness due to the high energy exchange rate as fluid molecules move through 
the nonparallel channel. Channel opening angles effect on the divergent/convergent plate. To eliminate the occurrence of fluid 
backflow, relatively large open channel angles are utilized. The backflow occurrence is eliminated for the converging channel, but 
may occur in the diverging channel. High Reynolds number value in the presence of high magnetic field intensity eliminates 
backflow phenomenon occurrence. As depicted, quantitative increase in the channels angle illustrates a significant decrease in 
the velocity profile. Magnetic field influences flow which shows magnetic field intensity and depicts that fluid flow decreases 
through the nonparallel channel. As observed from the plot, absolute velocity reduces, this can be explained physically due to the 
presence of resistive forces at the boundary of the channel due to boundary layer thickness increase resulting in retarding force 
on the velocity field. 

  

Ha is varied 

  

Re is varied 

  

φ is varied 

Fig. 2. The behavior of the velocity f(η) for Al2O3. 
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Ha is varied 

  

Re is varied 

  

φ is varied 

Fig. 3. The behavior of the velocity f(η) for TiO2. 

7. Conclusion 

In this investigation, an analytical approach called NAM has been successfully applied to find the most accurate analytical 
solution for the velocity distributions of MHD Jeffery-Hamel problem with nanoparticles. The governing equations, continuity and 
momentum for this problem are reduced to an ordinary single third form by using a similarity transformation. Furthermore, the 
obtained solutions by proposed methods have been compared with the direct numerical solutions generated by RK ∼ 4. The 
following main points can be concluded from the present study: 

 New technique is a powerful approach for solving MHD Jeffery Hamel flow in high magnetic field with nanoparticles. It does 
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not need to any perturbation, linearization or small parameter versus Homotopy Perturbation Method (HPM) and Parameter 
Perturbation Method (PPM). Also, it does not need to determine the auxiliary parameter and auxiliary function versus 
Homotopy Analysis Method (HAM). 

 Increasing Reynolds numbers leads to reduce velocity and excluded backflow in convergent channel. 
 In greater angles, increasing Hartmann number will lead to no backflow increases. 
 The channel is divergent; increasing nanofluid volume fraction will lead to the fluid velocity decrease. As for the converged 

channel, it is opposite to the state of divergent channel and has little effect. 
  

  

Ha is varied 

  

Re is varied 

  

φ is varied 

Fig. 4. The behavior of the velocity f(η) for Cu. 
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