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Abstract. This work investigates the relations between the critical temperature of the thin FGM plates under various temperature 
distributions through the thickness resting on the Pasternak elastic foundation. Both rectangular and skew plates are 
investigated. The uniform, linear, and nonlinear temperature distributions through the plate’s thickness are considered. 
Formulations are derived based on the classical plate theory (CPT) considering the von Karman geometrical nonlinearity taking 
the physical neutral plane as the reference plane. The partial differential formulation is separated into two sets of ordinary 
differential equations using the extended Kantorovich method (EKM). The stability equations and boundary conditions terms are 
derived according to Trefftz criteria using the variational calculus expressed in an oblique coordinate system. Novel multi-scale 
plots are presented to show the linear relations between the critical temperatures under various temperature distributions. The 
critical temperature of plates with different materials are also found linearly related. Resulting relations should be a huge time 
saver in the analysis process, as by knowing one critical temperature of the one FGM plate under one temperature distribution 
many other critical temperatures of many other FGM plates under any temperature distributions can be obtained instantly. 

Keywords: Multi-term extended Kantorovich method; Classical plate theory; Thermal buckling; Functionally graded material; 
Pasternak elastic foundation. 

1. Introduction 

Back in 1972, an advanced inhomogeneous composite material that has its composition changes gradually between different 
phases through one or more dimension was theoretically proposed in [1, 2] as an effort to reduce or eliminate the stress 
concentration that occurs due to the sudden change in the material properties at the interfaces between different phases in the 
conventional composite materials [3]. That advanced inhomogeneous composite material is called the functionally graded 
material (FGM). In 1984, the concept of the FGM was implemented in the design of thermal resistant structures [4], as the first 
engineering application of FGM. Since then, many engineering components have been designed as FGM. Examples of FGM 
engineering applications and products are presented in [5-10]. When a FGM structure has a wide flat planar surface with 
relatively small thickness it can be reasonably modeled as a FGM plate. Due to the relative simplicity of the flat plate’s structure, 
many simplified two-dimensional theories were proposed to model the plates. Those plate theories provide accurate enough 
models while being much simpler to use than the general three-dimensional elasticity theory.  

While moderately thick and thick plates have a considerable effect of the transverse shear deformations [11, 12], and the very 
thin plates as micro- and nano-plates have a considerable scale effect [13-17], thin plates have negligible transverse shear 
deformations as well as negligible scale effect. This makes thin plates describable with the most simplified plate theory which is 
the classical plate theory (CPT), developed in 1881 [18]. Many engineering parts and structures are modeled as rectangular or skew 
plates [19], for example, the tail-fin and swept wings of airplanes [20] are modeled as skew plates. FGM face sheets attached to 
isotropic core material can be modeled as FGM plates resting on an elastic foundation [21]. The Pasternak model of the elastic 
foundation is widely used to describe the mechanical interactions between structure and foundation [22]. It treats the bond 
between the structure and the foundation as two elastic layers, the first has only out-of-plane extension stiffness (kn) and the 
second has only shear stiffness

 
(kp), as shown in Fig. 1. If only the first layer of normal stiffness is considered, the model reduces 

to the simpler Winkler model. 
Mainly, analysis of plates include dynamic [23, 24], and static analyses. The latter analyses include bending [25, 26] and 

buckling [27, 28] analysis. Selecting an analysis to conduct should be based on the application and conditions for which the plate 
is designed. In applications where a plate experiences thermal loads, thermal buckling should be one of the conducted analyses 
in the design process to obtain a correct prediction of the behavior of the plate. Thermal buckling of simply supported rectangular 
FGM plates not resting on an elastic foundation is solved analytically in [29, 30]. However, for the cases of skew FGM plates as well 
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as FGM plates resting on elastic foundation, there are only numerical solutions and no analytical ones are found in the literature. 
The commonly implemented numerical methods in the thermal buckling analysis of FGM plates are the element-free Galerkin’s 
solution (EFG) [31] and the finite element method (FEM) [32, 33]. Another method has gained increasingly interest in the field of 
computational mechanics is the extended Kantorovich method (EKM). EKM was first proposed by Kerr [34] to solve partial 
differential equations (PDE) by simplifying the problem to a set of ordinary differential equations (ODE), which are then solved 
iteratively starting from arbitrary trail functions. Singhatanadgid and Singhanart [35] presented a comprehensive review of the 
implementation of EKM in the analysis of plates. Just a few studies implemented EKM in the bending analysis of FGM skew plates 
resting on an elastic foundation. Those studies are [25, 36-39]. However, the only study found in the literature that implemented 
EKM to the buckling analysis of the skew plates is [27], in which buckling under mechanical loading was considered. 

Javaheri and Eslami [29] presented the relation between the critical uniform temperature and the critical rise of linearly 
changing temperature through the length of the rectangular FGM plate. To the best of the authors’ knowledge, the relations 
between the critical temperatures of FGM plates under various temperature distributions through the thickness have not been 
investigated yet. In addition, to the best of the authors’ knowledge the thermal buckling of skew FGM plates has not been 
investigated using EKM yet. Implementing EKM to investigate the thermal buckling of skew plates is presented here for the first 
time. This article aims to use EKM to obtain the numerical solution of the critical temperatures of thin skew plates resting on the 
Pasternak elastic foundation, and then investigate the relations between those critical temperatures.  

Formulations are derived based on the classical plate theory (CPT) considering the von Karman geometrical nonlinearity and 
taking the physical neutral plane as the reference plane. The stability equations and boundary conditions terms are derived 
according to Trefftz criteria of the minimum total potential energy using the variational calculus expressed in an oblique 
coordinate system. This derivation is different in concept than the ones shown in [27, 40-43] in which the stability equations are 
confused with the equilibrium equations, as they are obtained by equating the first variation of the total potential energy to zero, 
which is fundamentally wrong, as explained in [44]. This article illustrates in detail the correct derivation of the stability 
equations and the boundary conditions of the plates resting on elastic foundation using EKM. 

The previously published works on this topic, e.g., the recent book [45], investigate each of the critical temperatures 
individually. In other words, they intend to find the analytical or numerical solutions of the critical temperature of the FGM plate 
under each different temperature distribution separately. In this article, in addition to the derivation of the numerical solution 
method using EKM, further investigation of the linear relations between the critical temperatures is also presented. The relations 
between the critical temperatures of plates with different materials are also investigated. Resulting relations should be a huge 
time saver in the analysis process, as by knowing one critical temperature of the one FGM plate under one temperature 
distribution many other critical temperatures of many other FGM plates under any temperature distribution through the 
thickness can be obtained instantly. 

The article starts with the derivation of the separated stability equations and boundary conditions, and then the validation of 
the method by comparing the results with those found in the literature. Lastly, the linear relations between the critical 
temperatures are derived and discussed. 

2. Oblique Coordinate System and Transformations 

Considering the coordinate systems presented in Fig. 2, the transformation between the oblique (ξ - η) and the Cartesian (x - y) 
coordinate systems is governed by the skew angle φ  as 

1
cos sin

0

x s
c s

y c

ξ

η

     
     = = φ = φ          

 (1) 

As shown in [25, 27] the functions in the (x - y) coordinates can be transformed into the corresponding functions in the (ξ - η) 
coordinate system by using eq. (1). The considered oblique coordinate system is the one having each axis parallel to two opposite 
edges of the plate. 

3. Stability Equations and Boundary Conditions 

The stability equation and boundary conditions are derived here based on the minimum potential energy criterion, also 
known as Trefftz criterion [44], expressed as 

( )2 0peδ δ =  (2) 

 

Fig. 1. Schematic of FGM plate resting on the Pasternak elastic foundation 

 

Fig. 2. Coordinate systems convention and edge labeling 
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where 2
peδ  is the second variation of the potential energy evaluated at the equilibrium state prior to the buckling, i.e. ( )0peδ = . 

The total potential energy pe of a plate resting on the Pasternak elastic foundation is the summation of the potential energy of the 

plate pU and the potential energy of the elastic foundation pF . 

p p pe U F= +  (3) 

pU of a thin rectangular plate having dimension 2 2a b× and thickness h , is given as 

/2

/2

1
2 2 2

2

a b h

p xx xx yy yy zz zz xy xy xz xz yz yz

a b h

U dzdxdyσ σ σ γ τ γ τ γ τ

− − −

= + + + + +   ∫ ∫ ∫ ε ε ε  (4) 

where xxε , yyε , and zzε are the normal strains, and xyγ , yzγ , and xzγ are the shear strains in the stated directions. Normal stress 

components are xxσ , yyσ , and zzσ , and the shear stress components are xyτ , yzτ , and xzτ in the stated directions. To find those stress 

and strain components for a thin plate, the classical plate theory (CPT) is adopted. CPT states the following constitutive 
equations. 

( ) ( )0 , 0 ,x yw w u u z z w v v z z w= = − − = − −  (5) 

where u , v , and w are the displacements of any point of the plate in the directions x , y , and z , respectively. 0z is the offset 

between the midplane and the physical neutral plane through the thickness of the plate. u , v , and w  are the displacements of 
any point at the physical neutral plane. The physical neutral plane is the plane at which the resultant of the bending 

moment 0B vanishes [46]. The distance between the midplane ( )0z =  and the physical neutral plane ( )0z z=  is obtained from the 

following equation [46]. 

( ) ( )

/2

0 0

/2

0
h

z

h

B z z E dz
−

 = − =  ∫  (6) 

where ( )zE is Young’s elasticity modulus as a function of z. Note that if ( )zE is constant or symmetric about the midplane 

then 0z vanishes and the physical neutral plane will coincide with the midplane. The cross-section of a typical FGM plate is shown 

in Fig. 3. 
Considering the von Karman nonlinearities, strains are related to the displacements by the following equations. 

( ) ( )

( )

2

, , , , , ,

2

, ,

1 1

2 2
1

0
2

xx x x xy y x x y

yy y y xz yz zz

u w u v w w

v w

γ

γ γ

= + = + +

= + = = =

ε

ε ε

 (7) 

The subscripts after commas denote the partial derivatives in the stated directions. Stresses are related to the strains as follows. 

( )
( ) ( )( ) ( ) ( )( )( ) ( )

( )

( )
( ) ( )( ) ( ) ( )( )( )

2

2

1 2 1

0
1

z z

xx xx yy xy xyz z z z

z

yy yy xx xz yz zzz z z z

E E
T T

E
T T

σ α µ α τ γ
µ µ

σ α µ α τ τ σ
µ

= − ∆ + − ∆ =
− +

= − ∆ + − ∆ = = =
−

ε ε

ε ε

 (8) 

where µ is the Poisson’s ratio. ( )zα is the coefficient of thermal expansion. ( )zT∆ is the temperature increment from a reference 

state 0T , i.e. 

( ) ( ) 0z zT T T∆ = −  (9) 

The thermal load will produce stresses in the plate only if is partially or fully restrained from expansion/retraction. Equation (9). 

expresses the case of full restriction of thermal expansion/retraction of the plate. Lastly, the second component of ep
 
of eq. (3) is 

the potential energy of the Pasternak elastic foundation Fp , which consists of normal and shear stiffness (kn , kp), and given as 

( )2 2 2
, ,

1
( ) ( )

2

b a

p n p x y
b a

F k w k w w dxdy
− −

 
  = + +∫ ∫  (10) 



Fig. 3. Cross-section of a typical FGM plate having its material composition varying from ceramic at the top surface to metal at its bottom surface, 
and its physical neutral plane is at offset distance z0 from the mid-plane 
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Substituting the constitutive equations of eq. (5) in eq. (7) and then in eq. (8) reveals the stress and strain components in terms of 

u, v, and w and their derivatives. Substituting those stresses and strains in eq. (4) gives pU , which is then added to pF of eq. (10) to 

give pe of eq. (3) as a functional of ( ) ( ), ,,x y x yu v and ( ),x yw . 

( ) ( )( ) ( ) ( )( ) ( )( )
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∫ ∫
ɵ
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where D and A are integrals known as the bending and extension stiffness, respectively. θ and θ̂ are integrals contain ( )zT∆ . Those 

integrals are given as follows. 
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Note that the last group of terms in eq. (11) will vanish as they are all multiplied by 0B , which is zero by definition as shown in 

eq. (6). 2
peδ , the second variation of the total potential energy, is obtained as follows. 
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∫ ∫  (13) 

where uδ , vδ , wδ , ,xuδ , ,yuδ , ,xvδ , ,yvδ , ,xwδ , ,ywδ , ,xxwδ , ,yywδ , and ,xywδ  are the variational displacements and their derivatives. The 

equilibrium of the flat plate implies that no lateral displacement occurs before the buckling point. Therefore, the lateral 

displacement w terms and its derivatives in 2
peδ of eq. (13) vanish. Eliminating the w terms from 2

peδ  gives 2
peδ . Furthermore, 

note that after eliminating w and its derivatives the remaining terms multiplied by 2
,( )xwδ , 2

,( )xwδ  and , ,y xw wδ δ  contain nothing 

but the integrals of the equilibrium state stress component xxσ , yyσ and xyτ , respectively. Those integrals are called the resultant 

forces xxN , yyN , and xyN , and given eq. (14) by integrating the stress components of eq. (8) with minor rearrangement using the 

notation shown in eq. (12). 
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∫  (14) 

where TN is the resultant force from the thermal load. From eq. (13) with w  and its derivatives being eliminated, eq. (14), 2
peδ can 

be written as follows. 
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(15) 

In eq. (15), 2
peδ is written as a summation of two uncoupled integrals. The first integral, �2

peδ , is a functional of wδ only and 

contains neither uδ nor vδ terms, while the second integral, �2 peδ , is a functional of uδ and vδ only, and has no wδ terms. Therefore, 

a further variation of 2
peδ results in an uncoupled set of equations. In addition, �2 peδ contains the resultant force components, 

while the �2
peδ doesn’t. So, it is safe to drop �2 peδ  and only consider �2 peδ  while being sure that will not affect the resulting set of 

stability equations. 
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Fig. 4. Components of the resultant in-plane forces in the oblique coordinates (ξ - η) 

 

The next step is to transform all the terms of �2
peδ into the oblique coordinates using the transformation function shown in 

Section 2. Note that the resultant forces xxN , yyN ,  and xyN  are transformed to the oblique coordinates as illustrated by Wang and 

Yuan [47] and shown in eq. (16). 

( )22
1

x y xyN N sN s N N c N N N N
c

sξ ξη η η ξη η= + + = = +  (16) 

where Nξ and Nη are resultant the normal forces, and Nξη is the resultants shear force in the oblique coordinates, as shown in Fig. 

4.  
Then, solving eq. (16) for Nξ , Nη and Nξη in terms of the resultant thermal force TN that defined in eq. (14), gives the following. 

TT T sNN N
N N N

c c cξ η ξη

− −
= = =  (17) 

Substituting eq. (17) and eq. (16) in eq. (15) and then implementing the coordinates transformation as presented in [27] 

gives �2
peδ as functional of the function ( ),w

ξ η
δ , as 
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where 1R and 2R are constants given as 2 2
1 2 1and 1R s c R Rµ= + = − . The next step is to implement the EKM concept of 

expressing the unknown bivariate function ( ),w
ξ η

δ as the summation of t terms, each is a multiplication of univariate functions of 

different variables, as illustrated [25, 27]. 

( ) ( ) ( ),w f g f g
ξ η ξ η

δ = =  (19) 

The functional �2 peδ  becomes as follows. 
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From the definition of the temperature increment in eq. (9) along with eq. (14) and eq. (12), TN can be expressed as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )/2 /2
0

1 22

/2 /2

1 1
1 1

h h
z z zz z z

T

h h

E T TE T
N dz dz G G

αα
µ θ µ

µ µ
− −

 −∆  
= + = + = = − 

 − −
  

 
 
  
∫ ∫  (21) 

where 1G and 2G are the integrals given as follows. 

( ) ( ) ( ) ( ) ( )

/2 /2

1 2 0

/2 /2

1
ˆ ˆ ˆ

1

h h

z z z z z

h h

G E T dz G E T dzµ α µ α µ
µ

− −

   
    = −  = =∫ ∫  (22) 

Assuming the functions f  are all known, then the two-dimensional functional �
( )

2

,p f g
eδ in eq. (20) is reduced to a one-dimensional 

functional of the functions g . The stability equations are now obtainable by substituting �
( )

2
p g

eδ in the Trefftz criteria shown in 

eq. (23): 
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∫

 (23) 

where ( ),i jA are (t × t ) matrices, given by 

( ),

Ta ji

i j ji

a

d f d f
A d

d d
ξ

ξ ξ
−

      =         
∫  (24) 

Implementing the integration by parts on each integral contains derivatives of gδ gives 

�
( )( ) [ ] [ ] [ ]2

1 01 1 2 02 2 30
b b

T

b

p g T T g T gg
b

b b
e H H H d H H H Hδ δ δ η δ δ

+ +

− −
−

′= = + + + + + +∫  (25) 

where H ‘s are single-column matrices (t× 1), obtained as 
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 (26) 

where ( ),i jQ are (t × t ) matrices, given by 

( ) ( ) ( ), , ,i j i j j iQ A A= −  (27) 

Since �g is an arbitrary function, each of the three summed parts in eq. (25) has to vanish. Equating the integral part to zero 
produces t linear ordinary differential equations (ODE) that have to be satisfied through the interval (-b, +b), i.e. the governing 
system of equations. In order to obtain a nontrivial solution, the following governing equations have to be satisfied. 

1 1 01 0T TH H H+ + =  (28) 

Equating each of the latter two parts to zero produces two systems of equations, each has t linear ODE’s that have to be satisfied 
at the boundary points (-b and +b), i.e. the boundary conditions, given as 

2 02 2

3

either 0 or 0

and either 0 or 0
T Tg H H H

g H

= + + =
′ = =

 (29) 

To find the buckling factor λ of the thermal loads, the governing equations in eq. (28) are rewritten as a generalized eigenvalue 
problem as follows. 

1 01 1T TH H Hλ+ =−  (30) 

with the boundary conditions rewritten as 

2 02 2

3

either 0 or 0

and either 0 or 0
T Tg H H H

g H

λ= + + =
′ = =

 (31) 

Solving this generalized eigenvalue problem gives the buckling factor λ  as the first eigenvalue, and a set of t functions represents 

g . Each edge of the plate can be either clamped (C) having ( )0g g′= = , simply supported (S) having ( )3 0g H= = , or free (F) having 

( )2 02 2 3 0T TH H H Hλ+ + = = . The boundary conditions of a plate are described by stating the boundary condition of each edge in the 

counterclockwise direction, starting from the left edge, as shown in Fig. 2, in which the labeling sequence is written beside the 

edges. For example, (CSFC) means that edge: (ξ = -a) is clamped, edge: (η = -b) is simply supported, edge: (ξ = +a) is free and edge: (η 

= +b) is clamped.  
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Table 1. Material properties of the constituents of the Al /Al2O3 FGM 

Material E (GPa) µ α (/ 0C) K (W /m 0C) 

Aluminum ( Al ) 70 0.3 23.0 ×10-6 204.0 
Alumina ( Al2O3 ) 380 0.3 7.4 ×10-6 10.4 

4. FGM Properties 

The classical functionally graded material (FGM) used in the published studies on the plate’s thermal buckling is the 
aluminum/alumina (Al/Al2O3 ) FGM, as it is one of the common materials used to make thermal barriers [48]. The properties of its 
constituents are shown in Table 1. As assumed in the derivation of the stability equations, the properties of the plate vary in the 
thickness direction. The variation function is normally the simple power-law, as in [25, 26], but it can also be exponential as in 
[28], or any other continuous single function. It may be also modeled as a discrete function for the case of sandwich plate as in 
[24].  

A comprehensive review of the variation functions of the FGM plates considered in the thermo-mechanical buckling analysis 
is provided in [3]. The variation of properties used in this study is the simple power law. This variation of effective properties can 
be obtained by making the constituents of the FGM change by the desired function and assume that properties at any point are 
derived using the Voigt’s model. The effective properties are then given as follows. 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

2

2

n n n
m cm m cm m cmz z zz z z

cm c m cm c m cm c m

m cz z

E E E V V K K K V

E E E K K K

z h
V

h

α α α

α α α

µ µ µ

= + = + = +

= − = − = −

+
= = =

 (32) 

where the subscripts m and c are used to indicate the properties of the metallic constituent (Al ) and the ceramic constituent 
(Al2O3), respectively, as shown in Fig. 3. n is the gradient index. V(z) is the ceramic volume fraction. Kc and Km are the conductivity 
coefficients of the ceramic and metallic constituents, respectively. Note that, if (n = 0), then the plate becomes pure ceramic, else, 
if (n = ∞) the plate becomes pure metallic, otherwise, the plate is an FGM consisting of both the ceramic and metallic material. In 
the latter case, the material composition varies continuously through the thickness according to the given function from pure 
metallic at the bottom of the plate to pure ceramic at the top. 

5. Temperature Distribution 

The temperature distribution T(z) through the thickness is either uniform, linear, or nonlinear. The uniform and linear 
distributions of temperature are given by simple formulae as following. 

( )

( ) ( )

Uniform :

2
Linear :

2

m cz

m c mz

T T T

z h
T T T T

h

= =

 + = + −   

 (33) 

The nonlinear distribution is obtained by solving the heat conduction problem [49] shown in eq. (34). 

( ) 0z

d dT
K

dz dz

 −  =  
 (34) 

The solution of this ordinary differential equation is the nonlinear distribution of temperature given as follows [32, 50]. 

( ) ( )
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/2 /2

1 1
Nonlinear :

z h

m c mz

z zh h

T T T T dz dz
K K

− −

 
 
 

 
 = + −  
    

∫ ∫  (35) 

Conventionally, the thermal buckling problem is to find the critical uniform temperature cr
UT∆ in the case of the uniform 

temperature rise, otherwise, it is to find the critical difference between the two faces of the plate ( Tc - Tm ), notated 
as cr

LT∆ and cr
NT∆ for the cases of linearly and non-linearly distributed temperature, respectively. In the literature, the nonlinear T(z) 

is often approximated as a summation of a polynomial series as given by Javaheri and Eslami [29]. The more terms in the series 
the more accurate is the obtained temperature distribution. However, only the first seven terms are often included. The plot in 
Fig. 5 shows the nonlinear temperature distribution through the thickness of the Al /Al2O3 FGM plate having the properties shown 
in Table 1, gradient index n = 2, a metallic bottom at ( Tm 0C ), and a ceramic top at ( Tc 0C ). Note that using two terms gives the 
linear distribution of the temperature. The figure shows a significant difference in the temperature distribution between the 
seven-term approximate series solution and the more accurate converged one. The plot also shows that the polynomial series 
solution converges to the numerical integration solution shown in eq. (35).  
The relation between the number of terms in the polynomial series and the average error in temperature distribution through the 
thickness for various values of the gradient index n is presented by the semi-logarithmic plot in Fig. 6, which shows that as using 
more terms the approximate series solution converges. Note that the average error vanishes when (n = 0) or (n = ∞) as the material 
becomes pure ceramic or metallic, respectively, thus the temperature distribution becomes linear. The average percentage error 
plotted in Fig. 6 is calculated as follows. 

( ) ( ) ( )( )
/2 /2

/2 /2

Average percentage error 100% ˆ
h h

c mz z

h h

T dz T dz T T h
− −

     = × − −         
∫ ∫  (36) 

where ( )
ˆ

zT  is the integration solution shown in eq. (35). The temperature distribution through the thickness of an Al /Al2O3 FGM 

plate as a function of the gradient index n is shown by the equally spaced contours of the semi-logarithmic plot in Fig. 7. That is, 

the temperature difference is the same between each two consequent contour lines. The figure shows that very low values as well 

as very high values of n lead to a roughly linear distribution of the temperature. Clearly, the moderate values of n lead to a 

nonlinear variation of the temperature through the thickness. That is understandable as for the very low and very high values of n 

the material becomes almost homogeneous ceramic or metallic, respectively. 
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Fig. 5. Nonlinear temperature distribution through the thickness of the Al /Al2O3 FGM plate having n=2, with respect to the number of terms in the 
approximate series solution 

 
 

 

Fig. 6. Average percentage error of approximate temperature distribution through the thickness of the Al /Al2O3 FGM plate with respect to the 
number of terms in the approximate series solution and the gradient index n 

 

 

Fig. 7. Temperature distribution through the thickness of the Al /Al2O3 FGM plate as a function of the gradient index n. (The contour lines are equally 
spaced) 

6. ANSYS Finite Element Model 

In addition to the analytical and numerical solutions found in the literature, EKM results are also compared to those obtained 
using the finite element method (FEM). FEM is implemented using ANSYS Mechanical APDL software. The finite element models 
of the FGM plate and the elastic foundation are as described in [25, 27, 51].  

The plate model is meshed as 100 elements per edge, which is found fine enough to obtain the converged results. The 
variation of the properties through the thickness of the FGM material is modeled by considering the plate as a lamina, in which 
each laminate has its properties as a function of its position through the thickness. It is found that using 80 layers is well enough 
to obtain the converged result while being reasonably practical in terms of computational times. 
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Table 2. Critical uniform temperature rise of square SSSS Al /Al2O3 FGM thin plate (a / h = 100) with respect to n 

Method Plate model 
Gradient index n 

0 0.5 1 2 5 10 
EKM CPT 17.0991 9.6879 7.9438 7.0426 7.2657 7.4692 

Galerkin [29] CPT 17.0991 9.6879 7.9438 7.0426 7.2657 7.4692 
IGA [52] FSDT 17.0946 9.6942 7.9557 7.0382 7.2555 - 

ANSYS (FEM) FSDT 17.0895 9.6831 7.9401 7.0402 7.2715 7.4753 
Galerkin [30] HSDT 17.0895 9.6831 7.940 7.0390 7.2607 7.4634 

Table 3. Critical uniform temperature rise of square SSSS Al /Al2O3 FGM moderately thick plate (a / h = 50) with respect to n 

Method Plate model 
Gradient index n 

0 0.5 1 2 5 10 
EKM CPT 68.3962 38.7515 31.7751 28.1704 29.0628 29.8771 

Galerkin [29] CPT 68.3964 38.7516 31.7751 28.1704 29.0629 29.8771 
IGA [52] FSDT 68.2429 38.7481 31.7874 29.1780 29.0875 - 

ANSYS (FEM) FSDT 68.2425 38.6749 31.7151 28.1170 29.0240 29.8304 
Galerkin [30] HSDT 68.2425 38.6751 31.7149 28.1131 28.9821 29.7837 

Table 4. Critical uniform temperature rise of square CCCC Al /Al2O3 FGM thin plate (a / h = 100) with respect to n 

Method Plate model 
Gradient index n 

0 0.5 1 2 5 
EKM CPT 45.24 25.67 21.06 18.50 19.25 

Galerkin-power series [53] CPT 45.51 25.79 21.15 18.75 19.34 
Element-free [54] FSDT 44.17 24.90 20.77 18.48 19.15 

FEM [32] FSDT 47.50 26.54 21.70 19.18 19.70 
Galerkin [45] HSDT 45.28 25.65 21.04 18.65 19.23 
ANSYS (FEM) FSDT 45.26 25.52 21.01 18.70 19.35 

Table 5. Critical uniform temperature rise of square CCCC Al /Al2O3 FGM moderately thick plate (a / h = 50) with respect to n 

Method Plate model 
Gradient index n 

0 0.5 1 2 5 
EKM CPT 181.757 102.979 84.440 74.860 77.232 

Galerkin-power series [53] CPT 182.06 103.15 84.58 74.99 77.36 
Element-free [54] FSDT 175.82 99.16 82.35 71.01 74.59 

FEM [32] FSDT 188.28 105.27 86.07 76.07 78.06 
Galerkin [45] HSDT 180.30 102.23 83.84 74.30 76.50 
ANSYS (FEM) FSDT 180.13 101.63 83.68 74.43 76.88 

7. Validation of the Method 

The derived stability equations are validated by comparing the results with the analytical and numerical solutions found in 
the literature in addition to the FEM solutions of ANSYS using the model described in Section 6. All the results in this study are 
obtained considering the material as Al /Al2O3 FGM that is described in Section 4. Note that a large enough number of EKM terms t 
are used in obtaining the converged results presented here. The convergence study of the method with respect to the number of 
terms t is the exact same as the one presented in [27]. 

7.1 Uniform temperature rise 

The buckling analysis of a square thin and a moderately thick FGM plate under uniform temperature rise is conducted first, 
then the buckling analysis of a thin plate with different values of the aspect ratio, and lastly, the buckling analysis of skew thin 
SSSS FGM. For the first case of square FGM thin (a / h = 100) and moderately thick (a / h = 50) plates, both simply supported SSSS 
and clamped CCCC FGM are considered. The results are compared with solutions of other methods found in the literature. In 
Tables (2 and 3), EKM results of the critical uniform temperature for thin and moderately thick SSSS FGM plates are compared 
with ANSYS (FEM), isogeometric analysis (IGA) [52] and Galerkin method [29, 30].  

Note that those solutions are based on different plate theories. For instance, the FEM solutions of ANSYS and the IGA 
solutions at [52] are based on the first-order shear deformation theory (FSDT), while the Galerkin solutions at [29] are based on 
the classical plate theory (CPT) and the Galerkin solutions at [30] are based on the higher-order shear deformation theory (HSDT). 
The same comparison is conducted for the case of the SSSS FGM plates and presented in Tables (4 and 5). The second considered 
case is the rectangular SSSS Al /Al2O3 thin FGM plates with different values of aspect ratio ( b / a ) under uniform temperature rise. 
EKM results are compared to others in Table 6. In both cases, EKM is found to be very accurate in obtaining the critical 
temperatures of rectangular FGM plates under uniform temperature rise. Table 7 shows the good accuracy of EKM in finding the 
critical temperatures for skew plates as well. A more detailed investigation of the accuracy and convergence of the EKM with 
respect to the skew angle of the plate and the number of EKM terms i can be found in [27]. In all of the cases, EKM is found to be 
very accurate in obtaining the critical temperatures of FGM plates under uniform temperature rise. 

7.2 Linear temperature rise 

The buckling under linearly distributed temperature through the thickness of a square SSSS FGM plates with different values 
of the length-to-thickness ratio is conducted first, then the buckling analysis of thin SSSS FGM plates with different values of the 
aspect ratio, and lastly, the buckling analysis of skew thin SSSS FGM. Tables (8 and 9) show the EKM results compared to other 
solutions for different values of the length-to-thickness ratio ( a / h ) and aspect ratio ( b / a ), respectively.  

Note that the results shown in Table 9 are obtained considering Tm being zero. Table 10 is listing the critical temperature rise 
for the thin skew FGM plate having a = b, under linearly distributed temperature, obtained using EKM, and compared to the 
element-free Galerkin’s solution (EFG) of [31] and the FEM solutions of ANSYS. In Table 9, the results assigned to the references 
[29] and [30] are obtained using their presented solution equations with Tm = 0, which are numerically different from those listed 
there, i.e. in [29] and [30], where Tm = 5 is considered. Also, note that the results in Tables (9 and 10) are obtained considering Tm = 
5. In all of the considered cases, EKM shows high accuracy in obtaining the critical temperatures of rectangular FGM plates under 
linearly distributed temperature. 
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Table 6. Critical uniform temperature rise of the SSSS Al /Al2O3 FGM thin plate with respect to n and b / a 

n Method Plate model 
Aspect ratio b / a 

2 3 4 5 

0 

EKM CPT 42.7478 85.4956 145.3423 222.2884 
Galerkin [29] CPT 42.7478 85.4955 145.3424 222.2884 
ANSYS (FEM) FSDT 42.7327 85.46876 145.2989 222.2232 
Galerkin [30] HSDT 42.6876 85.2551 144.6490 220.6706 

1 

EKM CPT 19.8594 39.7189 67.5221 103.2690 
Galerkin [29] CPT 19.8594 39.7189 67.5221 103.2690 
ANSYS (FEM) FSDT 19.8538 39.7090 67.5061 103.2452 
Galerkin [30] HSDT 19.8359 39.6248 67.2507 102.6356 

5 

EKM CPT 18.1643 36.3286 61.7586 94.4543 
Galerkin [29] CPT 18.1643 36.3286 61.7586 94.4543 
ANSYS (FEM) FSDT 18.1839 36.3700 61.8304 94.5651 
Galerkin [30] HSDT 18.1327 36.2025 61.3952 93.6070 

10 

EKM CPT 18.6732 37.3464 63.4888 97.1005 
Galerkin [29] CPT 18.6732 37.3464 63.4888 97.1006 
ANSYS (FEM) FSDT 18.6942 37.3910 63.5663 97.2202 
Galerkin [30] HSDT 18.6367 37.2006 63.0687 96.1214 

Table 7. Critical uniform temperature rise of skew SSSS Al /Al2O3 thin FGM with respect to n and φ  

n Method Plate model 
Skew angle φ  

00 150 300 450 

1 
EKM CPT 7.9438 8.4069 10.1355 14.1530 

ANSYS (FEM) FSDT 7.9171 8.3693 9.9972 14.1049 

5 
EKM CPT 7.2657 7.6897 9.1713 12.9205 

ANSYS (FEM) FSDT 7.3044 7.7213 9.2199 12.9890 

Table 8. Critical rise of linearly changing temperature across the thickness of SSSS Al /Al2O3 FGM square, with respect to n and a/h. (Tm = 0) 

n Method Plate model 
a / h 

10 25 50 100 

0 

EKM CPT 3419.8214 547.1714 136.7929 34.1982 
Galerkin [29] CPT 3419.8213 547.1714 136.7929 34.1982 
ANSYS (FEM) FSDT 3237.2481 542.2781 136.4850 34.1789 
Galerkin [30] HSDT 3237.3638 542.27861 136.4850 34.1789 

1 

EKM CPT 1489.8277 238.3724 59.5931 14.8983 
Galerkin [29] CPT 1489.8277 238.3724 59.5931 14.8983 
ANSYS (FEM) FSDT 1421.1020 236.3848 59.4326 14.8793 
Galerkin [30] HSDT 1422.3454 236.5755 59.4802 14.8912 

5 

EKM CPT 1250.6418 200.1027 50.0257 12.5064 
Galerkin [29] CPT 1250.6418 200.1027 50.0257 12.5064 
ANSYS (FEM) FSDT 1173.6360 198.9088 50.1517 12.5648 
Galerkin [30] HSDT 1169.2917 197.8980 49.8867 12.4977 

10 

EKM CPT 1323.6032 211.7765 52.9441 13.2360 
Galerkin [29] CPT 1323.6032 211.7765 52.9441 13.2360 
ANSYS (FEM) FSDT 1238.3031 211.1854 53.2981 13.3563 
Galerkin [30] HSDT 1227.4996 209.1543 52.7787 13.2257 

Table 9. Critical rise of linearly changing temperature across the thickness of SSSS Al /Al2O3 FGM thin plate, with respect to n and b/a. (Tm = 5) 

n Method Plate model 
b / a 

1 2 3 4 5 

0 
EKM CPT 24.198 75.496 160.991 280.685 434.577 

Galerkin [29] CPT 24.198 75.495 160.991 280.684 434.576 
Galerkin [30] HSDT 24.177 75.376 160.505 279.297 431.334 

1 
EKM CPT 5.521 27.868 65.114 117.258 184.300 

Galerkin [29] CPT 5.520 27.868 65.114 117.258 184.300 
Galerkin [30] HSDT 5.513 27.823 64.936 116.748 183.110 

5 
EKM CPT 3.900 22.660 53.926 97.698 153.977 

Galerkin [29] CPT 3.899 22.659 53.925 97.698 153.977 
Galerkin [30] HSDT 3.891 22.604 53.710 97.073 152.516 

10 
EKM CPT 4.376 24.230 57.320 103.646 163.208 

Galerkin [29] CPT 4.375 24.229 57.319 103.646 163.208 
Galerkin [30] HSDT 4.364 24.165 57.061 102.901 161.471 

Table 10. Critical rise of linearly changing temperature across the thickness
 
of skew SSSS Al /Al2O3 FGM plate, with respect to n, a/b, and φ .(Tm=5) 

a / b φ  
n 

1 5 
EKM (CPT) EFG [31] (CPT) FEM (FSDT) EKM (CPT) EFG [31] (CPT) FEM (FSDT) 

1 

0o 5.5209 5.5199 5.5207 3.8999 3.8991 3.8987 
15o 6.3806 6.3133 6.4022 4.6252 4.5651 4.6385 
30o 9.5001 9.2260 9.7737 7.3198 7.6308 7.4681 
45o 17.6795 17.9718 19.0164 14.0963 14.3519 15.2242 

2 

0o 27.8683 27.8812 - 22.6594 22.6704 - 
15o 30.2000 30.1040 - 24.6168 24.5363 - 
30o 38.7561 38.2188 - 31.8156 31.7856 - 
45o 60.6512 60.4732 - 50.2507 50.0298 - 

 

7.3 Nonlinearly distributed temperature 

The buckling under nonlinearly distributed temperature through the thickness of a square SSSS FGM plates with different 
values of the length-to-thickness ratio is conducted first, then the buckling analysis of thin SSSS FGM plates with different values 
of the aspect ratio, and lastly, the buckling analysis of skew thin SSSS FGM. Tables (11 and 12) show the EKM results compared to 
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other solutions for different values of the length-to-thickness ratio (a / h) and aspect ratio (b / a), respectively. Table 13 is listing 
the critical temperature difference for the thin skew FGM plate having a = b, under nonlinearly distributed temperature, obtained 
using EKM, and compared to the element-free Galerkin’s solution (EFG) of [31] and the FEM solutions of ANSYS. Note that the 
results shown in Tables (11 and 12) are obtained considering Tm = 5. Both the converged and the seven-term polynomial series 
solutions of the nonlinear distribution of the temperature through the thickness are considered. Both Table 11 and Table 12 show 
the significant difference in the resulting buckling temperature between the two cases. In all the considered cases, EKM shows 
high accuracy in obtaining the critical temperatures of rectangular FGM plates under nonlinearly distributed temperature. 

8. Relations between the Critical Temperatures 

The numerical results obtained below are all for a thin fully simply supported Al /Al2O3 FGM plate, width b = 1m, and length-
to-thickness ratio a/h = 100, resting on the Pasternak elastic foundation. Conventionally, the stiffness of the elastic foundation is 
expressed in a non-dimensional form as 

24
* *

100 100
pn

n p

k ak a
k k

D D
= =  (37) 

where a is the half of the length of the plate. kn is the out-of-plane extension stiffness coefficient in the units of the load over the 

unit area for the unit lateral deflection of that area (N/m2/m), kp is the shear stiffness coefficient in the units of the load over unit 

in-plane shearing (N/m), kn
* and kp

* are the non-dimensional forms of kn and kp, respectively. In this section, only fully supported 

plates are considered. However, the same relations must be true for the cases of clamped plates and plates with any 

combinations of simply supported and clamped edges. Fig. 8 shows the thermal buckling of the plate under uniform temperature 

rise ( cr
UT∆ ), linear ( cr

LT∆ ) and nonlinear ( cr
NT∆ ) temperature change across the thickness, with respect to the aspect ratio a/b for 

different values of the parameters of Pasternak elastic foundation kn
*, kp

*.  

Table 11. Critical rise of nonlinearly changing temperature across the thickness
 
of SSSS Al /Al2O3 FGM square plate, with respect to n and a/h. (Tm = 5) 

n Method Terms in T( z ) Plate model 
a / h 

10 20 40 60 80 100 

0 

EKM 100 CPT 3409.821 844.955 203.739 84.995 43.435 24.198 
EKM 7 CPT 3409.821 844.955 203.739 84.995 43.435 24.198 

Galerkin [29] 7 CPT 3409.821 844.955 203.738 84.995 43.434 24.198 
Galerkin [30] 7 HSDT 3224.968 833.032 202.984 84.848 43.387 24.177 

1 

EKM 100 CPT 2633.408 645.842 148.950 56.933 24.727 9.821 
EKM 7 CPT 2055.001 503.988 116.235 44.428 19.296 7.664 

Galerkin [29] 7 CPT 2055.001 503.987 116.234 44.428 19.296 7.663 
Galerkin [30] 7 HSDT 1960.018 497.903 115.849 44.352 19.270 7.652 

5 

EKM 100 CPT 1749.960 428.396 98.004 36.821 15.407 5.495 
EKM 7 CPT 1553.336 380.261 86.993 32.684 13.675 4.877 

Galerkin [29] 7 CPT 1553.336 380.261 86.999 32.683 13.675 4.877 

Galerkin [30] 7 HSDT 1450.769 373.557 86.568 32.600 13.648 4.866 

10 

EKM 100 CPT 1633.873 400.210 91.794 34.680 14.690 5.438 
EKM 7 CPT 1519.568 372.211 85.372 32.254 13.663 5.057 

Galerkin [29] 7 CPT 1519.568 372.211 85.372 32.254 13.662 5.057 
Galerkin [30] 7 HSDT 1408.132 364.857 84.905 32.162 13.634 5.044 

Table 12. Critical rise of nonlinearly changing temperature across the thickness
 
of SSSS Al /Al2O3 FGM thin plate, with respect to n and b/a. (Tm = 5) 

n Method Terms in T( z ) Plate model 
b / a 

1 2 3 4 5 

0 

EKM 100 CPT 24.198 75.496 160.991 280.685 434.577 
EKM 7 CPT 24.198 75.496 160.991 280.685 434.577 

Galerkin [29] 7 CPT 24.198 75.495 160.991 280.684 434.576 
Galerkin [30] 7 HSDT 24.177 75.376 160.505 279.297 431.334 

1 

EKM 100 CPT 9.821 49.572 115.824 208.577 327.831 
EKM 7 CPT 7.664 38.684 90.384 162.765 255.826 

Galerkin [29] 7 CPT 7.663 38.683 90.384 162.764 255.825 
Galerkin [30] 7 HSDT 7.652 38.622 90.138 162.057 254.174 

5 

EKM 100 CPT 5.495 31.926 75.978 137.651 216.945 
EKM 7 CPT 4.877 28.339 67.441 122.185 192.569 

Galerkin [29] 7 CPT 4.877 28.338 67.441 122.184 192.569 
Galerkin [30] 7 HSDT 4.866 28.270 67.172 121.403 190.743 

10 

EKM 100 CPT 5.438 30.111 71.233 128.804 202.824 
EKM 7 CPT 5.057 28.005 66.250 119.793 188.634 

Galerkin [29] 7 CPT 5.057 28.004 66.249 119.793 188.634 
Galerkin [30] 7 HSDT 5.044 27.929 65.951 118.932 186.627 

Table 13. Critical rise of nonlinearly changing temperature across the thickness
 
of skew SSSS Al /Al2O3 FGM thin plate, with respect to n, a/b, and φ . 

(Tm = 5) 

a / b φ  
n 

1 5 
EKM (CPT) EFG [31] (CPT) FEM (FSDT) EKM (CPT) EFG [31] (CPT) FEM (FSDT) 

1 

0o 7.6636 7.6621 7.6632 4.8774 4.8763 4.8758 
15o 8.8903 8.7634 8.8869 5.7865 5.7093 5.8011 
30o 13.1818 12.8065 13.5668 10.0054 9.5433 9.3399 
45o 24.5723 24.9465 26.3965 17.6529 17.9490 19.0400 

2 

0o 38.6838 38.7017 38.6525 28.3389 28.3524 28.3067 
15o 41.9188 41.7871 41.9254 30.7883 30.6860 30.7810 
30o 53.7081 53.0512 54.0838 39.6498 39.7522 39.9718 
45o 85.2902 83.9423 85.5235 62.7607 62.5692 63.7321 
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Fig. 8. Critical temperature rise of thin rectangular SSSS Al /Al2O3 FGM plate having n = 1, b = 1m, and a/h=100 under various temperature 
distributions across the thickness, with respect to a/b, Tm, kn

*, and kp
* 

Note that Tm = 0 0C and Tm = 5 0C are both used in each of the cases of linear and nonlinear temperature distributions. It is found 

that the results of the three cases of different temperature distributions produce the exact same plot but with different scales. It 

is also notable that the results in the cases of Tm = 0 0C and the corresponding ones of Tm = 5 0C are linearly related by a just an 

offset. The zero values of the critical temperature rise in Fig. 8 for the cases of the linear and nonlinear temperature distributions 

indicate that the uniform part Tm of the thermal load is just enough by its own to cause the buckling. These linear relations 

between the buckling temperatures of the FGM plate under various types of temperature distribution can be reasoned as follows. 

The only term that is derived from the temperature distribution is the force resultant of the thermal load NT. So, the critical 

temperature is the one that produces the critical thermal force resultant cr
TN . In the case of uniform temperature rise, shown in 

eq. (33), the temperature distribution becomes a constant (T( z ) = Tm ). Substituting the buckling uniform temperature cr
UT∆ in 

eq. (21) gives cr
TN . 

( ) ( ) ( ) ( )

/2 /2

/

1

2 /2

ˆ ˆcr cr cr cr
T U U Uz z z z

h h

h h

N E T dz T E dz T Cµ α µ α

− −
∆ = ∆ =∆   =      ∫ ∫  (38) 

where µ̂ is as defined in eq. (22). When the temperature is linearly distributed through the thickness, as shown in eq. (33), the 

critical temperature difference cr
LT∆ between the ceramic and metallic surfaces ( Tc - Tm ) is obtained by substituting cr

LT∆ in eq. (33) 

and then in eq. (21) gives 

( ) ( )
2

2 1

/2

/

1
ˆ

2

h
ccr cr r

T m L L mz z

h

z
N E T T dz T C T C

h
µ α

−

    +∆ + =∆ +   
 
 =      
∫  (39) 

Comparing eq. (38) with eq. (39) gives 

( )1

2

cr cr
L U m

C
T T T

C
∆ = ∆ −  (40) 

where 1C  and 2C  are constants given as 

( ) ( ) ( ) ( )

/2 /2

/2

1

2

2

/

1
ˆ ˆ

2z z z z

h h

h h

z
C E dz C E dz

h
µ α µ α

− −

 = = +   
         

∫ ∫  (41) 

In the case of nonlinear temperature distribution, shown in eq. (21), the critical temperature difference cr
NT∆ between the ceramic 

and metallic surfaces ( Tc - Tm ) is obtained from eq. (21) as 

( ) ( )
( )

/2

/2

ˆ
v
zcr cr

T m Nz z c

h

h

K
N E T T dz

K
µ α

−

  = +∆  

 
 
 
  

 
∫  (42) 

Comparing eq. (38) with eq. (42) gives 

( )1

3

c
cr cr
N U m

K C
T T T

C
∆ = ∆ −  (43) 

where the function ( )
v
zK and the constants cK and 3C are given as 
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( )
( )

( )
( ) ( ) ( )

/2 /2

3

/2 /2 /2

1 1
ˆ

h z h

c v v
z z z z

z zh h h

K dz K dz C E K dz
K K

− − −

   
     = = =            

∫ ∫ ∫ µ α  (44) 

By using the derived relations in eq. (40) and eq. (43), the critical temperature of the same FGM plate under any temperature 

distribution can be obtained from any given one. eq. (40) can be further simplified by substituting the assumed variation of 

properties, then becomes as follows. 

( ) ( )1 2 12
2

2 1

cm m m cm cm cm
m m

cr cr
L U m

cm m m cm cm cm
m m

E E E
E

n nT T T
E E E

E
n n

α α α
α

α α α
α

 +  + +  + + ∆ = ∆ − +   + +   + +

 (45) 

This simplification could not be implemented to the nonlinear temperature distribution of eq. (43), because no simple analytical 

solutions are found for the integrals 3C and cK . 

The same linear relations are also noticed when using any other material gradient index n. To show this the same analysis is 

conducted for the Al /Al2O3 FGM plate but with different material gradient index, n = 2. From the results in Fig. 9, it is found that 

the exact plot also results, but again in different linear scales. So the linear transformations shown in eq. (45) and eq. (43) are valid 

for any value of the material gradient index n.  

The same analysis is again conducted for the thin Al /Al2O3 FGM plate having n = 1, but with skew angle  = 300. The results in 

Fig. 10 show that the critical temperatures are also linearly related for the skew FGM plates, as it is found that the exact plot also 

results, but again in different linear scales. The linear transformations in eq. (45) and eq. (43) are also valid for the skew thin FGM 

plates.  

In addition, when comparing the critical temperatures of the two thin Al /Al2O3 FGM plates having different material gradient 

indices n in Fig. 8 and Fig. 9 it can be easily noticed that the critical temperatures of the two cases are also linearly related. That is 

also noted for the case of the thin FGM skew plate, shown in Fig. 10 and Fig. 11. The relation between the two cases of each FGM 

plate geometry can be derived from the stability equation eq. (30) by factoring out D and G1, given that G2 vanishes since T0 is 

considered zero. For the case of uniform thermal load, the relation between the critical uniform temperatures
1

cr
UT∆ of a particular 

thin FGM plate can be obtained from the critical uniform temperature rise
2

cr
UT∆ of any other plate with the same dimensions and 

boundary conditions but different materials using the equation below. 

1 2

1 2

1 2

uT uTcr cr
U U

N N
T T

D D
∆ = ∆  (46) 

where the numeric subscripts “1” and “2” indicate the first and second FGM plates. uTN is the resultant force from unit 

temperature rise, i.e. 

( ) ( )

/2

/2

ˆ
h

uT z z

h

N E dzµ α

−

 =   ∫  (47) 

By using the linear transformations in eq. (45), eq. (43), and eq. (46), with only one known critical temperature of a particular FGM 

plate, all other critical temperatures can be obtained not only for that particular FGM plate but also for any other plate with the 

same dimensions and boundary conditions. The relations of the critical temperatures to the two parameters of the Pasternak 

elastic foundation are investigated. For the rectangular thin FGM plates, Fig. 8 and Fig. 9 show that regardless of the material of 

the plate, the shear stiffness kp linearly scales the critical temperatures. From the stability equations, for two thin plates of the 

same materials resting on the Pasternak elastic foundation with different shear stiffness kp the critical uniform temperatures are 

related by the following equation. 

1 1 1 2 2 2

cr cr
uT U p uT U pN T k N T k∆ − = ∆ −  (48) 

For the case of the skew plates, Fig. 10 and Fig. 11 show that kp does not linearly scale the critical temperatures anymore. 

Since this work is focusing only on the linear relations, the effect of kp, in this case, is not further investigated. In both Fig. 10 and 

Fig. 11, the effect of the normal stiffness kn of the Pasternak elastic foundation is found linear and decreasing as the aspect ratio 

a/b increases. Although kn has a linear effect on the critical temperatures, it is found that there is no simple way to formulate this 

relation. It is found that the effect of the elastic foundations on the critical temperatures of a skew FGM plate is not easily 

described by linear relations. However, the linear relations between the different cases of temperature distributions are still the 

same as those for the rectangular plate, which are shown in eq. (40) and eq. (43). 

In addition, comparing Fig. 10 with Fig. 11 shows the linear relation between the critical temperatures of different FGM skew 

plates having the same dimensions, boundary conditions and skew angle under the same temperature distributions. This linear 

relation is the same as the one of the rectangular plates shown in eq. (46). 

One last important linear relation to mention is the effect of the square of the length-to-thickness ratio a/h on the critical 

temperature under various temperature distribution. As Table 8 shows, the square of the length-to-thickness ratio scales the 

critical temperatures by simple multiplication, given that Tm = 0. For two thin plates having the same material, boundary 

conditions, and aspect ratio a/b but different length-to-thickness ratio a/h with Tm = 0, the critical temperatures of them are 

related as follows. 
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Fig. 9. Critical temperature rise of thin rectangular SSSS Al /Al2O3 FGM plate having n = 2, b = 1m, and a/h=100 under various temperature 
distributions across the thickness, with respect to a/b, Tm, kn

*, and kp
* 

 

Fig. 10. Critical temperature rise of thin skew SSSS Al /Al2O3 FGM plate having n = 1, b = 1m, φ  = 300, and a/h=100 under various temperature 

distributions across the thickness, with respect to a/b, Tm, kn
*, and kp

* 

 

Fig. 11. Critical temperature rise of thin skew SSSS Al /Al2O3 FGM plate having n = 2, b = 1m, φ  = 300, and a/h=100 under various temperature 

distributions across the thickness, with respect to a/b, Tm, kn
*, and kp

* 



 Ahmed Hassan et. al., Vol. 6, No. SI, 2020 
 

Journal of Applied and Computational Mechanics, Vol. 6, No. SI, (2020), 1404-1419   

1418

( ) ( )2 2

1 22 21 1/ /cr crT a h T a h∆ = ∆  (49) 

Caution must be taken when implementing eq. (49) by considering only thin plates, i.e. larger values of the length-to-thickness 
ratio a/h, as the derived formulae are all based on the classical plate theory. 

9. Conclusion 

The relations between the critical temperatures of the thin FGM plates under various temperature distributions through the 
thickness of FGM plate resting on the Pasternak elastic foundation have been investigated. Both rectangular and skew plates are 
considered. Formulations are derived based on the classical plate theory (CPT) considering the von Karman nonlinearities and 
taking the physical neutral plane as the reference plane. By using the multi-term extended Kantorovich method (EKM) the 
stability equations and boundary conditions terms are derived according to Trefftz criteria of the minimum total potential energy 
using the variational calculus expressed in an oblique coordinate system. The nonlinearly distributed temperature is obtained by 
solving the heat conduction problem. The obtained formulations are validated by comparison with the analytical and numerical 
solutions found in the literature, and to the finite element solutions obtained using ANSYS software. Novel multi-scale plots are 
used to illustrate the linear relations between critical temperatures under various temperature distributions. It is found that the 
critical temperatures of a particular thin FGM plate under uniformly, linearly, and nonlinearly distributed temperature through 
the thickness are all linearly related. In addition, the critical temperatures of thin FGM plates of different materials but having the 
same dimensions and boundary conditions are found also linearly related. These are found true for the skew FGM plates as well. 
The shear stiffness of the Pasternak foundation is found to linearly scale the critical temperature of the thin rectangular FGM 
plate, but not the skew ones. The normal stiffness of the Pasternak foundation is found to linearly scale the critical temperature 
of both the thin rectangular and skew FGM plates, but its effect decreases as the aspect ratio increases. Lastly, the squared length-
to-thickness ratio is also found to linearly scale the critical temperatures of the thin FGM plate. It can be concluded that, by 
knowing one critical temperature for a thin FGM plate under specific temperature distribution, all other critical temperatures not 
only for this particular plate but also for any other thin FGM plate of different materials with the same in-plane dimensions and 
boundary conditions can be obtained by the derived simple linear relations. One benefit of these linear relations derived here is 
the speed it provides, which can be crucial in the optimization studies. The following investigations may be on the relations 
between the critical temperatures of thick plates based on higher-shear deformation theories. 
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