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Abstract. The current manuscript is concerned with extracting an analytical approximate periodic solution of a damped cubic 
nonlinear Klein-Gordon equation. The Riemann-Liouville fractional calculus is utilized to obtain an analytic approximate solution. 
The Homotopy technique is absorbed in the multiple time-spatial scales. The approved scheme yields a generalization of the 
Homotopy equation; whereas, two different small parameters are adapted. The first parameter concerns with the temporal 
perturbation, simultaneously, the second one is accompanied by the spatial one. Therefore, the analytic approximate solution 
needs the two perturbation expansions. This approach conducts more advantages in handling the classical multiple scales 
method. Furthermore, the initial conditions are included throughout the multiple scale method to achieve a special solution of 
the governing equation of motion. The analysis ends up deriving two first-order equations within the extended variables and 
their actual solution is achieved. The procedure adopted here is very promising and powerful in managing similar numerous 
nonlinear problems arising in physics and engineering. Furthermore, the linearized stability of the corresponding ordinary 
Duffing differential equation is analyzed. Additionally, some phase portraits are shown. 

Keywords: Klein-Gordon Wave Equation; Fractional Calculus; Homotopy Perturbation Method; Multiple-Scales Method; Stability 
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1. Introduction 

As well-known, there exists a class of relativistic part of the Schrödinger equation that may be described by the Klein–Gordon 
equation. Therefore, this equation plays an important role in wide branches of different physical potentials. The study of the 
identification problems of the system parameters is vague and very vital in the analysis of systems, for instance, see Refs. [1-3]. In 
the case of the unknown diffusion parameter, they proved the existence of the optimal parameter and deduced the necessary 
conditions of this parameter. The maximum principles of the optimal control problems, governed by a damped Klein–Gordon 
equation with state constraints, were examined by Parka and Jeong [4]. Lin and Cui [5] discussed a damped nonlinear Klein-
Gordon equation by considering a kernel space. They provided a new technique in solving this equation, simultaneously, to 
confirm the feasibility and accuracy of the method. Khalid et al. [6] presented a good approach to solve linear/nonlinear Klein-
Gordon equations. This algorithm is based on a coupling of the Laplace transforms and perturbation iteration method. They 
showed that their technique led to a rapidly convergent series. El-Dib [7] introduced the multiple-scale Homotopy technique (He-
multiple-scale method) as an outer perturbation of the nonlinear Klein–Gordon equation. Recently, Pang and Yang [8] examined a 
solution of the initial value problem of a strongly damped Klein-Gordon equation. As established on an adaptation of the 
concavity method, they considered the coefficients of the dissipative damping terms. D'Abbicco and Ikehata [9] examined the 
strongly damped Klein-Gordon equation and derived asymptotic profiles of solutions. Recently, El-Dib et al. [10] conducted a new 
approach to studying the nonlinear azimuthal instability analysis. They transferred the characteristic equation to a Klein-Gordon 
equation. Through a traveling–wave solution, they examined the stability profile. Additionally, El-Dib and Elgazery [11] applied the 
properties of the fractional calculus to analyze a damping nonlinear oscillator. As well as, Elgazery [12] introduced a periodic 
solution for the Newell-Whitehead-Segel model by utilizing the fractional calculus. 

Fractional calculus is an old topic. In reality, it has an almost similar history as that of the classical calculus; for instance, see 
Miller and Ross [13]. The reader can find a comprehensive book on this topic; for instance, see Samko et al. [14]. Recently, in many 
references cited there, physicists and engineers realized that those differential equations may be formulated along with the 
fractional derivative. It should be noted that various kinds of real problems are modeled with the aid of fractional calculus. For 
instance, visco-elastic systems, signal processing, diffusion processes, control processing, fractional stochastic systems, allometry 
in biology, signal processing, anomalous diffusion, and ecology; for instance, see Refs. [15-17]. In contrast with classical derivatives, 
there are many kinds of definitions of fractional derivatives. These definitions are generally not equivalent to each other. Li et al. 
[18] introduced a further study of the vital properties of the Riemann-Liouville derivative. Some important properties of the 
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Caputo derivative which have not been discussed, elsewhere, were simultaneously mentioned. Furthermore, they generalized the 
fractional derivative that defined on the real line of the partial fractional derivatives in higher space dimensions. Valério et al. [19] 
introduced a comprehensive review of useful established formulae in the field of fractional calculus. Shadab et al. [20] exploited a 
new and interesting Riemann–Liouville type of fractional derivative operator. El-Dib [21] formulated an analytic approximate 
solution of a fractional-delayed damping Duffing oscillator.  

In reality, the vast phenomena of physics and engineering are modeled via partial differential equations (PDE). Simultaneously, 
many attractive physically PDEs are arising in different situations. The analytic exact solutions of these equations are rather 
difficult. The multiple time scales method [22] is utilized in obtaining the stability analysis of these solutions. It is still the most 
important technique in this topic. Once more, the higher orders yield another amplitude equation or solvability conditions [23]. 
Finally, one may combine these equations in a single equation; for instance, see Refs. [7, 24-25]. The solution of the latter equation 
resulted in the stability criteria. Consequently, a uniform valid expansion arises. Many researchers have used the multiple time 
scales method in their analysis. It is worthwhile to notice that the classical multiple time scales introduced by Nayfeh [22] 
considered a single small parameter, namely; ε , where ,n

nT tε= , and ,n
nX xε= where x  and t are the two independent 

variables. In contrast, our current work includes two small parameters, namely; δ  and ρ , where ,n
nT tδ= and ,n

nX xρ=  where 
δ  and ρ  are the two different small parameters; for instance, see Refs. [26 and 27]. This new approach yields more 
modifications on the stability configuration. The higher-order multiple scale method were studied by Luongo and Paolone [28] and 
El-Dib [27]. Ghayesh et al. [29] found a general analytical solution of the nonlinear vibration of the parametric excited continuous 
system. A delayed epidemic model with nonlinear was examined by Wang and Chen [30]. Moreover, they derived the normal form 
of the Hopf bifurcation. Finally, the validity of analytic results was shown by their consistency with numerical calculations. Wang 
et al. [31] applied the tools of the functional analysis to examine the uniqueness and existence of multi-scale fractional stochastic 
neural network solutions. By constructing a descent Lyapunov functional, the asymptotic stability of the solution of the given 
problem was examined. Recently, Moatimid [32] examined the motion of a sliding bead on a smooth wire, which is bent in the 
shape of a vertical parabola. He utilized the multiple time-scales method in his investigation.  

The basic concept of the Homotopy perturbation method (HPM) first planned by Ji-Huan He [33]. The major property of the 
HPM is in its ability and flexibility to examine a wide class in nonlinear differential equations conveniently and accurately. It has 
more developed and improved by scientists and engineers, for example, a coupled of the Homotopy perturbation method with the 
Laplace transforms were performed by El-Dib and Moatimid [34]. The HPM with two expanding parameters was suggested by He 
[35] and El-Dib [27]. The method is effective for some partial nonlinear equations. The two most significant steps in the criteria of 
the HPM were constructed by He [36] with a suitable initial guess. El-Dib [37] suggested a modified version of the HPM by the 
multiple scales technique. This new modification works particularly well for the nonlinear oscillators. Ren et al. [38] made a 
couple of the multiple time scales with the HPM to become a powerful mathematical tool for various nonlinear equations. A novel 
approach in examining a nonlinear Rayleigh-Taylor instability is conducted by El-Dib et al. [39]. Away from the traditional 
techniques, they utilized the HPM. Furthermore, along with the expanded frequency analysis, they achieved an analytical periodic 
solution of the surface deflection. 

Moatimid et al. [40] examined an unsteady instability of three horizontal superposed conducting incompressible fluids. Their 
analysis revealed an Ince’s equation. They adapted the He’s multiple scales method to analyze the stability analysis. El-Dib [27] 
introduced a new technique to solve a nonlinear PDE, via the HPM with double expanding parameters. Two Homotopy 
perturbation expansions, namely the outer and inner perturbations. El-Dib and Mady [41] examined He's-multiple-scale scale to 
analyze the cubic-quintic Duffing equation arising in the nonlinear instability of two rotating magnetic fluids. Recently, Moatimid 
[42] investigated a parametric Duffing oscillator. Different methods were utilized to achieve analytic approximate solutions to the 
problem. The HPM with the fractional multiple scales is utilized to study delayed nonlinear Duffing oscillators [25]. 

From the aforementioned topics, the Klein-Gordan equation was described by a nonlinear partial differential equation that 
indicated the behavior of many practical problems arising in engineering, physics, and in many real-world applications. Therefore, 
the major contribution of the current study is to extend our work as given in Refs. [7. 27]. Consequently, the main purpose is to 
absorb the temporal-spatial multiple scales into the HPM. Each of the spatial, as well as the temporal multiple scales, are 
expanded by using two different small Homotopy parameters. To crystallize the presentation of the present paper, the remaining 
of it is organized as follows: Section 2 is devoted to introducing governing nonlinear Klein-Gordon wave equation along with the 
boundary as well as the initial conditions. The fractional calculus of the governing equation of motion is depicted in Section 3, 
additionally, with the amplitude-frequency. The procedure of multiple-scale technology is depicted in Section 4. Section 5 is 
depicted to display the linearized stability to the corresponding Duffing equation. Furthermore, some phase portraits are plotted. 
Finally, the concluding remarks are drawn in Section 6. 

2. The Mathematical Model  

Throughout this section, the technique of the temporal-spatial multiple scales with two different Homotopy small parameters 
will be applied. The derived solution has a general form away from the dependence on the traveling wave assumption. 
Furthermore, the usage of the multiple-scales method considers the initial or boundary conditions. This approach provides a new 
skill to the reader. For this objective, consider the following damped nonlinear Kelin-Gordan model. This model is considered as 
one of the most interesting wave equations, which arise in relativistic quantum mechanics. Additionally, it has great importance 
in vast practical applications in physics, engineering, and many other scientific fields; for instance, see Refs. [43, 44]. The current 
paper considers the following equation: 

2 32 2 ; ( , ),tt xx t xy Py y y y Qy y y x tη µ ω+ + + + = =  (1) 

where the coefficients 2, , ,P η µ ω and Q  are real constants. The parameter η  represents the temporal damped coefficient, µ  
stands for the spatial damped coefficient, ω  refers to the natural frequency, and Q stands for the cubic-stiffness parameter. 
Moreover, this system is subjected to the following collection of the initial and boundary conditions: 

( ,0) ( ), ( ,0) 0,ty x x y xϕ= =  and (0, ) ( ), (0, ) 0.xy t u t y t= =  (2) 

3. The Fractional Damped Klein-Goron Equation  

In this section, an attempt will be made to achieve an analytic approximate solution of the damped Klein-Gordon equation in 
light of the fractional calculus approach. Therefore, consider the following temporary fractional form: 
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1 2 32 2 ,t xx t xD y Py D y y y Qyα αη µ ω+ + + + + =  0 1α< ≤  (3) 

The first fractional derivative in eq. (3) represents a generalization of the time-partitioned integer-order derivative in the classical 
oscillation process. Meanwhile, the second fractional derivative is a generalization of the time-damping term with the positive 
constant-coefficient 2 .η  

About the fractional derivative definition, many mathematicians start from different approaches and give different definitions of 
the fractional derivatives. The rationality and significance of these definitions have been tested in practice. The development of 
this branch has been widely used in practical problems. So far, there are about four commonly used definitions of fractional 
derivatives and differentials. These are; the Riemann-Liouville fractional derivatives, Grunwald-Letnikov fractional derivatives, 
Caputo fractional derivatives, and Miller-Ross Sequential fractional derivatives. In references [13, 45, 46 and 47], various properties, 
as well as definitions fractional calculus, were provided. Because we aim to obtain a periodic approximate solution, the current 
article, the Riemann-Liouville fractional derivative and integral will be utilized. 

3.1 Homotopy equation with an auxiliary equivalence technique 

In this subsection, we are concerned to establish the Homotopy equation by using the auxiliary equivalence technique; for 
instance, see Refs. [11, 26]. Therefore, eq. (3) can be distinguished as 

( ) ( ) ( ) 0,L y R y N y+ + =  (4) 

where the operators ,L R  and N  are defined as: 

1 2( ) ,tL y D y yα ω+= + ( ) 2 2 ,xx t xR y Py D y yαη µ= + + 3( ) .N y Qy=−  (5) 

Following similar arguments as given by El-Dib and Elgazery [11], and usage of the auxiliary equivalence technique [11 and 26]. 

Therefore, one can operate on both sides of eq. (4) by 2 1,tD L− consequently, one gets 

( )2 2 1 32 2 0.t t xx t xD y D L Py D y y Qyαη µ−+ + + − =  (6) 

Introducing a new auxiliary parameter ( )2 x yΩ , it follows that the above equation becomes 

( )2 2 2 2 1 32 2 ,t t xx t xD y y y D L Py D y y Qyαη µ−+Ω =Ω − + + −  (7) 

where the operator 1L−  is an integral form of the linear operator .L  At this end, one can build the Homotopy equation in the 
following form: 

( ) [ ]2 2 2 2 1 32 2 ; 0,1 .t t xx t xD y y y D L Py D y y Qyαρ η µ ρ− +Ω = Ω − + + − ∈  
 (8) 

Consider that the solution ( , ; )y x t ρ  may be expanded as 

2
0 1 2( , ; ) ( , ) ( , ) ( , ) ... .y x t y x t y x t y x tρ ρ ρ= + + +  (9) 

Inserting eq. (9) into eq. (10), then set all the identical powers of ρ  to zero, one finds 

( )0 2 2
0 0 0 0: 0; ( ,0) , ( ,0) 0,t tD y y y x x y xρ ϕ+Ω = = =  (10) 

( )1 2 2 2 2 1 3
1 0 0 0 0 0 1 1: ( ) 2 2 ; ( ,0) 0, ( ,0) 0,t t xx t x tD y y D L Py D y y Qy y x y xαρ η µ−+Ω =Ω − + + − = =  (11) 

The exact solution of Eq. (10) has the form 

0( , ) ( )cos( )y x t x tϕ= Ω  (12) 

Inserting the solution that is given in eq. (12) into eq. (11) and then applying the formulas that were approved by El-Dib and 
Elgazery [11] as follows: 

( )1
2cos cos ,tD t tα α παΩ =Ω Ω +  (13) 

( ) ( )
( )

2 1 1
1 21 2

2 2 4 2 1 1
2

cos sin( )
cos

2 sin( )

t t
D t

α

α

α α

ω πα
ω

ω ω πα

+
−+

+ +

 Ω +Ω Ω −  + Ω =
Ω + − Ω

 (14) 

Therefore, one finds 

( )

( )

3 1 1 21 1
2 2

2 2 2 2
1 2 2 4 2 1 1

2

3 2 1 21 1
2 2

2 2 4 2 1 1
2

3
'' 2 ' cos( ) 2 ( sin( ))

4
( ) sin

2 sin( )

3
'' 2 ' ( sin( )) 2 cos( )

4

2 sin( )

t

P Q

D y t

P Q

α α α

α α

α α

α α

ϕ µϕ ϕ πα η ϕ ω πα

ω ω πα
ϕ

ϕ µϕ ϕ ω πα η ω ϕ πα

ω ω πα

+ +

+ +

+

+ +

  + − Ω + Ω Ω −   +Ω =Ω Ω +Ω Ω + − Ω

     

+

+ − −Ω + Ω

+
Ω + − Ω

( )

( ) ( )( )

12 1
22 39

4 2 2 14 2 1
2

cos3 3 sin(3 )
cos .

3 2 3 sin( )

t t
t Q

α

α α

ω πα
ϕ

ω ω πα

+

+ +


   Ω + Ω Ω −   Ω − Ω

Ω + − Ω



 (15) 
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To avoid the presence of the secular terms, eliminating all terms that arise as the coefficients of cos tΩ  and sin ,tΩ  therefore, 

one gets 

3 1 21 1
2 2

3
'' 2 ' cos( ) 2 ( sin( )) 0.

4
P Q αϕ µϕ ϕ πα ηϕ ω πα+  + − Ω + Ω − =  

 (16) 

( ) ( )2 2 4 2 1 3 2 1 21 1 1
2 2 2

3
2 sin( ) '' 2 ' sin( ) 2 cos( ) 0.

4
P Qα α α αω ω πα ϕ ϕ µϕ ϕ ω πα η ω ϕ πα+ + + Ω + − Ω + + − −Ω + Ω =  

 (17) 

Following the conditions (16) and (17), the uniform valid solution of eq. (15) becomes 

( ) ( )( )

( ) ( ) [ ]

[ ]

12 1 1
2 3 2 2

1 2 2 14 2 1 1 1
2 2 2

cos3 cos 3 sin(3 ) sin( )
9

( , ) .3
32 3 2 3 sin( ) sin( ) sin( )

2

t t t t
Q

y x t
t t

α

α α

ω πα πα
ϕ

ω ω πα πα πα

+

+ +

 Ω − Ω + Ω Ω − − Ω − Ω  =  
Ω + − Ω − Ω Ω − + Ω + 

 

 (18) 

Therefore, one can construct higher-order problems easily. To avoid the length of the paper, the solution up to the first-order 
problem is enough to produce satisfactory results. If the expansion in Eq. (9) is convergent at 1,ρ =  it follows that the 

approximate solution becomes 

( ) ( )( )

( ) ( ) [ ]

[ ]

12 1 1
2 3 2 2

2 2 14 2 1 1 1
2 2 2

( , ) ( )cos

cos3 cos 3 sin(3 ) sin( )
9

.3
32 3 2 3 sin( ) sin( ) sin( )

2

y x t x t

t t t t
Q

t t

α

α α

ϕ

ω πα πα
ϕ

ω ω πα πα πα

+

+ +

= Ω

 Ω − Ω + Ω Ω − − Ω − Ω  +  
Ω + − Ω − Ω Ω − + Ω + 

 

 (19) 

As a limiting case as 1,α = the solution of the original damped Klein-Gordon eq. (1) arises in the form 

( )
[ ]

2 3

22

9
( , ) ( )cos cos3 cos

32( 3 )

Q
y x t x t t t

ϕ
ϕ

ω

Ω
= Ω + Ω − Ω

− Ω
 (20) 

3.2 The Amplitude-Frequency Formula 

The two solvability conditions that are present in Eqs. (16) and (17) can be used to formulate the frequency equation by 

combing them. This combination may be cross by eliminating the function 1
2cos( ).πα  Therefore, one acquires  

( ) ( )
2

2 2 4 2 1 3 3 2 1 2 1 1 21 1 1
2 2 2

3 3
2 sin( ) '' 2 ' '' 2 ' sin( ) (2 ) ( sin( )) 0.

4 4
P Q P Qα α α α αω ω πα ϕ ϕ µϕ ϕ ϕ µϕ ϕ ω πα ηϕω ω πα+ + + − +     Ω + − Ω + − + + − −Ω + Ω Ω − =        

 (21) 

As a limiting case as 1,α→  leads to 1
2sin( ) 1,πα →  consequences, 

( ) ( )
2

22 2 3 3 2 2 2 2 23 3
'' 2 ' '' 2 ' (2 ) ( ) 0.

4 4
P Q P Qω ϕ ϕ µϕ ϕ ϕ µϕ ϕ ω ηϕω ω
     Ω −Ω + − +Ω + − −Ω + Ω Ω − =       

 (22) 

For 0Ω≠ and 2 2ωΩ ≠ , one finds 

2 2
2 2 3

3

1 3 4
'' 2 '

34 '' 2 '
4

P Q
P Q

η ϕω
ω ϕ µϕ ϕ

ϕ
ϕ µϕ ϕ

 Ω = + + − −  
+ −

 
(23) 

It should be noted that the stability occurs, when the amplitude-frequency 2Ω  be positive, i.e. 

2 2
2 3

3

4 1 3
'' 2 ' 0

3 4'' 2 '
4

P Q
P Q

η ϕω
ω ϕ µϕ ϕ

ϕ
ϕ µϕ ϕ

 − + + − >  
+ −

 
(24) 

This is the stability condition for the classical damping Klein-Gordon eq. (1). It should be noted that the solution (20) and the 
frequency-amplitude eq. (23) cannot be obtained by applying the classical HPM. As shown from the above analysis, the fractional 
calculus enables us to find these results. In what follows anther approach can be used to analyze the damping nonlinear damping 
Klein-Gordon eq. (1).  

4. An Alternative Approach and the Generalized Homotopy Equation 

Since the objective of the multi-Homotopy methodology; for instance, see El-Dib [27] and Pasha et al. [48], one may distinguish 
between the following two linear partial differential operators as: 

2
t ttL y y yω= +  and 2( ),x xxL y P y yσ= +  (25) 

where the unknown parameter 2 ,σ  stands for the square of an artificial frequency, it has been introduced to obtain an 

oscillatory spatial solution. It will be determined from the constraining of the periodic solution. 
Assuming that there are two small Homotopy parameters ρ  and δ , such that the generalized Homotopy equation may be 

constructed as follows: 
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( ) [ ] [ ]2 2 2 3( ) ( ) 2 2 ; 0,1 , 0,1 ,tt xx t xD y P D y y y P y Qyω ρ σ δ η µ σ ρ δ + + + + + − − ∈ ∈  
 (26) 

where, ttD  and xxD  are the total temporal and spatial second-order derivatives, respectively. 

In this case, the dependent-function may be considered as ( , ; ; ).y y x t ρ δ=  Subsequently, eq. (26) is called the Homotopy equation 
with the multi-expanded parameters; for instance, see El-Dib [37]. As a limiting case as both 1ρ→  and 1δ→ , eq. (26) turns out 
to be in the original eq. (1). It is clear that as the parameter 1δ→ , the standard Homotopy equation represents a single expanded 
parameter ρ . The perturbation along with the parameter ρ  is named as the main perturbation (or the outer perturbation). On 
the other side, the perturbation by using the parameter δ  is called the marginal perturbation (or the inner perturbation). 
Since the promising primary solution occurs, the parameter of the main perturbation ( ρ ) should tend to zero, therefore, one finds 

0
0 0

( , ) limlim ( , ; ; ).y x t y x t
ρ δ

ρ δ
→ →

=  (27) 

The final form of the approximate solution of the original eq. (1) has the following form: 

1 1
( , ) limlim ( , ; ; ).y x t y x t

ρ δ
ρ δ

→ →
=  (28) 

4.1. Solution throughout a Modified Multiple-Scale Technology 

To continue in obtaining the solution of the Homotopy eq. (4) by using the multiple-scale technique, the expansion of the 

function ( , ; ; )y x t ρ δ  may be written into two power series (the outer and inner perturbations) along with the two Homotopy 

parameters ρ  and δ . In achieving these expansions, one may utilize the methodology of two-temporal scales 0 1,T T  and 

another two spatial-scales 0 1,X X , as stated throughout the introduction, such that n
nT tρ=  and , 0,1.n

nX x nδ= =  For the 

destination of the outer perturbation, the following expansion is considered:  

2
0 0 1 1 0 1 2 0 1( , ; , ) ( , , ; ) ( , , ; ) ( , , ; ) ...,y x t y x T T y x T T y x T Tρ δ δ ρ δ ρ δ= + + +  (29) 

where 0 1( , , ; ); 0,1, 2, ...ny x T T nδ = are unknown functions to be determined later.  

Consequently, the first and the second-order of the temporal and the spatial partial derivatives will be transformed into  

0 1 0 1
( , ) ( ..., ...)t x T T X XD D D Dρ δ∂ ∂ = + + + +  (30) 

0 0 1 0 0 1

2 2( , ) ( 2 ..., 2 ...)tt xx T T T X X XD D D D D Dρ δ∂ ∂ = + + + +  (31) 

Furthermore, the initial conditions become  

( ) 2
1 0 1 1 1 2 1 1,0, ; , ( ,0, ; ) ( ,0, ; ) ( ,0, ; ) ... ( , ; ),y x T y x T y x T y x T x Tρ δ δ ρ δ ρ δ ϕ δ= + + + =  (32) 

( ) [ ]1 0 0 1 0 1 1 1 0 1,0, ; , ( ,0, ; ) ( ,0, ; ) ( ,0, ; ) ... 0.ty x T D y x T D y x T D y x Tρ δ δ ρ δ δ= + + + =  (33) 

In light of the time-multiple-scales, the transformations that are given in Eqs. (30) and (31), the Homotopy equation (26) becomes 

{ }0 0 1 0 1

2 2 2 2 3( ) ( ) (2 ...) 2 ( ...) 2 0,T xx T T T T xD y p y y D D y D D y y P y Qyω ρ σ δ η ρ µ σ + + + + + + + + + − − = 
 (34) 

Replacing the function ( ), ; ,y x t ρ δ by its expansion as given in eq. (29) into the Homotopy equation that is given in eq. (34), and 

then equating the identical powers of ρ  on both sides, the resulting zero and first-order problems are given as follows: 

( )
0 0

2 2
0 0 1 0 1 1 0 1( ) , , ; 0; ( ,0, ; ) ( , ; ) & ( , ; ) 0,T TD y x T T y x T x T D y x Tω δ δ ψ δ δ+ = = =  (35) 

( )
0 0 1 0

0 1

2 2 2 2 3
1 0 1 0 0 0 0 0 0

1 1 1 1 0 1

( ) , , ; ( ) 2 2 2 ;

( ,0, ; ) 0 & ( ,0, ; ) ( ,0, ; ) 0.

T xx T T T x

T T

D y x T T P D y D D y D y D y P y Qy

y x T D y x T D y x T

ω δ σ δ η µ σ

δ δ δ

 + =− + − − + − −  

= + =
 (36) 

The special solution of the partial differential eq. (35) has the following form: 

( )0 0 1 1 0, , ; ( , ; )cos .y x T T x T Tδ ψ δ ω=  (37) 

To obtain a uniform solution of the first-order in ρ , all terms that producing secular terms must be removed. Therefore, all terms 

that contain the functions 0cos Tω  or 0sin Tω  should be canceled. The elimination of all the coefficients of 0sin Tω  leads to the 

following linear temporal partial first-order amplitude equation: 

1
0.TD ψ δηψ+ =  (38) 

The removing of all the coefficients of 0cos Tω  giving the following spatial partial second-order amplitude equation: 

( )2 2 33
2 0.

4xx xD D Q
P P

µ δ
σ ψ δ σ ψ ψ

 + + − − =  
 (39) 

According to the cancelation of these secular terms, the final periodic solution of the function ( )1 0 1, , ;y x T T δ  may be written as  
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( ) ( )
1

3
1 0 1 0 0 02

1 1
, , ; cos3 cos sin .

32
Ty x T T Q T T D Tδ δ ψ ω ω ψ ω

ω ω
 = − − −    (40) 

Employing Eqs. (38) and (40), yields 

( ) ( )3
1 0 1 0 0 02

1 1
, , ; cos3 cos sin .

32
y x T T Q T T Tδ δ ψ ω ω δηψ ω

ω ω
=− − +  (41) 

It should be noted that the solvability condition as given in eq. (38) is a linear first-order equation with real coefficients. On the 
other hand, the solvability condition is given in eq. (39) represents a cubic nonlinear spatial second-order equation. For the 
specialization of a single iteration process, one may combine Eqs. (37), (41) and the expansion (29) and letting 1ρ→ , one gets 

( )3
2

1 1
( , ; ) cos sin cos3 cos ; ( , ; ).

32
y x t t t Q t t x tδ ψ ω δηψ ω δ ψ ω ω ψ ψ δ

ω ω
= + − − =  (42) 

One must remember that ( ) ( ),0x xψ ϕ= and ( )0, ( )t u tψ = . 

To obtain the contribution of the function ψ , one needs to solve eq. (39). Indeed, this equation results in a spatial second-order 

nonlinear Homotopy equation with damping Duffing-type. Therefore, the perturbation method is urgent. Consequently, the 

function ( , ; )x tψ δ  may be expanded, because of the spatial multiple scales as 

( ) 2
0 0 1 1 0 1 2 0 1, ; ( , , ) ( , , ) ( , , ) ...x t X X t X X t X X tψ δ ψ δψ δ ψ= + + +  (43) 

By employing the expansion of the first and the second spatial derivatives that are given in Eqs. (30, 31 and 43) into eq. (39), then 
eliminate the identical coefficients of all powers of δ , one finds 

0

2 2
0( ) 0XD σ ψ+ = ; given 

00 1 1 0 1(0, , ) ( , ), (0, , ) 0XX t U X t D X tψ ψ= =  (44) 

0 1 0

2 2 2 3
1 0 0 0

3
( ) 2

4X X XD D D Q
P P

µ
σ ψ ψ σ ψ ψ

 + =− + + +  
; given ( )

0 11 1 1 1 0 1(0, , ) 0, (0, , ) (0, , ) 0.X XX t D X t D X tψ ψ ψ= + =  (45) 

Equation (44) is then having a solution in the following form: 

0 0 1 1 0( , , ) ( , )cos .X X t U X t Xψ σ=  (46) 

Substituting from Eq. (46) into eq. (45), once more, removing the source of the secular terms, one obtains 

2 2
1

9
( , ),

16

Q
U X t

P
σ =−  (47) 

1
0.XD U U

P

µ
+ =  (48) 

The cancelation of the secular terms from eq. (45), leads to acquiring the final uniform solution 

( )
1

3
1 0 0 02

3 1
cos3 cos sin .

16 8
X

Q
U X X D U X

P
ψ σ σ σ

σ σ
=− − −

×
 (49) 

Remove 
1XD U  and 2σ  from eq. (49) with the aid of eq. (47), one finds 

( )1 0 0 0

1
cos3 cos sin .

24
U X X U X

P

µ
ψ σ σ σ

σ
= − +  (50) 

Because of a single iteration process is only needed, the function ( , )x tψ  has the following form: 

( )
1

( , ) cos sin cos3 cos ; ( , ).
24

x t U x U x U x x U U x t
P

µ
ψ σ σ σ σ

σ
= + + − =  (51) 

At this end, Eqs. (38) and (48) having the form 

0,tψ ηψ+ =  (52) 

0.xU U
P

µ
+ =  (53) 

It is worthwhile to notice that the function 
0

( ) lim ( , ).
x

u t U x t
→

=  

Furthermore, Eqs. (52) and (53) having exact solutions in the following forms: 

( ) ( ), ,tx t x e ηψ ϕ −=  (54) 

( ) /( , ) .x PU x t u t e µ−=  (55) 

Therefore, the oscillatory solutions require 
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0, 0, 0PQ Pη µ< > >  (56) 

Similar criteria have previously been shown by El-Dib [7], for another Klein-Gordon equation without any damping terms. 
Employing Eqs. (54) and (55) into Eq. (51), again return to eq. (42), one finds 

( )

( ) ( )

1 1

33
3

2

1
( , ) limlim ( , ; ; ) ( ) cos sin cos sin cos3 cos

24

1
( ) cos3 cos cos sin cos3 cos ,

32 24

x
P

x
P

y x t y x t u t e t t x x x x
P

Q
u t e t t x x x x

P

µ

ρ δ

µ

η µ
ρ δ ω ω σ σ σ σ

ω σ

µ
ω ω σ σ σ σ

ω σ

−

→ →

−

     = = + + + −      

 
 − − + + −
  

 (57) 

where the final form of the argument σ  is given by 

2
2 29

( ).
16

x
P

Q
e u t

P

µ

σ
−

=−  (58) 

As previously seen, eq. (57) gives an analytical approximate solution of the governing Klein-Gordon equation as given in eq. (1). 
The solution is very complicated. The complexity of the solution backs of the argument of the trigonometry functions that 
contain a temporal-dependent as well as the spatial one. Because of the stability criteria is simple. Therefore, one thinks that no 
need for numerical calculations.  

5. Linearized Stability 

The objective here is to analyze the linearized stability near the equilibrium points. Therefore, one returns to the original 
governing equation as given in eq. (1). For this purpose, to transform the partial differential equation into an ordinary one, 
consider the following transformation: 

2 2x P tθ µ η= +  (59) 

In light of this transformation, the governing equation is given in eq. (1), will be transformed to the following ordinary second-
order differential equation: 

( ) ( )

2 2
3

2 2 2 2 2

1
0

4 4

d y dy Q
y y

d P d P P P P

ω

θ θ η µ η µ
+ + − =

+ +
 (60) 

Assuming the transformations: ,y z′ = it follows that Eq. (60) is converted to the following system: 

( , ) , ( , )y f y z z h y z′ ′= =  (61) 

where the prime denotes that the differentiation in respect to the independent parameter θ  and 

( ) ( )

2
3

2 2 2 2

1
( , ) , ( , ) .

4 4

Q
f y z z h y z z y y

P P P P P

ω

η µ η µ
= =− − +

+ +
 (62) 

The fixed points occur at the points 0 0( , )y z , where 

0 0( , ) 0f y z =  and 0 0( , ) 0h y z =  (63) 

It follows that 

0 0 ,z =  (64) 

and 

2 3
0 0 0y Q yω− + =  (65) 

Therefore, there are three fixed points as follows: 

(0,0) , ( ,0)
Q

ω
 and ( ,0)

Q

ω
−  (66) 

Provided that the following condition must be, simultaneously, hold: 

0Q >  (67) 

Now, the functions ( , )f y z and ( , )h y z will be expanded, by using the Taylor expansion, considering only the linear terms, around 

the previous fixed points. 
One finds the following Jacobian matrix: 

2 2
02 2

0 1

1 1
( 3 )

4 ( )

J
Q y

P P P
ω

η µ

    =   − + −  + 

 (68) 

At the equilibrium point, the Jacobian determinant becomes 
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Table 1. Roots of the eigenvalues and the corresponding stability/instability. 

 Roots of the Eigenvalues Stability/Instability 

1 Real, distinct, and negative Stable node 

2 Real, distinct, and positive Unstable node 

3 Real, distinct, and of different signs Saddle point 

4 Real, equal, and negative Stable node 

5 Real, equal, and positive Unstable node 

6 Roots are pure imaginary Stable center 

7 Roots are complex conjugate, with negative real part Stable focus 

8 Roots are complex conjugate, with positive real part Unstable focus 

Table 2. Different types of the eigenvalues and the corresponding stability/instability. 

 Sample chosen system Fixed point Roots of the Eigenvalues Stability/Instability 

1 0.5, 0, 1, 1, 1P Qµ η ω= = = = =  ( )0,0  Real, equal, and negative 
1,2

1.Λ = −  Stable node  
See Fig. 1. 

2 0.5, 0, 1, 1, 1P Qµ η ω= − = = = =  ( )0,0  Real, equal, and positive 
1,2

1.Λ =  Unstable node 
See Fig. 2. 

3 1, 0.1, 1, 3, 0.1P Qµ η ω= = = = =  ( ) 9.48683,0±  Real, distinct and of different signs 
1 2

2.67, 1.67.Λ = − Λ =  Saddle point 
See Fig. 3. 

4 10, 1, 0.2, 1, 1P Qµ η ω= − = = = =  ( )1,0±  Roots are complex conjugate, with positive real part 
1,2

0.5 0.218iΛ = ±  Unstable focus 
See Fig. 4. 

 

2 2
02 2

1

1 1
( 3 ) ( )

4 ( )

J
Q y

P P P
ω

η µ

−Λ

=
− + − +Λ

+

 (69) 

The above determinant has the following eigenvalues:  

2 2 2 2
0

1,2 2 2

( ) 31
1

2 ( )

P PQ y

P P

µ η ω

η µ

 + − + Λ = − ±   +  
 (70) 

Typically, if all eigenvalues of the Jacobian have negative real parts, it follows that the equilibrium point is stable. Otherwise, the 
equilibrium point becomes unstable. The different kinds of stability/instability depend mainly on the nature value of the 
eigenvalues that are given in Table 1. It is more convenient to consider a set of chosen sample system to indicate the 
stability/instability picture in light of the equilibrium points, consequently, the nature of the eigenvalues. This procedure may be 
done in Table 2. 

 

 
Fig. 1. Depicts the phase portrait for a stable node in a system having 

the particulars: 0.5, 0.0, 1.0, 1.0P µ η ω= = = = and 1.0Q =  

 
Fig. 2. Displays the phase portrait for an unstable node in a system 

having the particulars: 0.5, 0.0, 1.0, 1.0P µ η ω= − = = = and 1.0Q =  

 

 
Fig. 3. Plots the phase portrait for a saddle node in a system having the 

particulars: 1.0, 0.1, 1.0, 3.0P µ η ω= = = = and 0.1Q =  

 
Fig. 4. Graphs the phase portrait for an unstable focus in a system 

having the particulars: 10.0, 1.0, 0.2, 1.0P µ η ω= − = = = and 1.0Q =  
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6. Concluding Remarks 

Because of the potential importance of the analytic approximate periodic solution of the Klein-Gordon equation with wide 
applications in several areas, the sciences physics, and engineering examined this problem. As previously seen throughout the 
introduction, a set of previous works has been done. The main objective of the different authors, who were interested in solving 
nonlinear differential equations, is to achieve an analytic approximate solution along with numerical one. Therefore, an attempt 
to examine such an equation is made. The fractional calculus along with the Riemann-Liouville derivative is performed. 
Consequently, this paper provides adsorption of the temporal-spatial multiple-scales into the HPM. A novel approach to construct 
a Homotopy equation with double series, having two increasing parameters, is included. The new formulation is usually 
recommended by coupling with the temporal and, also, the spatial multiple scales methodology. The cancellation of the secular 
terms of the first-order perturbation ends in getting two solvability conditions. One of them is represented by a first-order 
equation that deals with the slow time and its exact solution has been obtained. The second solvability condition has been given 
in a cubic nonlinear damping Duffing equation in the unknown function of the spatial variable. Consequently, another 
perturbation is needed. The spatial-multiple scales are applied to solve this equation. Finally, at a single iteration process, the 
approximate solution is accomplished. The stability conditions have been derived. The current approach can be extended to treat 
alternative damped nonlinear issues. Subsequently, the present paper may be utilized as a paradigm for alternative applications 
in the damped nonlinear partial differential equation.  
As a conclusion, the following outcomes may be drawn as follows: 
 A fractional approximate solution is given in eq. (18). 
 The modified Homotopy equation along with the two-small parameters are given in eq. (25). 
 The temporal solvability equation is conducted in eq. (36); whereas, the spatial one is given in eq. (47). 
 A first iteration process is utilized and, also, the stability criteria are conducted. 
 The stability criteria are reported in eq. (55). 
 The analytic approximate solution up to the first order is derived in eq. (56).  
 The linearized stability of the corresponding Duffing equation is analyzed. 
 The eigenvalues corresponding to the equilibrium points are given in eq. (69). 
 Some phase portraits near the equilibrium points are plotted. 

Author Contributions 

The first author proposed and develops the mathematical modeling of the problem and examined the theory validation. The 
second author introduced the linearized stability. Finally, the third author analyzed the fractional damped Klein-Goron equation. 
The manuscript was written throughout the contribution of all authors. All authors discussed the outcomes, reviewed, and 
approved the final version of the manuscript.  

Acknowledgments 

The authors are thankful to all reviewers for their valuable, encouraging comments and constructive suggestions to improve 
the original version. 

Conflict of Interest  

The authors declared that there are no competing interests regarding the publication of the current paper. 

Funding  

The authors received no financial support for this research, authorship, and publication of this article. 

References 

[1] Haa, J., Nakagiri, S., Identification problems for the damped Klein–Gordon equations, Journal of Mathematical Analysis and Applications, 289, 2004, 77–
89. 
[2] Arndt, M., Hornberger, K., Testing the limits of quantum mechanical superpositions, Nature Physics, 10, 2014, 271-277.  
[3] Kim, E., Martínez, A.J., Phenisee, S.E., Kevrekidis, P.G., Porter, M.A., Yang, J., Direct measurement of super diffusive energy transport in disordered 
granular chains, Nature Communications, 9, 2018,640 (6 pages). 
[4] Parka, J.Y., Jeong, J.U., Optimal control of damped Klein–Gordon equations with state constraints, Journal of Mathematical Analysis and Applications, 
334, 2007, 1–27. 
[5] Lin, Y., Cui, M., A new method to solve the damped nonlinear Klein-Gordon equation, Science in China Series A: Mathematics, 51, 2008, 304–313. 
[6] Khalid, M., Sultana, M., Zaidi, F., Uroosa, S., Solving linear and nonlinear Klein-Gordon equations by new perturbation iteration transform method, 
TWMS Journal of Applied Engineering Mathematics, 6, 2016, 115–125. 
[7] El-Dib, Y.O., Periodic solution of the cubic nonlinear Klein–Gordon equation and the stability criteria via the He-multiple-scales method, Pramana – 
Journal of Physics, 92, 2019, 7 (8 pages). 
[8] Pang, Y., Yang, Y., A note on finite time blowup for dissipative Klein–Gordon equation, Nonlinear Analysis, 195, 2020, 111729. 
[9] D'Abbicco, M., Ikehata, R., Asymptotic profile of solutions for strongly damped Klein-Gordon equations, Mathematical Methods in the Applied Sciences, 
42 (7), 2020, 2287-2301. 
[10] El-Dib, Y.O., Moatimid, G.M., Mady, A.A., A Nonlinear Azimuthal Instability of Hydromgantic Rigid-Rotating column, Chinese Journal of Physics, 2020, 
https://doi.org/10.1016/j.cjph.2020.03024. 
[11] El-Dib, Y.O., Elgazery, N.S., Effect of fractional derivative properties on the periodic solution of the nonlinear oscillations, Fractals, 2020, 
https://doi.org/10.1142/S0218348X20500954. 
[12] Elgazery, N.S., A Periodic Solution of the Newell-Whitehead-Segel (NWS) Wave Equation via Fractional Calculus, Journal of Applied and 
Computational Mechanics, 6, 2020, 1293-1300. 
[13] Miller, K.S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, 1993. 
[14] Samko, S.G., Kilbas, A.A., Marichev, D.I., Fractional integrals and derivatives: theory and applications, Gordon & Breach Science Publishers, USA, 1993. 
[15] Guy, J., Modeling fractional stochastic systems as non-random fractional dynamics driven by Brownian motions, Applied Mathematical Modelling, 
32, 2008, 836–859. 
[16] Qian, D.L., Li, C.P., Agarwal, R.P., Wong, P.J.Y., Stability analysis of fractional differential system with Riemann-Liouville derivative, Mathematical 
and Computer Modelling, 52, 2010, 862–874. 



Stability analysis of a damped nonlinear wave equation  
 

Journal of Applied and Computational Mechanics, Vol. 6, No. SI, (2020), 1394-1403 

1403 

[17] Zhao, Z.G., Guo, Q., Li, C.P., A fractional model for the allometric scaling laws, The Open Applied Mathematics Journal, 2, 2008, 26–30. 
[18] Li, C., Qian, D., Chen, Y.Q., On Riemann-Liouville and Caputo Derivatives, Discrete Dynamics in Nature and Society, 2011, 2011, Article ID 562494 (15 
pages).  
[19] Valério, D., Trujillo, J.J., Rivero, M., Machado, J.A.T., Baleanu, D., Fractional calculus: A survey of useful formulas, The European Physical Journal Special 
Topics, 222, 2013, 1827-1846. 
[20] Shadab, M., Khan, M.F., Lopez-Bonilla, J.L., A new Riemann–Liouville type fractional derivative operator and its application in generating 
functions, Advances in Difference Equations, 2018, 2018, 167 (16 pages). 
[21] El-Dib, Y.O., Stability approach of a fractional-delayed Duffing oscillator, Discontinuity, Nonlinearity and Complexity, 9, 2020, 367-376. 
[22] Nayfeh, A.H., Perturbation Methods, Wiley, New York, 1973.  
[23] El-Dib, Y.O., Stability approach for periodic delay Mathieu equation by the He-multiple-scales method, Alexandria Engineering Journal, 57, 2018, 
4009–4020.  
[24] El-Dib, Y.O., Stability analysis of a strongly displacement time-delayed Duffing oscillator using multiple scales homotopy perturbation method, 
Journal of Applied and Computational Mechanics, 4(4), 2018, 260-274. 
[25] El-Dib, Y.O., Modified multiple scale technique for the stability of the fractional delayed nonlinear oscillator, Pramana – Journal of Physics, 94, 2020, 
56 (7 pages). 
[26] Shen, Y., El-Dib, Y.O., A periodic solution of the fractional sine-Gordon equation arising in architectural engineering, Journal of Low Frequency Noise, 
Vibration & Active Control, 2020, https://doi.org/10.1177/1461348420917 565.  
[27] El-Dib, Y.O., Multi-homotopy perturbations technique for solving nonlinear partial differential equations with Laplace transforms, Nonlinear 
Science Letters A, 9, 2018, 349-359. 
[28] Luongo, A., Paolone, A., On the reconstitution problem in the multiple time-scale method, Nonlinear Dynamics, 19(2), 1999, 135-158. 
[29] Ghayesh, M.H., Kazemirad, S., Reid, T., Nonlinear vibrations and stability of parametrically exited systems with cubic nonlinearities and internal 
boundary conditions: A general solution procedure, Applied Mathematical Modelling, 37, 2012, 3299-3311. 
[30] Wang, W., Chen, L., Stability and Hopf bifurcation analysis of an epidemic model by using the method of multiple scales, Mathematical Problems in 
Engineering, 2016, 2016, Article ID 2034136 (8 pages).  
[31] Wang, D., Ding, X., Ahmad, B., Existence and stability results for multi-time scale stochastic fractional neural networks, Advances in Difference 
Equations, 2019, 2019, 441 (12 pages). 
[32] Moatimid, G.M., Sliding bead on a smooth vertical rotated parabola: stability configuration, Kuwait Journal of Science, 47, 2020, 6-21. 
[33] He, J.H., Homotopy Perturbation Technique, Computational Methods in Applied Mechanics and Engineering, 178, 1999, 257-262. 
[34] El-Dib, Y.O., Moatimid, G.M., Stability configuration of a rocking rigid rod over a circular surface using the homotopy perturbation method and 
Laplace transform, Arabian Journal for Science and Engineering, 44(7), 2019, 6581–6659. 
[35] He, J.H., Homotopy perturbation method with two expanding parameters, Indian Journal of Physics, 88, 2014, 193-196. 
[36] He, J.H., Homotopy perturbation method with an auxiliary term, Nonlinear Problems: Analytical and Computational Approach with Applications, 2012, 
2012, Article ID 857612 (7 pages). 
[37] El-Dib, Y.O., Multiple scales homotopy perturbation method for nonlinear oscillators, Nonlinear Science Letters A, 9, 2017, 352-364.  
[38] Ren, Z-F, Yao, S-W, He, J.H., He’s multiple scales method for nonlinear vibrations, Journal of Low Frequency Noise, Vibration & Active Control, 38, 2019, 
1708-1712. 
[39] El-Dib, Y.O., Moatimid, G.M., Mady, A.A., A novelty to the nonlinear rotating Rayleigh-Taylor instability, Pramana – Journal of Physics, 93, 2019, 82 (14 
pages). 
[40] Moatimid, G.M., El-Dib, Y.O., Sayed, A., Stable configuration of double horizontal interfaces via the He-multiple scales method, Journal of Advanced 
Research in Fluid Mechanics and Thermal Sciences, 59, 2019, 128-206. 
[41] El-Dib, Y.O., Mady, A.A., He’s multiple-scale solution for the three-dimensional nonlinear KH instability of rotating magnetic fluids, International 
Annals of Science, 9, 2020, 52-69. 
[42] Moatimid, G.M., Stability analysis of a parametric Duffing oscillator, Stability analysis of a parametric Duffing oscillator, Journal of Engineering 
Mechanics, 146(5), 2020, 0502001 (13 pages). 
[43] Malhi, S., Stanislavova, M., When is the energy of the 1D damped Klein-Gordon equation decaying, Mathematische Annalen, 372, 2018, 1459–1479. 
[44] Muda, Y., Akbar, F.T., Kusdiantara, R., Gunara, B.E., Susanto, H., Justification of the discrete nonlinear Schrödinger equation from a parametrically 
driven damped nonlinear Klein–Gordon equation and numerical comparisons, Physics Letters A, 383(12), 2019, 1274-1282. 
[45] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., Theory and Application of Fractional Differential Equations, Elsevier, Amsterdam, 2006.  
[46] Podlubny, I., Fractional Differential Equation, Academic Press, San Diego, 1999.  
[47] Oldham, K.B., Spanier, J., The fractional calculus, Academic Press, New York, 1999.  
[48] Pasha, S.A., Nawaz, Y., Arif, M.S., The modified homotopy perturbation method with an auxiliary term for the nonlinear oscillator with 
discontinuity, Journal of Low Frequency Noise, Vibration & Active Control, 38, 2019, 1363-1373. 

ORCID ID  

Yusry O. El-Dib  https://orcid.org/0000-0001-6381-5918 
Galal M. Moatimid  https://orcid.org/0000-0001-6833-8903 
Nasser S. Elgazery  https://orcid.org/0000-0003-4691-2526 
 

© 2020 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms 
and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) 
(http://creativecommons.org/licenses/by-nc/4.0/). 

 

How to cite this article: El-Dib Y.O. et al., Stability Analysis of a Damped Nonlinear Wave Equation, J. Appl. Comput. Mech., 6(SI), 2020, 
1394–1403. https://doi.org/10.22055/JACM.2020.34053.2329 

 


