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Abstract. Based on the data gained from a full-scale experiment, the order/disorder characteristics of the compartment fire 
temperatures are analyzed. Among the known permutation/encoding type entropies used to analyze time series, we look for 
those that fit better in the fire phenomena. The literature in its major part does not focus on time series with data collected 
during full-scale fire experiments, therefore we do not only perform our analysis and report the results, but also discuss methods, 
algorithms, the novelty of our entropic approach and details behind the scene. The embedding dimension selection in the 
complexity evaluation is also discussed. Finally, more research directions are proposed. 

Keywords: Combustion; Full-scale fire experiment; Permutation entropy; Time series analysis; Disequilibrium; Statistical 
complexity. 

1. Introduction 

The permutation entropy can be used as a measure of the unpredictability of the combustion at different points of interest in 
the fire compartment, allowing us to examine some spatial pattern variation exhibited by fire hazards. The experimental setup 
described in Section 2 is intended for measurements at the position of the firefighters that can help to assess the health risks of 
fire exposure. 

Researchers have conducted a few studies using the entropic analysis of the fire phenomena, a recent approach in the 
literature [1], [2]. Our aim is to analyze some experimental data by the tools of the information theory. Whereas there is no 
universal formula for the entropy and so many are proposed in the literature, we make comparisons among several existing 
methods of determining the underlying probabilities and additional proposed variants. Obviously, the full-scale fire experiments 
provide the most credible experimental data. Pointing out abnormal values and structure of the experimental time series would 
indicate the usefulness of some methods, or the irrelevancy of others. We discuss the mathematical and technical causes which 
determine the failure of some algorithms and the advantages of using others. 

Other recent results on the analysis of this data set can be found in [3] and [4].  
The evolution of the fire depends on the shape and on the dimensions of the room, the available air supply, the insulation 

materials and the position of the fuel. Important information in this respect can be found in [5], [6], [7], [8]. Over the last decades 
there has been a great increase in the mathematical modeling of fire development within buildings. Models of this kind provide 
insight into the fundamental processes of fire development and have contributions in direct practical terms such as assessment 
of a specific design [9]. 

The turbulence phenomena are characterized by random fluctuations of characteristics describing the state of the system 
around some average values; therefore, we analyze not only the fluctuations of the temperature values, but also their averages.  

The purpose of this paper is to perform a local entropic analysis of the evolution of the temperature during a fire experiment. 
The next section is dedicated to the description of the experimental setup (materials and methods) and giving details on the 
collected data. In Section 3 we present the mathematical tools used to perform the analysis, we introduce new tools and have 
remarks on their properties and use for the time series analysis, followed by the main results and their interpretation. Section 4 is 
dedicated to conclusions and further research directions. 

2. The Fire Scenario. Experimental Results, Materials and Methods. Data Acquisition 

In this paper, we investigate the experimental data that has been collected during a full-scale fire experiment conducted at 
Fire Officers Faculty in Bucharest.  

Checking the last both international [10] and national [11] statistics, one can see that people (both fire fighters as well as the 
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normal users of the buildings) still die in fires. A significant reason for these casualties is the lack of understanding how a 
residential fire behaves, given the latest changes that affect the dynamics of this type of fires. These changes involve bigger 
volumes of fire enclosures (rooms/buildings), different geometry, a rise in the amount of synthetic combustible materials and a 
change in the structure and fire reaction of the construction materials.  

Thirty years ago, a classically furnished room under fire was reaching flashover point 29 minutes after fire initiation. 
Nowadays, as a result of the changes presented above, a similar use room reaches flashover in less than 5 minutes [10]. This is 
why fire researchers today should concentrate the efforts on studying the dynamics of fires that involve today’s combustible 
materials (i.e. plywood, OSB, gypsum board, PVC etc.) and also on training fire fighters in safe and in as close to reality as possible 
conditions.  

Wood is an integrated part of the load bearing structure, also it is the main source of matter used to create furniture to be 
found in buildings all over the world. The pyrolysis of wood starts at over 225°C and ends at temperatures below 500°C [12]. The 
wood produces less smoke than most of the plastic materials used today. In decent ventilation conditions, wood can produce 25-
100 m2/kg of smoke, when the same amount of plastic materials releases, under the same conditions, hundreds or even 
thousands of m2/kg [13]. 

Smoke formation is dependent on the burning material and on factors like oxygen feed and the type of combustion (e.g. with 
flame or incandescence).  

There are two parameters affecting fire performances of wood-made products: the density and the thickness. When the 
density is smaller, it takes less time for the wood surface to reach the ignition temperature (which is approx. 360°C for piloted 
ignition of wood). Similarly, after ignition, the flame will propagate quicker, lesser the density [14].  

The elevation or position (i.e. ceiling, wall, floor level) of a burning product in a fire room is of upmost importance. Especially 
ceilings and upper parts of walls are critical locations in comparison with lower floor levels. According to the fire reaction tests for 
OSB [15], the results in Table 1 below were obtained: 

Table 1. Results of fire reaction tests [15] for OSB (Oriented Strand Board). 

Product 
Thickness 

(mm) 

Density 

(kg/m3) 

Time to: Flux to floor >20 
kw/m2 

time 

(sec) 

Moisture 
content 

(%) 

Fire reaction 
class 

1 MW 
Flashover 

(sec) 

600 kW 
Flashover 

(sec) 

Flames exiting the 
door 
(sec) 

OSB 11 643 177 168 189 186 5,88 C 
 

Combining the above information regarding smoke generation and the quick reaction of OSB to reach Flashover led firemen to 
choose OSB as the main choice of material to be used in flashover container fire trainings.  

The experiment is carried out using a container (single-room compartment) as shown in Fig. 1. The container has the 
following dimensions: 12 m × 2.2 m × 2.6 m. A single ventilation opening was available, namely the front door of the container 
which remained open during the experiment. 

Some of the results are presented in Fig.2. A thermal-vision camera has also been used in order to measure the temperature at 
the walls of the container and to validate the measurements values taken from the thermocouples.  

 
Fig. 1. The right-side view scheme of arrangement (instrumentation) of the flashover container  

 
a) Thermal image  b) Normal image  

Fig. 2. Post-flashover fire in under-ventilated flaming condition experiments 
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Fig. 3. Location of the ignition burner 

  

Fig. 4. Location of the ignition burner 

  

Fig. 5. Thermocouples (exterior view) 

  

Fig. 6. Position of the thermocouples (interior view) 

Figure 3 presents images related to the flashover moment (in situ experiment) – all OSB combustible parts in the fire container 
are ignited. As one can observe from the thermal image, the temperature values greater than 650 °C are taken from the smoke 
and hot gas upper layer of the container and the temperature values greater than 700 °C are taken from the fuel surface area. This 
result is in complete agreement with the first physical characteristic of the flashover phenomena.  
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Parts of the walls and the ceiling of the container were furnished with oriented strand boards (see Fig. 3). The fire source has 
been a wooden crib, made of 36 pieces of wood strips 2.5 cm × 2.5 cm× 30 cm (see Fig. 4), on which has been poured 500 ml 
ethanol shortly before ignition. The fire bed was situated at 1.2 m below the ceiling (see Fig. 3 and Fig. 4). 

The measurement devices (in front of observation and attack area) consisted in six built-in K-type thermocouples, fixed at key 
locations as shown in Fig. 1, Fig. 5, Fig. 6 connected to a data acquisition logger. Notice the similarities of the time-temperature 
plotting (Fig. 8) with the idealized curve (Fig. 7). 

Figure 7 shows the idealized fire curve of fire which describes the evolution of the temperature during a fire experiment in a 
compartment. The lower curve corresponds to the regime of a quasi-steady low-intensity fire [16]. 

The temperature values outside the observation area (situated at the kneeled firefighter’s head level) are large compared to 
the usual 450 - 500 °C, since the ventilation system was not used in this case – the ventilation helps controlling the fire dynamics. 
Only the thermocouple T4 records temperature values at the head level of the kneeled fire fighter (observation position).  

In Table 2, Table 3, some basic statistical analysis of the temperatures (measured in degrees Celsius) allows us to quickly but 
roughly handle the experimental raw data. 

 

Fig. 7. Idealized time-temperature fire curve 

  

Fig. 8. Time - temperature curves 

Table 2. Temperatures (measured in degrees Celsius) 

Type of data/ Thermocouple number T1 T2 T3 T4 T5 T6 

max 501.49 587.77 472.49 335.83 899.68 429.99 

min 17.83 17.42 16.61 16.59 20.48 16.93 

Mean 93.583 95.517 69.518 55.715 102.121 78.701 

Variance 12483.933 17979.080 10972.692 5970.495 29815.258 10560.738 

Table 3. Correlation Matrix 

T1 T2 T3 T4 T5 T6 
 

1 0.986539 0.96682 0.965906 0.356321 0.964063 T1 

0.986539 1 0.990619 0.991476 0.266062 0.990355 T2 

0.96682 0.990619 1 0.988605 0.147797 0.97841 T3 

0.965906 0.991476 0.988605 1 0.225958 0.992552 T4 

0.356321 0.266062 0.147797 0.225958 1 0.269271 T5 

0.964063 0.990355 0.97841 0.992552 0.269271 1 T6 
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3. Permutation Entropy – Numerical Simulation 

3.1 Theoretical background and remarks  

Shannon’s entropy [17], widely accepted as a measure of disorder and uncertainty, is defined as ( )
1

log  
n

i i
i

H P p p
=

= −∑ , where 

1
( ), ,

n
P p p= … is a finite probability distribution. It is positive and its maximum value is ( ) log ,H U n=  where 

( ).  1 / , ,1 /U n n= … Throughout the paper we use the convention 0 log 0 0.⋅ =  

The normalized entropy is ( ) / log .H P n  Adding impossible events to a set of probabilities does not affect its entropy, however it 

would clearly affect the normalized entropy, so we recommend to carefully interpret the results. We do not recommend omitting 

the so-called forbidden patterns, that is patterns (permutation/encoding sequences) that do not appear in the time series (with 

null frequencies). This would affect the normalized permutation entropy which becomes ( ) ( ) { }( )/ log # : 0h j PE j p
π

π= > . 

The Kullback-Leibler divergence [18] is defined by  

( )
1

(log log )
n

i i i
i

D P R p p r
=

= −∑  (1) 

where ( )1 , , nP p p= … and ( )1 , , nR r r= …  are probability distributions. 

The Jensen-Shannon divergence (relative entropy) is 

( )
( ) ( )1 1

.
2 2 22 2 2

H P H RP R P R P R
JS P R D P D R H

+     + + +      = + = −           
 (2) 

The disequilibrium-based statistical complexity (LMC statistical complexity) introduced in [19] is defined as 

( ) ( ) ( )  / log ,C P D P H P n= where ( )D P , interpreted as disequilibrium, is the quadratic distance ( ) 2

1
( )1 /

i

n

i
D P p n

=

= −∑ .  

The Jensen-Shannon statistical complexity[20], [21] is defined by 
( )
( )

( )
( ) ( ) , / log

JS

JSC P Q P H P n= where the disequilibrium ( )
( )

JSQ P  

is ( )
( ) ( )JSQ P k JS P U= ⋅ , where ( )(max )Pk JS P U=  is the normalizing constant and ( )  1 / , ,1 /U n n= … . For the computation of the 

normalizing constant, the maximum is attained for P such that there exists ,  1ii p = . 

For specific experimental requirements, one needs to calculate different kinds of entropies to make meaningful comparisons 

among various time series. For each entropy type we must study the corresponding LMC and Jensen-Shannon statistical 

complexity too. 
 

3.1.1 Extraction of the underlying probability distribution  

The permutation entropy PE [22] as a complexity measure for time series is based on the appearance of ordinal patterns, that is 

on comparisons of neighboring values of time series, and it characterizes the diversity of the orderings in the time series, 

quantifying its complexity.  

The basic principle of the PE-algorithm is as follows: 

Let ( )1 , , nT t t= … be a time series with distinct values.  

Step 1. Every j-tuple 
1

( ), 1, , 1,, ,
i i j

i n j jt t
+ −

= … − +…  is the embedding dimension (the window length), corresponds to a 

symbolic representation which has at most j! different states. The increasing rearranging of the components of each j-tuple 

1
( ), ,

i i j
t t

+ −
…  as 

1
1 1

( ), ,
j

i r i r
t t
+ − + −
…  yields a unique permutation of order j denoted by 

1
( ),, ,

j
r rπ = …  an encoding pattern that 

describes the up-and-downs in the considered j-tuple.  
 
Step 2. The absolute frequency of this permutation (the number of j-tuples which are associated to this permutation) is  

( ) ( ){ }1# : 1 ,   ,  ,  is of type i jk i i n j t tiπ
π+ −≡ ≤ − − …  (3) 

These values have the sum equal to the number of all consecutive j-tuples, that is ( )1 .n j− −  

Step 3. The permutation entropy of order j is defined as PE(j) logp p
π π

π

≡ −∑ , where ( )1/p k n j
ππ

= − − is the relative frequency.  

Simple numerical examples may help clarify the concepts throughout this section. 
 

Example 1 For the 5-tuple ( )2.3,   1,  3.1,  1.1,   5.2 the corresponding permutation (encoding) is ( )2,   4,  1,  3,   5 .  By increasing the 

embedding dimension j one can check the consistency of the results. The main issue in every entropy-based approach is choosing 
the appropriate embedding dimension j.  

 
Remark 1 It is known that 0 ≤ PE(j) log !j≤ . The lower bound is attained for an increasing or decreasing sequence (time series), 

and the upper bound for randomly distributed sequences where all j! possible permutations are equiprobable (so called white 

noise, in signal processing). For the randomness, we have limitations due to the necessary condition ( )( )! | 1 , j n j− −  since the 

factorial increases fast and one requires a bigger .n  So, as guideline for choosing the embedding dimension, the value of the 

permutation entropy remains relevant for j  such that !n j≫ , therefore one applies the PE-algorithm only for sufficiently small j, 

avoiding the big values of the factorial. Usually one takes j=3,4,5,6,7. See also [23]. 

In addition, we note that the time series obtained during fire experiments cannot have only increasing (or decreasing) j-uples, 

and consequently the permutation entropy is strictly positive (the most commonly encountered tuples are, for all j, the increasing 

and the decreasing ones).  
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Remark 2 In an ideal fire experiment, the permutation entropy PE(j) becomes minimal in the special case where the 

temperatures have the evolution described by a curve with exactly one extreme point and strict monotonicity before/after that (as 

the standard curves in Section 1: most of the j-tuples are increasing or decreasing). The divergence 

( ) ( )
1

1
log log log !

!

n
PE

ii
i

D P U p p j
j=

  = − = −  
∑ PE(j). (4) 

would then be maximal. 

Since we have not found in the literature any remark about the lower bound of the permutation entropy for fire experiments, 

theoretically determined or inferred from experimental data, we propose the next open problem.  

Open Problem Find the lower bound (threshold) ( )a k such that, if the probability distribution ( )1 , ,  nP p p= … has at least k 

nonzero and equal components, ( ) ,  a k≥ then the Shannon entropy ( )
1

log  
n

i i
i

H P p p
=

= −∑ attains its minimum when n-k 

components are zero. In other words, find ( )a k such that, ( ) ( )11/ ,...,1/ , ,..., 1/ ,...,1/ ,0,...,0k nH s s p p H k k+ ≥ for all positive s such that 

( ) 1 / 1 /  a k s k≤ ≤ . The case k=n is degenerated, the required minimum of the entropy equals its maximum and ( ) 1 /  a k n= . It is 

also of practical interest the more general setting “at least k nonzero components”, cancelling the equality condition and finding 

the greatest lower bound of the sum of any k-tuple of nonzero components (denoted ( )b k ) such that the Shannon entropy attains 

its minimum when n-k components are zero and the others are equal to 1/k. Is it true that ( ) ( )?b k ka k=  

In [22] the measured values of the time series are considered distinct. The authors neglect equalities and propose to break 

them by adding small random perturbations (random noise) to the original series. However, the equal values might characterize a 

specific stage of the phenomenon. In other words, if we ignore or eliminate the equal values, we do not always accurately 

describe the complexity of the system. 

Another known solution is to rank the equalities according to their order of emergence (to rank the equalities with their 

sequential orders), a method recommended in the literature, see for instance [24] and [25].  

Example 2 For the 5-tuple ( )2.3,   1,  3.1,  1,   5.2 the corresponding permutation (encoding) is ( )2,   4,  1,  3,   5 . This manner to 

adjust the computation can be used to analyze the statistical structure of fire experimental data, since the temperatures are 

sometimes equal due to the thermal inertia of the thermocouples or to too frequent measuring. At our best knowledge there is no 

method to estimate a relevant time interval to measure the temperatures during an experiment, any attempt would depend on 

the devices one uses and on the fuel. 

Remark 3 In order to interpret our results correctly, we emphasize some limitations of the computation due to the artificial 

ordering of the equal temperatures: if ( )1,  ,i i jt t + −… is of type ( )  1, 2,  , jσ = … then the j-tuple is monotonically increasing, 

1 ,i i jt t + −≤… ≤ and if the j-tuple is of type ( ),  1,  ,1j jτ = − … then the temperatures are strictly decreasing, 1i i jt t + −>…> . 

Computing p
σ

refers to the growing phase of the fire, but p
τ

is only partially analyzing the decreasing temperatures. One cannot 

expect that the probability distribution has equal (or almost equal) terms, that is the entropy does not approach its maximum: all 

our experimental data show a p
σ

 greater than the rest of the probabilities. 
 
Weighted permutation entropy WPE [27]  

There are many ways to associate a probability distribution to the given data set ( )1 , , nT t t= … . The way PE is defined shows 

that no other information besides the order structure is retained. The importance of changes in the amplitude of signals for 

distinguishing different states is emphasized in the literature, so as to differentiate between distinct tuples of a certain encoding 

pattern. Hence, the relevance of the permutation entropy can be improved if the variance of each j-tuple ( )1, ,i i jt t + −… is considered.   
The dispersion (biased sample variance) is 

( )
211 i j

kk iiw t t
j

+ −
== −∑ , ( )1i n j≤ − − , (5) 

where t is the arithmetic mean of 1, , .i i jt t + −…  

The weighted relative frequency which corresponds to an encoding pattern (permutation) π is 

( )
( )1: , ,          

1
1

i i j
i

i t t is of the type

n j
ii

w

p
w

π

π

+ −…

− +
=

=

∑

∑
 (6) 

By incorporating the amplitude information from the relative order structure, the weighted permutation entropy (WPE(j)) is 

defined as WPE(j) ( ) ( )logp p
π

π π≡ −∑ [26], [27]. It weights differently j-tuples having the same ordinal pattern but different amplitude 

variations. 

3.1.2 Other variants  

We also intend to test other algorithms used to extract the underlying probability distribution. 
The modified permutation entropy (mPE) has been introduced in [28] as follows. For distinct temperatures, one applies the PE-

algorithm. When equality occurs, the equal values are mapped onto the same symbol, which is the smallest time index of these 

equal values: if 
1 21 1 ,i r i rt t+ − + −=

1 2   r r<  then both temperatures will be represented by 1r  in the encoding symbol sequence (not 

a permutation anymore, as for PE). The obtained probability distribution for these symbol sequences (encodings) is used to 
compute Shannon entropy and the result is called the modified permutation entropy (mPE(j)).  



 F.-C. Mitroi-Symeonidis et al., Vol. 6, No. SI, 2020 
 

Journal of Applied and Computational Mechanics, Vol. 6, No. SI, (2020), 1380-1393  

1386

Remark 4 When a lot of equalities occur, the mPE method is expected to perform better since it characterizes more states 
than the PE method. However, when the number of equalities is small in comparison to the amount of measurements, the values 
of mPE would be almost equal to those of PE, as it will be visible in the analysis of our experimental data. This can be 
mathematically explained as follows, by Fadeev’s postulate [29]: 

( )( ) ( ) ( )( )1 1 2 1 2 1, 1 , , , , , , , 1n nH tp t p p p H p p p p H t t− … = … + − or [ ]0,1 .t ∈  

For every permutation π used by the PE-algorithm, which corresponds to a j-tuple containing an inequality 1 , i it t +≤ we have 

two encodings in the mPE-algorithm, one for the j-tuples containing 1i it t +< , respectively the other one for 1 ,i it t += and their 

relative frequencies have the sum ( )p π , so mPE(j)≥ PE(j).  

Sometimes, the fire experimental data contains consecutively measured equal values of the temperature. These equalities can 
be explained by the resolution that might be too high (measurements every second) due to the thermal inertia of the devices. One 
can try to avoid this drawback by selecting a coarse resolution (a different time scale), however the best interval length is yet to be 
established in order not to lose important information. 

Remark 5 The mPE-algorithm deals with at most 13 encoding sequences for j=3, as for j=4 there are 75. Finding a general 
formula to compute the number of the symbol sequences for a general embedding dimension j can be stated as an interesting 
combinatorial question (the answer is greater than j!). 

 

Example 3 ( ) ( )2.3,   1,  3.1,  1,   5.2 2,   2,  1,  3,   5→  

Definition 1 We introduce the weighted modified permutation entropy (WmPE) by the following computational algorithm: the j-
tuples are encoded according to the mPE method, followed by the computation of WmPE(j) using weights computed from the 
variances, as described at the WPE algorithm above.  

WmPE(j) is compensating the loss of the information carried by mPE(j) for small numbers of equalities and it extends the 
concept of mPE(j) while keeping the same Shannon’s entropy expression, as WPE(j) extends the definition of PE(j). The 
permutation/encoding type entropies (i.e. PE, mPE, WPE, WmPE) depend on the considered embedding dimension j and one still 
must determine an appropriate value of it via meaningful comparisons. 

It is worth to be noted that for computing the weighted modified permutation entropies the constant valued pattern brings no 
additional amplitude information (its variance is null). 

Two-length algorithm [30] 

Step 1. Given the j-tuple 
1

( ), ,
j

T t t= … , we start encoding the last k j≤ elements 
1

),(   ,
j k j

t t
− +
… according to the ordinal position 

of each element, that is every st  is replaced by a symbol which indicates the position occupied by st within the increasing 

rearranging of the considered k-tuple. 
 

Example 4 ( ) ( ) 3.1,  5.2, 1.1 2,  3,   1→ for k=3. 

Remark 6 If we compare this step with the standard implementation of the permutation entropy, according to the PE-
algorithm [22], we see that the algorithm suggested in [30] is providing a permutation which is the inverse of the one provided by 

the PE-algorithm. The PE-algorithm would encode ( ) 3.1,  5.2, 1.1  by the permutation ( ) 3,  1,   2 . 

Step 2. Next, we proceed by encoding each previous element  mt  to    1m=  according to the symbol provided by Step 1 applied 

to the k-tuple ( )1,  ,m m kt t + −… . 

 

Example 5 ( ) ( )3.4,   2.3,  3.1,  5.2, 1.1 3,   1,  2,  3,   1→  for k=3 and j=5. 

Given the pair (k,j) of values, the number of symbolic (encoding) sequences of length j is ! ,
j k

k k
−

a number which can be much 

smaller than j!, so this algorithm is faster, it involves a simplified computation and sometimes it makes the results more relevant 
for big values of j.  

Notice that the encoding step is not telling how to deal with equal values, so in that case we will use the technique described 
for the permutation entropy PE: we consider the chronological order (encoding of type 1). Alternatively, one can apply the above 
two-length algorithm and map the equal values with identical symbols (encoding of type 2; we call this the modified two-length 
algorithm). These algorithms lead, after computing the relative frequencies of the encoding sequences, to two different entropies: 
the two-length permutation entropy (TLPE(k,j)) and the modified two-length permutation entropy (mTLPE(k,j)).  

 

Example 6 a) Encoding of type 1: ( ) ( )3.1,   3.1,  3.1,  1,   3.1 1,   2,  2,  1,   3→  for k=3 and j=5. 

b) Encoding of type 2: ( ) ( )3.1,   3.1,  3.1,  1,   3.1 1,   2,  2,  1,   2→  for k=3 and j=5. 

The weighted entropies WTLPE(k,j) and WmTLPE(k,j) can be now easily introduced: in order to compute them we follow the 
two-length algorithm (respectively the modified two-length algorithm) to encode the tuples, we use an encoding of type 1 
(respectively of type 2) for the equal values and compute the entropy using Shannon’s definition with the probability distribution 
defined as above, for WPE(j). 

The algorithm for the modified permutation type entropies returns a big number of encoding sequences, a fact that reduces 
the possibility to obtain significant results for mTLPE(k,j) and WmTLPE(k,j) unless the time series are very long: as we mentioned, 
the size of the time series under consideration must be much bigger than the number of encoding sequences, an aspect 
emphasized already for the permutation entropy PE(j). This is the reason why we present in the next section only the entropies 

TLPE ( )3,5 and WTLPE ( )3,5 . In the next section we apply these techniques and observe their capability to discern the changes in 

the complexity of the experimental data. 
 

3.2. Raw data analysis 

The raw data set under consideration consists of measured temperatures during a compartment fire: six thermocouples T1, ..., 
T6 measure the temperatures every second during the experiment. Hence, we get six time-series consisting of 3046 entries (data 
points) and we aim to obtain a better understanding of these results by modeling the time series using information theory, and to 
evaluate the performance of the discussed entropies.   
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Fig. 9. Patterns for the 3-tuple (2,1,3) Fig. 10. Patterns for the 3-tuple (1,3,2) 

 

Fig. 11. Patterns for the 3-tuple (3,1,4,2) 

The most frequent j-tuples are the increasing and the decreasing ones for j=3,4,5. The (common) rare patterns among the 3-

tuples are (1,3,2) and (2,1,3) (see the picture below), that is when 2 1i i it t t+ +≤ < or 1 2i i it t t+ +< ≤ . In other words, except in the 

case of the monotonically increasing 3-tuples, the 3-tuples usually have the initial temperature higher than the last one, a fact 
which agrees with our intuition. See in Fig. 9, Fig. 10, Fig. 11 these patterns which rarely appear in the evolution of the 
temperature (encoding of type 1). 

We consider that further observations are needed to check the claimed patterns of the rare j-tuples for fire experiments and 
their correlation to the permutation entropy. Naturally, the 4 and 5-tuples which contain rare 3-tuples are also rare (with smaller 
frequency), although our experimental data shows that the 4-tuple with the smallest frequency (3,1,4,2) does not contain any of 
the rare 3-tuples and its frequency is also less correlated to the permutation entropy (see Table 5).  

In Table 4, Table 5 and Table 6 one can see that there exists a high positive correlation between the permutation entropy and 
the relative frequencies of the rare patterns. 

It is worth mentioning here that we did not observe any forbidden pattern being common to all the time series 
(thermocouples) for j=3,4,5.  

We aim to identify the behavior and those physical properties of the combustion phenomena which are captured by different 
permutation entropies of the collected temperature measurements, and the main difficulty is to establish the appropriate entropy 
formulas to be used for the research of fire data.   

 
Table 4. Relative frequencies of rare 3-tuples. 

 
(1,3,2) (2,1,3) PE(3) 

T6 0.0338 0.0378 1.3695 

T2 0.0398 0.0394 1.3844 

T3 0.0539 0.0581 1.4174 

T4 0.0552 0.0588 1.4448 

T1 0.0687 0.0696 1.4782 

T5 0.1137 0.1061 1.6866 

Table 5. Relative frequencies of rare 4-tuples.  

 
(3,1,4,2) PE(4) 

T6 0.0030 0.0026 

T2 0.0023 0.0049 

T3 0.0033 0.0043 

T4 0.0033 0.0039 

T1 0.0076 0.0122 

T5 0.0125 0.0227 

Table 6. Relative frequencies of rare 5-tuples.  

 
(3,1,5,4,2) (4,2,1,5,3) PE(5) 

T6 0 0 2.6593 

T2 0 0 2.6851 

T3 0 0 2.8525 

T4 0 0 2.9908 

T1 0.0013 0.0007 3.1835 

T5 0.0020 0.0026 4.1482 
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Table 7. Permutation/encoding entropies.  

 
T1 T2 T3 T4 T5 T6 

PE(3) 1.4782 1.3844 1.4174 1.4448 1.6866 1.3695 

WPE(3) 0.7129 0.6040 0.6223 0.6490 0.9909 0.7069 

mPE(3) 1.8261 1.8877 2.0728 2.1207 1.8395 1.9209 

WmPE(3) 0.7146 0.6044 0.6229 0.6496 0.9911 0.7073 

PE(4) 2.3193 2.0533 2.1397 2.2156 2.8640 2.0222 

WPE(4) 0.7468 0.6048 0.6270 0.6822 1.4613 0.7612 

mPE(4) 2.8590 2.7161 3.0354 3.1246 3.1170 2.7517 

WmPE(4) 0.7489 0.6054 0.6280 0.6831 1.4616 0.7619 

TLPE(2,5) 2.2396 2.0152 2.1073 2.1654 2.6371 1.9782 

WTLPE(2,5) 0.7835 0.6054 0.6306 0.7137 1.6921 0.7872 

TLPE(3,5) 2.7647 2.3538 2.5330 2.6663 3.4437 2.3278 

WTLPE(3,5) 0.7865 0.6054 0.6308 0.7120 1.8149 0.7928 

mTLPE(2,5) 2.8040 2.8462 3.2459 3.3447 2.8715 2.9053 

WmTLPE(2,5) 0.7859 0.6059 0.6322 0.7149 1.6924 0.7882 

PE(5) 3.1835 2.6851 2.8525 2.9908 4.1482 2.6593 

WPE(5) 0.7927 0.6056 0.6315 0.7149 1.8822 0.7988 

Table 8. Number of constant j-tuples.  

 
j=2 j=3 j=4 j=5 

T1 141 18 5 2 

T2 360 92 20 6 

T3 486 148 42 11 

T4 546 170 58 19 

T5 42 3 0 0 

T6 462 158 57 17 

 

 

Fig. 12. Permutation/encoding entropies (a)  

   

Fig. 13. Permutation/encoding entropies (b) Fig. 14. Permutation/encoding entropies (c) Fig. 15. Permutation/encoding entropies (d) 

 The values of the above discussed permutation/encoding type entropies are given in the Table 7. 
Quick comparisons are provided in the next figures. 
We observe that the use of the weighting algorithm (computing the probability distribution via the variance) returns very 

similar plottings of the entropies, sometimes almost identical, for different embeddings. 
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Fig. 16. Permutation/encoding entropies  
 

The modified entropies have their values closer to the original entropies if less equalities occur in the time series, a fact which 

is visible in the thermocouple T5.  

In Fig. 16 we plot these entropies to visualize our conclusions. On the x-axis we have all the 16 permutation/encoding 

entropies used (ordered as in Table 7) and on the y-axis the values at each thermocouple. All entropies lead us to the same 

conclusion: the values at the thermocouple T5 are much different than the others (indicating that something is going on there), 

except the modified entropies mPE and mTLPE. Note that mPE and mTLPE are not pointing out the turbulence at T5, in the sense 

that they are not providing higher values (all the other entropies exhibit a higher degree of randomness for T5, visible also on the 

temperature-time plotting). The mathematical explanation consists in the number of equalities that is not the same at all 

thermocouples: in fact at T5 it is much smaller, and the modified entropy becomes significantly closer to its corresponding 

entropy at T5, while for other thermocouples this is not true. When we apply the weighting algorithm (that is when we compute 

the WmPE and WmTLPE), the higher variances are compensating the lack of equalities. 

We conclude that the modified entropies are not suitable for our analysis, probably due to the relatively small numbers of 

equalities which occur. All the other entropies prove themselves relevant for detecting unusual measurements among the 

thermocouples. Moreover, regardless the embedding dimensions and other length parameters, we obtained the following ordering 

of the entropies PE and TLPE: 2 6 3 4 1 5T T T T T T< < < < < . In what follows we analyze the dynamical behavior of the 

temperature in the compartment fire from the viewpoint of statistical complexity. The novelty of our approach consists in 

investigating the LCM and the Jensen-Shannon disequilibrium-based statistical complexities ( )(  C P and
( )
( )  )

JS
C P using the techniques 

described above (that is successively plugging the entropies PE (and its variants WPE, mPE, WmPE) and TLPE (WTLPE, mTLPE, 

WmTLPE) in the ( ) ,C P  respectively the
( )
( ) 

JS
C P formula. See Table 9 and Table 10 for the statistical complexities established with 

the data gathered during our experiment. Each line contains the values of the statistical complexities obtained for the entropies 

listed in the first column.  

Table 9. LMC Statistical Complexity.  

Entropy/ Thermocouple T1 T2 T3 T4 T5 T6 

PE(3) 0.0985 0.1118 0.1127 0.1059 0.0357 0.1125 

WPE(3) 0.1338 0.1418 0.1416 0.1433 0.1596 0.1507 

mPE(3) 0.1138 0.1132 0.0856 0.0763 0.0833 0.1130 

WmPE(3) 0.1187 0.1203 0.1208 0.1229 0.1462 0.1300 

PE(4) 0.1085 0.1217 0.1208 0.1114 0.0360 0.1227 

WPE(4) 0.1073 0.1038 0.1052 0.1111 0.1252 0.1194 

mPE(4) 0.0922 0.0997 0.0771 0.0716 0.0446 0.1001 

WmPE(4) 0.0841 0.0804 0.0816 0.0864 0.1017 0.0929 

TLPE(2,5) 0.0855 0.1098 0.1002 0.0883 0.0184 0.1128 

WTLPE(2,5) 0.1211 0.1145 0.1165 0.1269 0.1015 0.1337 

TLPE(3,5) 0.0961 0.1111 0.1058 0.0964 0.0312 0.1142 

WTLPE(3,5) 0.0931 0.0862 0.0880 0.0959 0.0930 0.1024 

mTLPE(2,5) 0.0776 0.0962 0.0744 0.0697 0.0415 0.1026 

WmTLPE(2,5) 0.0856 0.0792 0.0809 0.0884 0.0834 0.0935 

PE(5) 0.0921 0.1024 0.0983 0.0909 0.0244 0.1025 

WPE(5) 0.0798 0.0732 0.0747 0.0817 0.0837 0.0876 
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Fig. 17. LCM Statistical Complexity  
 
In Fig. 17 we plot these values: on the x-axis the LMC statistical complexities corresponding to the entropies (ordered as in 

Table 9) are situated and on the y-axis the values at each thermocouple. Notice that at T5, regardless of the embedding dimension 
j, the entropies PE, mPE, TLPE, mTLPE lead to LMC statistical complexities which are much different than those obtained at T1, T2, 
T3, T4, T6, this being a sign that the values of this time series show an unusual evolution of the phenomenon.  

In Fig. 18, on the x-axis we put the Jensen-Shannon statistical complexities corresponding to the entropies (ordered as in Table 
10) and on the y-axis the values at each thermocouple. Summarizing, at T5, all the entropies we tested lead to Jensen-Shannon 
statistical complexities which are different than those obtained at T1, T2, T3, T4, T6, this not only being a sign of an unusual 
evolution of the phenomenon at T5, but also enabling us to conclude that the Jensen-Shannon formula is more helpful in the 
analysis of the compartment fire behavior (we encourage the specialists to test it on more experimental setups of compartment 
fire). 

See below other comparisons of the gathered data. From their analysis (especially at the thermocouple T5), we maintain our 
recommendation, for further studies, to use the weighted entropies (and, whenever possible, the (weighted) modified ones), 
which seem to shed more light on the Jensen-Shannon statistical complexity and provide sharper tools to establish the 
disequilibrium and turbulence-related characteristics.  

Table 10. Jensen-Shannon Statistical Complexity.  

Entropy/ Thermocouple T1 T2 T3 T4 T5 T6 

PE(3) 0.1377 0.1748 0.1587 0.1500 0.0529 0.1810 

WPE(3) 0.2703 0.2447 0.2491 0.2536 0.2595 0.2581 

mPE(3) 0.2201 0.1981 0.1603 0.1505 0.2535 0.1914 

WmPE(3) 0.2295 0.2007 0.2055 0.2114 0.2670 0.2215 

PE(4) 0.2004 0.2442 0.2309 0.2245 0.0995 0.2477 

WPE(4) 0.2045 0.1726 0.1776 0.1883 0.2956 0.2019 

mPE(4) 0.2534 0.2583 0.2451 0.2366 0.3006 0.2622 

WmPE(4) 0.1623 0.1347 0.1390 0.1489 0.2776 0.1623 

TLPE(2,5) 0.1599 0.2076 0.1910 0.1841 0.0539 0.2158 

WTLPE(2,5) 0.2291 0.1906 0.1962 0.2110 0.2984 0.2233 

TLPE(3,5) 0.2292 0.2707 0.2580 0.2484 0.1539 0.2692 

WTLPE(3,5) 0.1794 0.1441 0.1490 0.1637 0.3237 0.1774 

mTLPE(2,5) 0.2967 0.2482 0.2096 0.1944 0.3570 0.2353 

WmTLPE(2,5) 0.1662 0.1328 0.1375 0.1519 0.3163 0.1647 

PE(5) 0.2396 0.2827 0.2781 0.2717 0.1525 0.2824 

WPE(5) 0.1557 0.1230 0.1275 0.1415 0.3122 0.1549 

 

 

Fig. 18. Jensen-Shannon Statistical Complexity 
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Fig. 19. LMC Statistical Complexity (a) Fig. 20. Jensen-Shannon Statistical Complexity (a) 

  

Fig. 21. LMC Statistical Complexity (b) Fig. 22. Jensen-Shannon Statistical Complexity (b) 

  

Fig. 23. LMC Statistical Complexity (c) Fig. 24. Jensen-Shannon Statistical Complexity (c) 

The statistical complexities corresponding to the modified entropies are not close to those corresponding to the original 
entropies due to the normalizations. The distance between the statistical complexities corresponding to the modified entropies is 
bigger if the number of equalities is smaller (see T5 in the figures below). 

The same reasoning explains the fact that the corresponding complexities for the weighted entropies have distinct but similar 
plottings. Notice that the weighted entropies (WPE, WmPE, WTLPE, WmTLPE) provide similar Jensen-Shannon statistical 
complexity ordering. That, in our opinion, is more accurate and coherent than the values obtained with the nonweighted 
entropies.  

Shortly, a bigger number of equalities leads to closer statistical complexities for PE and mPE, respectively TLPE and mTLPE, a 
fact which agrees with the purpose of the mPE-algorithm, to be used when the number of equalities is big enough to make the PE-
algorithm inefficient. We consider that for fire experimental data one should use the PE or mPE-algorithm (but not both), 
depending on the amount of equalities, if any, which occur and the embedding dimension. Further studies might attempt to 
establish a threshold percentage of tuples with equalities from the total number of tuples above which one should rather use the 
mPE-algorithm.  

From our experimental data we see that the mPE-algorithm is not efficient here, therefore it is sufficient to avoid the 
equalities using the chronological ranking, without altering the conclusions.  
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4. Conclusions and Remarks on the Limitations of Our Study 

From the above analysis, it can be seen that the permutation/encoding type entropies can be successfully used to detect 
unusual data and to perform relevant analysis of fire experiments. The results should be carefully interpreted whenever working 
on experimental data (subject to systematic and random errors, not to mention other unknown factors affecting the values, the 
blind use of the algorithms fails in some instances).  

We have posed some open problems and research directions that would help researchers to choose the type of entropy to be 
used according to the size and other characteristics of their data (for instance the number of equalities, the time interval), 
improving the salient features detection.  

According to our findings, as expected intuitively, the modified entropies should be used only when the amount of data is 
large enough and the number of equalities makes the results more relevant than those obtained with the original entropy. We 
conclude that they are not suited to our experimental data, which only has a small number of suitable equalities compared to the 
size of the data. 

The new proposed entropies (WmPE, WTLPE, mTLPE, WmTLPE) are introduced here not for replacing the usual 
permutation/encoding type entropies, but to complement and validate the information provided by them. The weighted entropies 
have always provided clearer and more accurate results, which make us think that this indicates that they might be more suitable 
for the analysis of the data collected from fire experiments. 

We could not answer the question about merits and demerits of the known permutation type entropies or statistical 
complexities: such aspects are not yet clear in the literature, even in other frameworks where the permutation entropy has 
already been used by many researchers. We discussed the relevance of the use of statistical complexities in the framework of fire 
data: small changes in the algorithms or choosing different embedding dimensions does not affect the interpretation of the 
results and the conclusions. This means that these mathematical tools are, informally saying, “stable” in the framework of fire 
data. The accuracy of the interpretations can definitely be improved by the choice of embedding dimension or by the adjustment 
of the algorithms, but the degree of its change cannot be estimated out of the data gathered in just one experiment: further 
research is required.  

The results we obtained using the permutation type entropies, the statistical complexity measures as well as the weak 
correlation observed for T5 might indicate a turbulence (or a misfunctioning of the device); perhaps a computer simulation would 
help to establish a reliable explanation, however it is beyond the scope of the present paper to discuss it in detail. 

It is a known fact that the permutation entropy has also a large variety of applications in the health domain. See for instance 
[31], [32], [33]. As part of the worldwide scientific response to the ongoing COVID-19 pandemic across the world, we also recently 
considered the need of an interdisciplinary approach of the problem of how a pandemic flashover develops and how it can be 
avoided. Our idea appeared as a comment in one of the most prestigious medical journals [34]. We remark here that, based on 
observations, comparisons and mathematical similarities encountered between the spread of fire and the infectious diseases 
spread, one can encourage the use of the permutation/encoding type entropies and the above statistical complexities as 
mathematical tools to investigate such threats to global public health using similar techniques, mutatis mutandis, as discussed 
above.  
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