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Abstract. This contribution focuses on force- and stress-tracking of a multi-degree of freedom system by eigenstrain actuation. 
The example under consideration is an axially excited piezoelectric bar which can be modeled as a lumped parameter system. 
The piezoelectric effect serves as actuation source and the question is answered how to prescribe the piezoelectric actuation in 
order to achieve a desired stress distribution, or, in the lumped case, a desired distribution of internal forces. First, the equations 
of motion are set up in matrix notation where the state vector contains the displacement components. After some basic 
manipulations, the governing equation can be written in terms of the internal force vector. Now, if one intends to have a certain 
desired internal force distribution, it is straightforward to find a condition for the piezoelectric control actuation. The developed 
theory is first verified by using a continuous piezoelectric bar, where the motion of one end is prescribed. Then the theory is 
experimentally verified: a lumped two-degree of freedom system is investigated and the goal is to reduce the stress or the 
internal force in order to avoid mechanical damage. The force-controlled configuration is exposed to a sweep-signal excitation 
between 1000−4900 Hz, running for 22 minutes without any signs of damage. Then the same system is excited by the same 
excitation but without piezoelectric control. After some seconds the test sample is visibly damaged, going along with a significant 
reduction of the first eigenfrequency. This gives strong evidence for the appropriateness of the proposed stress or force control 
methodology. 

Keywords: Piezoelectric control, Stress control, Structural control, Fatigue and damage, Lumped parameter system. 

1. Introduction  

Multi-functional materials are materials that are equipped with smart devices. These smart or intelligent structures take 
advantage of physical effects, which combine two or more different physical fields. One example is the piezoelectric effect that 
enables multi-field coupling of mechanical and electrical domain, either for actuation or for sensing, see e.g. [1] – [4]. In this 
context, on the one hand, sensing means to monitor the motion of a structure (i.e. structural health monitoring). On the other 
hand, actuation often means displacement tracking where the question is posed how to actuate and to place the piezoelectric 
materials onto an elastic structure in order to achieve a desired displacement field at one or several locations.  

In the present contribution the focus is laid on stress control, which is a rather new research topic, by means of exploiting the 
piezoelectric effect. Similar to displacement tracking or shape control techniques, the goal of stress control is to lower the stress 
or the internal force. Both techniques, displacement and stress tracking, are open-loop control methods, hence the system 
parameters (i.e. geometry, material, external forces) must be known in advance. For literature overviews on shape control and 
displacement tracking, the reader is referred to [5] – [7]. In [8] dynamic shape control is performed for a hyperelastic solid: the 
analytical solution is compared to the Finite Element computation for an irregularly shaped object. In [9] adaptive wings with 
linear displacement actuators inside the wing are controlled such that the cost function containing the drag coefficient and the 
surface pressure is minimized. A cost function is minimized in [10] in order to compute the best locations for the piezoelectric 
control plates mounted onto the surface of a cantilever. For harmonic vibrations passive shape control of beam structures is 
possible with properly shaped piezoelectric layers and electric circuits without any actuation source, see [11] and [12]. The use of 
moderately conductive electrodes in combination with electric circuits allows for an optimal tuning of the control voltage at 
desired locations with only one prescribed voltage source, see [13], [14] and [15]. Finally, some other fields (without claim to 
completeness) are mentioned where piezoelectricity plays an important role: multi-mode control ([29], [30]), acoustic problems 
([31]), shunt damping by means of the shear mode ([32], [33]) and damping with moderately conductive electrodes ([34]). 
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A rather new research topic, stress control of structures via the piezoelectric effect, is the main objective in this contribution. 
In contrast to displacement tracking, scientific contributions for stress tracking are rare, although stress is known to be the main 
factor for failure and breakdown of structures: high-cycle fatigue is the failure mode when the stress limit is exceeded for a high 
number stress cycles, see [16], [17] and [18]. The basis for stress tracking was originated by Irschik [19] and co-workers, see also e.g. 
[20] and [21], who provided a theoretical three-dimensional framework for stress and displacement control at a continuum 
mechanics level. In extension, Schoeftner derived new results for structural models, in particular for a bar and for a beam: in [22] 
the axial stress caused by longitudinal vibrations was investigated and a numerical example is presented how to achieve a 
desired axial stress distribution generated by several types of support excitations. The frequency spectrum of the excitation was 
varied and the results showed that low-frequency stress can be reduced, but lower bounds for the stress exist for high-frequency 
components. Within the Bernoulli-Euler beam framework, bending vibrations of a piezoelectric beam were investigated: the 
maximal stress usually occurs at the upper or at the lower surface (but not necessarily for piezoelectric structures due to the 
eigenstrain distribution over the thickness) and it was demonstrated that the axial stress as well as the bending moment can be 
reduced by proper piezoelectric actuation, see [23]. Based on the outcomes of the above cited theoretical findings and numerical 
benchmark examples, a simple laboratory experiment was designed in [24] to reduce the stress of a harmonically excited 
piezoelectric transducer with attached mass. Although several uncertainties of the system parameters are present (e.g. stiffness, 
piezoelectric constants, masses), it could be demonstrated for a mono-frequent excitation that the controlled configuration 
remains undamaged, while the uncontrolled configuration suffers severe visible mechanical damage accompanied by a strongly 
reduced first eigenfrequency. To show this, the frequency response functions were measured before and after the stress-
controlled test run (30min). Finally, after the uncontrolled run (that only took some seconds until severe damage) the measured 
frequency response function showed significant changes to the previous ones.  

In the present contribution we derive a matrix-based formulation of stress control: the system under consideration is a 
lumped-element discretization of a piezoelectric bar. Knowing the matrix differential equations from Newton’s law, using the 
constitutive relations and prescribing the desired temporal and spatial distribution of the internal force vector, one may derive a 
relation for (the second time-derivative of) the required piezoelectric actuation. The remaining two integration constants follow 
from the initial state vector, the initial external forces and the initial desired stress distribution. The stress-control solution 
depends on system parameters (mass, damping, stiffness matrices, piezoelectric constants) and external sources (force- or 
supported excitation). First, a numerical benchmark example proves our theory. The latter allows for an easy implementation in 
numerical programs if the mathematical model is known (see also the example in [22], where stress-control of a piezoelectric 
unimorph was considered as a spatially-distributed parameter system. Moreover, the matrix-based solution for stress control also 
considers linear damping. In the final experimental part of the present contribution, we demonstrate a strong reduction of the 
longitudinal stress in a piezoelectric control device, which is excited by a chirp signal (frequency content between 1000−4900 Hz). 
After measuring the original frequency response function (FRF between the actuator signal and the velocity signal of the mass), 
the repeating chirp disturbance and proposed piezoelectric stress-control actuation do not cause any damage of the experimental 
setup. At the end of this test run, practically the same low-excitation FRF could be measured again, which gave evidence for an 
undamaged configuration. Afterwards, the setup was excited by the same excitation but without stress-control actuation. After a 
comparatively low number of cycles, the internal force/stress exceeded the stress limit, causing an irreparable damage of the 
piezoelectric transducer. The structural damage went along with a significant reduction of the first resonance frequency, 
providing strong evidence for the appropriateness of the proposed stress or force control methodology. 

2. Modeling and Stress-control of a Piezoelectric Bar 

In this section, we first derive the conditions for the stress- or force control of a multi-degree of freedom system that consists 
of discrete masses, springs and actuation forces. Fig.1 depicts a piezoelectric bar with electrodes at the upper and lower surfaces. 
This system is split into single masses between which the internal forces (spring, damping and actuation forces) act (Fig.1b). We 
first explicitly write down the equations of motion for the three-degree-of-freedom model for didactical reasons. These equations 
can be generalized in such a manner that they hold for a general system with n degrees of freedom (DOF), which is written in 
matrix notation.  

Applying Newton’s law for the three masses one finds 
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The state vector u  consists of the mass deflections ( )1 2 3, ,
T

u u u , the vector of the spring force is ( )0 1 12 23, ,
T

sF F F F= , and the 

vector of the external force is ( )1 2 3, ,
T

ext F ext F ext F ext FF F F F= . It is noted that in Fig.1 no external forces are included, but for the 

derivation of a general solution of force- and stress tracking we take into account external forces. For the lumped model, effective 

masses m, stiffnesses k, damping parameters d and piezoelectric parameters c are to be computed following well-known 

procedures of structural mechanics. For that sake, mass density ρ , cross section A , Young’s modulus 11E C= ɶ  as well as 

geometric and damping parameters of the bar are to be known. The length of one element is x∆ , hence the mass of one element 

is m A xρ= ∆ . The stiffness of the spring is /k EA x= ∆ . Depending on the mode of piezoelectric actuation, either by the 

transverse mode 31eɶ  or by the longitudinal mode 11eɶ , this coefficient is calculated differently. The width is b and the height is h, 

hence the cross section is A=bh.  
Equation (1) can be easily written as a matrix differential equation, which holds for a system with n  masses 

( )1
s ext F s ext FMu BF F u M BF F−= + → = +ɺɺ ɺɺ  (2) 

The structure of the mass matrix M , B  and the vector ext FF  can be easily generalized for a n-DOF system if eqs. (1) and (2) 
are compared. For the three-degree-of-freedom model, the constitutive relations for a piezoelectric material yield the internal 
force vector, by integrating the axial stress over the cross section. This reads 
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Fig. 1. Piezoelectric bar and the derived lumped element model with masses, stiffnesses and piezoelectric actuation. 
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where 0 0,u uɺ  is the prescribed excitation (displacement and velocity) at the left end of the system. In matrix notation eq. (3) 

reads 

( )   s ext u ext ul lF D u K u CV F F= + + − + ɺ
ɺ  (4) 

The piezoelectric matrix C  is the identity matrix multiplied by the piezoelectric constant c, the matrices ,l lK D  are 

associated with the stiffness and damping matrices and the state vector. Furthermore, the terms ( )0 ,0,0
T

ext uF ku=  and 

( )0 ,0,0
T

ext uF du=ɺ ɺ  reflect the force acting on mass 1 due to the boundary excitation and may not be accidently mixed up with ext FF , 

see eq. (1). It is noted that 0ext uF ≠ , 0ext uF ≠ɺ  holds for a support-excited system, while 0ext FF ≠  holds for a force-excited system. 

The general, more familiar form of the governing equation in terms of the state vector is 

a extMu Du Ku F F=− − + +ɺɺ ɺ  (5) 

where the inertia-related term Muɺɺ  is on the left hand side and the stiffness K  and damping matrices D  (with the 

associated state displacements and velocities), the vector of the piezoelectric actuation  aF  and the vector extF  are on the right-

hand side. The goal is to combine eqs. (1)-(4) with eq. (5) to find a matrix differential equation for the internal force vector sF : 

inserting eq. (4) into eq. (2), one finds the following relations by comparison with eq. (5) 

( )

l

l

ext ext x ext x ext F

a

K BK
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=−

=− + +

=

ɺ

 (6) 

Differentiating eq. (5) twice with respect to time, inserting higher time-derivatives of the state vector u  from eq. (2) and 

taking into account eq. (6), one obtains the following differential equation for the piezoelectric actuation aF : 

( ) ( ) ( )1 1
a s s ext F s ext F ext u ext uF BF DM BF F KM BF F B F F− −= + + + + + + ɺ
ɺɺ ɺɺ ɺ ɺ ɺɺ ɺɺ  (7) 

Considering the relation aF BCV=  from eq. (6), one may easily solve for the actuation voltage V that is necessary for force 

control. The right hand side of eq. (7) shows that the actuation vector aF  depends on structural parameters (i.e. the stiffness 

matrix K , the damping matrix D  and the mass matrix M  and matrix B ) as well as on the desired internal force vector sF  

and the given external forces , ,ext F ext u ext uF F F ɺ . Integration of eq. (7) twice with respect to time yields 

1 1 2
0 1

0 0

( ) ( ) ( ) ( ) d ( ) ( ) d ( ) ( )
t

a s s ext F s ext F ext u ext u

t t

F t BF t DM BF t F t t KM BF t F t t B F t F t G G t− −

= =

         = + + + + + + + +             
∫ ∫∫ ɺ  (8) 

Table 1. Geometry and material parameters for the piezoelectric transducer (PZT-5A). 

Variable (unit)  Values Description 

( )3kgmρ
−  7750 mass density 

( )h m  8.00∙10-4 height 

( )b m  5.00∙10-2 width 

( )231
e Asm−ɶ  -10.43 piezoelectric coefficient 

( )211
E C N m−= ɶ  6.29∙1010 Young’s modulus 

( )M kg  10 end mass 

( )l m  0.8 length 



Stress control of a piezoelectric lumped-element model − theoretical investigation and experimental realization  
 

Journal of Applied and Computational Mechanics, Vol. 7, No. SI, (2021), 1110-1120 

1113 

The integration constants 0 1,G G  can be determined as follows: considering the internal force sF  in eq. (4), one finds the 

following relation at 0t =  

1

(0) (0) (0) (0) (0) (0)

(0) (0) (0) (0) (0) (0)

s ext u ext ul l

s ext u ext ul l

F D u K u CV F F

V C F D u K u F F−

 = + + − +  
 → = − − + +  

ɺ

ɺ

ɺ

ɺ
 (9) 

which can be easily solved for the initial voltage vector (0)V , or, equivalently, for the actuation vector (0) (0)aF CBV= , see eq. (6). 

A second relation for the voltage is found by substituting the acceleration ( )u tɺɺ  from eq. (2) into the time derivative of eq. (4) 
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The right-hand sides of eqs. (9) and (10) are known, consequently also the initial voltage vector (0)V  and its time derivative 

(0)Vɺ  from which the integration constants 0 1,G G  in eq. (8) are found. It is noted that from a practical point of view the choice of 

the prescribed internal force vector sF  is strongly limited because the actuation vector ( )aF t  depends on time integrals of 

, ,s ext u ext uF F F ɺ  and ext FF , but the excitation should not exceed certain bounds. Furthermore, the constant 1G should be zero. If this is 

not the case, the necessary actuation vector becomes unbounded because it linearly increases with time, and, as a consequence, 

the state vector u  may be unlimited, see eq. (2). This should be taken into account for practical realization. 

3. Numerical Benchmark: Piezoelectric Bar with Prescribed Boundary Motion 

For verification of the stress-control results (8)−(10), we consider a homogenous piezoelectric bar with end mass endm  (i.e. if 
we assume 40n =  equal lumped masses, the state vector of the right mass is 40u , which is associated with the mass endm m+ , 
c.f. Figs. 1 and 2a). The geometry and the material parameters can be found in Table 1. For the calculation of the effective values 
on beam level (for the PZT-5A material parameters 31eɶ  and 11Cɶ ), the reader is referred to [25]. 

The support excitation at the left end is 

3 3

0

e
( ) 0.0005 e

3

t

T
t

u t
T

−     =        
 (11) 

where the variable e is Euler’s number. For clarity, eq. (11) is a special form of the impulse excitation (t/T)ne-(t/T), which has a 

maximum value nne-n at t = nT. Inserting n = 3 and demanding a maximum peak value 0.5 mm, one finds the coefficient (e/3)3 in 

eq. (11). The temporal distribution of the excitation u0(t) is depicted in Fig. 2c. Depending on the choice of the time constant 

T ,one may tune the thickness of the (asymmetric) impulse-like excitation and its frequency content (see the single-sided 

frequency spectrum in Fig. 2d). A high value T  means that only the lowest mode will be excited; low values for T  mean that 

many eigenmodes may be excited by the support excitation. Here we consider three different cases of impulse-excitations in 

order to study low and high-frequency excitations:  

 Quasi-static excitation 1 250 sT =  (blue curves in Fig.2c and d, section 3.1) 

 Dynamic excitation 1 2500 sT =  (black curves in Fig.2c and d, section 3.2) 

 High dynamic excitation 1 12 500 sT =  (red curves in Fig.2c and d, section 3.3) 

The idea behind these three types of actuation is to prove that the derived conditions for stress control hold for quasi-static 
excitations (hardly any dynamics or only the lowest mode) and also for high dynamic excitations. The bar is discretized as a 
damped lumped mass and spring system with 40n =  elements, from which the first three eigenfrequencies follow as 

1

2

3

87.5Hz

1758.3Hz

3512.7Hz

f

f

f

=

=

=

 (12) 

The desired temporal and spatial distribution for the internal force vector is 

0( )sF G Au tρ= ɺɺ  (13) 

where 1 2 3 40, , , ,
T

G G G G G =   …  is the desired spatial distribution. For reasons of simplicity, the value of the element iG  is 

evaluated in the middle of each element, i.e. ( )9 9 8( ) ( ) 2G g x g x≈ +  where ( )g x  is the desired continuous spatial stress 

distribution, see Fig.2b (black) 

2 3 4

( ) 3 3
x x x x

g x l
l l l l

               = − + −                      
 (14) 

Inserting eq. (13) into eq. (2) and regarding that the external force vector vanishes 0ext FF = , one finds the analytical solution 

for the displacement 

1
0 0

1
( ) ( ) ( )u t M BG Au t BGu t

x
ρ

−= =
∆

 (15) 
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Fig. 2. (a) Piezoelectric transducer with end-mass M, (b) desired spatial distribution 
i

G  of stress (zoom shows portions of the 18th, 19th and 20th 

element, see eq. (14)), (c) prescribed excitation
0
( )u t  and (d) its frequency spectrum 

0
( ) /U f T . 

 

Comparing eq. (15) with a previous result of the authors (see eq. (35) in [22], the same problem is investigated, but as a 

continuous bar), the analytical solution for the displacement in case of stress control follows as , 0( , ) ( ) ( )xu x t g x u t= . One observes 

that the operation 

,

1
( )xBG g x

x
≈

∆
 (16) 

is approximately the differential quotient of the desired stress distribution (the matrix B from eq. (1) is applied to the matrix G in 

eq. (16)). Hence the theory for stress control for a discretized bar presented in this contribution converges to the solution for stress 

control of a continuous bar in [22]. It is noted that the matrix-based formulation presented here is advantageous, because it also 

takes into account damping, see eq. (8), which is not considered in the previous contribution of the authors in case of a 

continuous bar. Moreover, the matrix formulation is advantageous because the actuation vector ( )aF t  in eq. (7) depends on mass, 

stiffness and damping matrices, the desired stress distribution and the force vector. This allows for an easy implementation of 

realizing experiments. Additionally, it may serve as a starting for stress-control algorithm for other problems in structural 

mechanics (e.g. for plates, shells). 
 

3.1 Quasi-static excitation − results for T=1/250 s 

Figure 3 shows the results for the slowly-varying boundary excitation (i.e. 1 250 sT = , blue curves in Figs. 3c and d). Figures 3a 

and c show results (stress and displacement, exemplarily for locations close to left end (x = l/20), to the middle (x = l/2) and to the 

right end (x = 4l/5)) if the stress control method is active. Figures 3b and d show the results if stress-control is turned off (i.e. Fa = 0). 

Additionally, the maximal allowed tensile stress 5 7 2
max 2.5 10 NmPZT A
σ

−≈ ×  (green, see [28]) for a non-preloaded PZT ceramics is 

shown in Fig. 3c: this is approximately 10% of the maximum compressive pressure limit. Here both stress levels are below 5
max
PZT A
σ : 

for the non-actuated bar, the stress is almost evenly distributed in the axial direction, oscillating at its first natural frequency 

1 87.5Hzf =  between 7 21 10 Nm−± × . In contrary, the stress distribution is much smaller for the stress-controlled bar (i.e. <0.1% 

of 5
max
PZT A
σ ). It is noted that although the stress differs several orders of magnitude, the displacements have the same order of 

magnitude for both the uncontrolled and the controlled configuration. 
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Fig. 3. Results for the internal stress σ  and the displacement u  with and without stress control for quasi-static excitation ( 1 250 sT = ). 

 

Fig. 4. Results for the internal stress σ  and the displacement u  with and without stress control for dynamic excitation ( 1 250 sT = ). 

 

3.2 Dynamic excitation − results for T=1/2500 s 

Figure 4 shows the results if the frequency content of the boundary excitation is increased (i.e. 1 2500 sT = , black curves in 

Figs. 4c and d). Now the first and also the second eigenmode are excited and the maximal axial stress is 7 23.75 10 Nm−× , which 

according to the datasheet provided by the manufacturer might cause a breakdown of the piezoelectric transducer. In case of 

stress-control (Fig. 4a), the maximum stress is only 5% of 5
max
PZT A
σ , which is far below the tensile stress limit. 
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Fig. 5. Results for the internal stress σ  and the displacement u  with and without stress control for high dynamic excitation ( 1 12 500 sT = ). 

3.3 High dynamic excitation − results for T=1/12 500 s 

Figure 5 shows the results of a high-frequency peak of the boundary excitation (i.e. 1 12500 sT = , red curves in Figs. 5c and d). 
One observes the typical wave propagation phenomenon if stress-control is turned off: it takes about 30.285 10 st −∆ = × that the 
stress wave generated by the excitation reaches the attached mass, where it is partially reflected (note that /t l c∆ =  holds with 

/c E ρ≈  as the wave velocity). Even in the case where the stress-control actuation is applied, the tensile stress is very close to 
the limit stress 5

max
PZT A
σ  (at x=l/4, it will even exceed the limit stress, see Fig. 5b). This example shows that the stress cannot be 

controlled for arbitrarily high frequencies: this limitation for stress control is already pointed out by the author [23] for bending 
vibrations.  

4. Experiment 

4.1 Description of experimental setup and test procedure 

For the verification of the above-described stress-control method, an experiment is realized (bottom Fig. 6 and Fig. 9b): it 
consists of a piezoelectric stack actuator (Piezocomposite – stack type actuator series PStVS with preload, PSt 1000/25/40 VS 35, 
piezosystem jena, see [26]) which on the one side is connected to a rigid support. It serves as an external actuation of a 
piezoelectric transducer (PICMA® stack multilayer piezo actuators, P-887.51, 7×7×18 mm from PI physikinstrumente), see [27]). 
Loctite Hysol 9466 a&b serves as glue material, an electrically isolating two-component adhesive. Both the electrodes of the 
transducer and of the stack are linked to power amplifiers (AE Techron 7224) which amplify the control and actuation signals 
from the control unit by a factor of 20. In order to tune the first resonance frequency f1 = 5000 Hz an attached end mass with 
mT = 0.0988 kg (Table 2) is fixed to the end face of the transducer. The piezoelectric actuator serves as the disturbance source: the 
voltage signal of the disturbance VA is a repeating sweep signal with a time period of 0.1s. During this period the frequency 
increases from 1000 Hz to 4900 Hz, which causes a temporal internal stress over the transducer cross section. In case of stress-
control, this repeating sequence takes 1320s with a slowly increasing ramp (20s) at the beginning and a decreasing ramp (20s) at 
the end. By proper actuation of the piezoelectric transducer VT (see eq. (8)), the goal is to reduce the internal stress level. Although 
this is theoretically possible for a system with exactly known system parameters, our main goal here is to show that the 
experiment does not suffer any damage if control is present (only if control is turned off). Due to the uncertainties of the 
parameters, open-loop forward methods may deviate from the ideal results that are calculated from computer-aided methods. 
Actuating the system with the same temporal excitation VA, but without stress-control (i.e. the voltage of the piezoelectric 
transducers is VT=0 V), the piezoelectric transducer is expected to fail if the maximum tensile damage force Fdamage is exceeded for 
a certain amount of time or cycles. According to manufacturer’s datasheet specification the damage value cannot be specified 
exactly, it is estimated to 10 % of the blocking force Fblocking=1750N, see [27]. 

Table 2. Estimated parameters of the experiment. 

Parameter  Value Unit 

mA 0.163 kg 
mT 0.0988 kg 
kA 585∙106 N/m 

kT 130∙106 N/m 
dA 300 Ns/m 
dT 400 Ns/m 
cT 25 N/V 
cA 16.25 N/V 
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Fig. 6. Experimental setup, control and measurement devices for the realization of stress control. 

 

Fig. 7. Five steps of the test procedure: the original FRF is measured (step 1) before the stress-controlled run (22minutes, step 2). After measuring the 

FRF again (step 3), only the stack actuator is actuated (i.e. VA(t) ≠ 0 V, transducer voltage VT(t) = 0 V, step 4, see eq. (8)). The final FRF should verify 
the damage (significant change of FRF, step 5). 

The whole system is modeled as a simple 2DOF system, the estimated parameters are shown in Table 2. The masses of the 
2DOF system are mA and mT, the stiffnesses kA and kT, the damping coefficients dA and dT, and the piezoelectric coupling 
coefficients cA and cT. It is worthy to note that these values do not really reflect those available from the datasheet, see [26, 27]. 
First the transducers mass mT contains half of the transducers mass and of the attached mass. In general these values are varied 
such that the frequency responses of the 2DOF system (with actuator and transducer voltage as inputs and velocity as output) are 
in good agreement with the measured responses from the experiment. In a last step the damping values dA and dT are varied such 
that the resonance peaks match. 
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Fig. 8. Envelope curves: (a) voltage and control actuation, (b) velocity of attached mass, (c) velocity with zoom. 

 

Fig. 9. (a) Frequency response functions (before controlled test run − blue, after controlled test run – red, after damage − black), (b) Undamaged and 
damaged experiment. 

In order to verify our stress control theory experimentally, the velocity of the attached mass is measured (device Polytec PDV–
100). The transducer force can be calculated from the velocity by taking its time derivative and multiplication with mT. The control 
and the actuation signal entering the power amplifiers (AE Techron 7224) are generated by dSpace ACE 1103 (hardware) and 
dSpace Control Desk (software). The real time C-code for this rapid prototyping control soft/hardware is generated from a 
MATLAB/Simulink model, where the stress-control equations have been implemented by basic Simulink blocks. For the frequency 
response function measurements (steps 1, 3 and 5 in Fig. 7) LAN-XI type 3160 from Brüel&Kjær is used for data acquisition (the 
sampling frequency is 32,768 Hz). SCADAS Mobile and SCADAS recorder are used for capturing the dynamic signals for the 
controlled and uncontrolled test runs (steps 2 and 4 in Fig. 7) with a 204.8 kHz rate for the data channels. 

A critical point is the question what does mechanical damage, failure or breakdown exactly mean? Here damage means a 
mechanical damage caused by an excessive stress level. In contrary, the change of polarization or modified piezoelectric 
parameters is not considered as damage. Our strategy is to exceed the maximum tensile force in case of “no-stress-control”, while 
staying below the critical level in case of “stress-control”. Hence in order to introduce an objective criterion and an indicator for 
this occurrence, this involves a substantial loss of stiffness, i.e. the eigenfrequency will decrease.  

Figure 7 shows five steps of the test procedure: First, the frequency response function (FRF) HAv(ω)= vT (ω)/VA(ω) is measured 
(step 1), which is denoted as reference FRF. The input signal is the actuation voltage VA(ω), the output is the velocity of the mass 
vT(ω). Then the system is driven in control-mode (step 2) for 1320s (≈22min), i.e. the stress-control signal is present, see eq. (8). In 
this phase the setup undergoes approximately 4×106 stress cycles as a consequence of the repeating sweep actuation. The FRF is 
measured again (step 3), which should be identical to the reference FRF measured in step 1. Then the destruction phase begins 
(step 4) and the piezoelectric transducer signal is turned off: VA ≠ 0, VT = 0. The damage force is between 10% of the blocking force 
Fdamage ≈ 0.1×Fblocking ≈ 175 N. This step is aborted if a breakdown of the system is noticed (e.g. by audible indication). Finally, the FRF 
is measured (step 5), which then provides an objective evidence for damage. 

4.2 Results 

Figure 8 shows the envelops of the results (VA,ENVE(t), VT,ENVE(t), vT,ENVE(t)) from the experiment. The actuation voltage reads 
VA(t) = VA,ENVE(t)∙s(t), where s(t) is the sweep signal with unit amplitude (except at the beginning and at the end) whose frequency 
linearly increases and decreases from 1000 Hz to 4900 Hz during the period Δt = 0.1s. This also holds for the transducer control 
signal VT(t) and vT,ENVE(t) in a similar fashion. 
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In the beginning, the (envelope of the) actuation voltage VA,ENVE(t) increases linearly from 0 V to 49.2 V over 20 s (between 4 s 
and 24 s, Fig. 8a). If the stress-control mode is active, the transducer voltage increases from 0 V to 2.46 V, causing a maximum peak 
4.2 mm/s (Fig. 8b−red) for the velocity of the mass. This remains almost constant during the 22min test run. For the uncontrolled 
configuration, one observes that the maximum actuation voltage is reached at t = 24 s, which is followed by an immediate decline 
and the test run is aborted (Figs. 8b and c−blue): the maximum velocity vT,ENVE(t) = 49.5 mm/s means a transducer force 
FT = 150 N ≈ Fdamage. The FRFs in Fig. 9a show that the frequency curve after the destruction phase has a completely different shape 
as those measured at the beginning (blue) and immediately after the controlled test run (light blue): One observes a notable shift 
of the first eigenfrequency from 5300 Hz to 818 Hz. Furthermore it should be noted that the measured FRF of the broken setup 
shows a high noise level in the FRF, which has not been observed for the previous ones (compare the black curve to the blue and 
red one in Fig. 9a). Further signs of damage are shown in Fig. 9b where one observes a crack line on the surface of the transducer. 

5. Conclusion 

In this contribution, stress-tracking is investigated for a lumped-element model of a piezoelectric transducer. The equations of 
motion are set up in matrix-notation first. After introducing the vector for the internal forces, which consists of a mechanical part 
(i.e. spring force with damping) and an electrical part (i.e. piezoelectric eigenstrain), the differential equations are transformed 
into second order differential equations with the internal force as the new state vector. Solving these matrix equations for the 
piezoelectric actuation, which are directly related to the applied voltage distribution, one finds a relation for the necessary 
actuation source in order to perform stress control as a function of the geometry, the material parameters, the external forces and 
the excitations. The stress-control theory is verified by means of a support-excited piezoelectric bar. Finally an experimental 
setup is realized: the configuration is exposed to a boundary excitation (i.e. a sweep signal with frequency content between 
1000−4900 Hz). While the force-controlled remains undamaged after a 22 minutes test run, the uncontrolled configuration gets 
damaged after several load cycles. 
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