
J. Appl. Comput. Mech., 6(SI) (2020) 1184-1186  
DOI: 10.22055/JACM.2020.34653.2451  

ISSN: 2383-4536 
jacm.scu.ac.ir 

 

Published online: August 23 2020 

 

A Simple Approach to Volterra-Fredholm Integral Equations 

Ji-Huan He1,2,3  
 

1 
School of Science, Xi'an University of Architecture and Technology, Xi’an, China 

2 
School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo, China 

3 
National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, Suzhou, China 

 

Received August 15 2020; Revised August 22 2020; Accepted for publication August 22 2020. 

Corresponding author: J.H. He (Hejihuan@suda.edu.cn) 

© 2020 Published by Shahid Chamran University of Ahvaz 

Abstract. This paper suggests a simple analytical method for Volterra-Fredholm integral equations, the solution process is similar 
to that by variational-based analytical method, e.g., Ritz method, however, the method requires no establishment of the variational 
principle for the discussed problem, making the method much attractive for practical applications. The examples show the method 
is straightforward and effective, and the method can also be extended to other nonlinear problems.  
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1. Introduction  

As integral equations arise everywhere from the architectural engineering to nanotechnology [1-5], analytical methods for such 
problems have been caught much attention. Ghorbani and Saberi-Nadjafi suggested a modification of the homotopy perturbation 
method [6], Novin & Araghi also suggested a modified homotopy perturbation method for hypersingular integral equations [7], 
Deniz gave an optimal perturbation iteration technique [8], which was a development of the iteration perturbation method [9]. Tian 
found that the Monte Carlo method is an effective tool to integral equations [10, 11]. A review on various analytical methods for 
integral equations is available in Ref. [12]. This paper focuses on Volterra-Fredholm integral equations, and a simple analytical 
method is suggested.  
 

2. Volterra-Fredholm Integral Equations 

This paper adopts two examples in Ref. [8] to show the solution process. 
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Similar to various analytical methods in the variational theory [13, 14], e.g., the Ritz method, we can choose to a suitable trial 
solution for the problem. The most used trial solution is the series form 
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where na  (n=0~N) are unknown constants.  

Submitting Eq. (2) and expanding g(x) into a series of x, combining the like terms, and setting the coefficients of nx  (n=0~N) to zero, 
we obtain algebraic equations for na  (n=0~N).   

Alternatively, we can assume the solution has the form 
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where ( )nA x  (n=0~N) are unknown functions. The choice of ( )nA x  depends upon the g( ).x  For example g( ) xx e= , we can 

assume the solution has the form 2 3
0 1 2 3( ) x x xy x a a e a e a e= + + + +⋯ , where na  are unknown constants. 

 
Example 1 [8]. Consider the following Volterra-Fredholm integral equation 

1
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y x x x x x x s y s ds x s y s ds=− + − + − + − + +∫ ∫  (4) 

To elucidate the solution process, we assume the approximate solution can be expressed as 

2
0 1 2( )y x a a x a x= + +  (5) 

Putting Eq. (5) into Eq. (4) results in 
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Using some a mathematical software, we can solve the unknown constants in Eq. (6), which read 

0= 2a − , 1=0a  and 2=1a  (7) 

An approximate solution is obtained as 

2( ) 2y x x= −  (8) 

which happens to be the exact solution.  
 
Example 2 [8]. Consider the following Volterra-Fredholm integral equation 

3 3

0

1 1
( ) ( )

3 3

x
x xy x e e y s ds= − + + ∫  (9) 

We assume that the solution can be approximated as 

2 3
0 1 2 3( ) +y x a a x a x a x= + +  (10) 

Putting Eq. (10) into Eq. (9) results in 
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Expanding xe  and 3xe  

2 31 1
=1+

2 6
xe x x x+ + +⋯  (12) 

3 2 39 27
=1+3

2 6
xe x x x+ + +⋯  (13) 

and ignoring the terms ( 4)nx n≥ , we re-write Eq. (11) in the form 

2 3 2 3 2 3 3 2 2 2 2 3
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From above equation, we identify that 

0=1a  (15) 

3
1 0=a a  (16) 

2
2 0 1

1 3 3
+

2 2 2
a a a= −  (17) 

The constants can be determined as 0 1a = , 1 1a = , and 2 1 / 2a = , as a result an approximate solution is obtained, which is 

21
( ) 1+

2
y x x x= +  (18) 

The exact solution is ( ) xy x e= .  

 

Considering (0) 1y = , we can assume the solution has the form 

( ) bxy x e=  (19) 
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From Eq. (9), we have 

3 3

0

1 1

3 3

x
bx x x bse e e e ds= − + + ∫  (20) 

or 

3 31 1 1
( 1)

3 3 3
bx x x bxe e e e

b
= − + + −  (21) 

Solving b from Eq. (21), we obtain 

1b=  (22) 

We, therefore, obtain the following approximate solution 

( ) xy x e=  (23) 

which is the exact one. 

3. Conclusion  

This paper suggests a simple analytical method for integral equation, a suitable choice of a trial solution always leads to an 
ideal result. 
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