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Abstract. The current study is involved to analytical solution of nonlinear oscillators under initial velocity. By using energy 
conservation principle, system initial condition converts to condition which oscillator’s velocity become zero. When oscillator’s 
speed is zero and placed out of movement’s origin, the relation between frequency and amplitude could be extracted. By paying 
attention to energy conservation principle and relation between the initial velocity and amplitude, the frequency-amplitude 
relation is extended to frequency-initial velocity relationship. In order to demonstrate the effectiveness of proposed method, 
Duffing oscillator with cubic nonlinearity and oscillator with discontinuity are considered. Comparison of results with numerical 
solution shows good agreement. The proposed method is simple and efficient enough to achieve the analytical approximation of 
nonlinear autonomous conservative oscillator with initial velocity.  
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1. Introduction 

Nonlinear factors usually appear in the mathematical modeling of different physical systems. In some cases, the nonlinear 
factor effect is neglected and the governing equations is linearized and analyzed with acceptable accuracy. A well-known example 
in this context is pendulum oscillation with small amplitude which considers linear approximation and has an appropriate 
accuracy. In some cases, like dynamics of systems and structures with large amplitude, the nonlinear factor effect is huge and 
can’t be neglected. In solid mechanics, the large deformations and strains amplifies the nonlinear behavior of such systems. For 
example, large amplitude vibration of beams with various conditions due to the axial load or boundary conditions [1-8], 
oscillation of bifilar pendulum [9], fluid flow induced vibration [10], tsunami motion modeling [11], static and dynamic analysis of 
micro and nano scale structures [12-15] and different kinds of nonlinear systems [16-22] are affected by the nonlinear factors and 
their governing equations are nonlinear. 

Different methods are currently used for explicit solution of nonlinear equations. Some of them are only applicable to solve 
the governing equations of conservative system. Some methods like differential transform method [23, 24] and Adomian 
decomposition method [25] have no limitation in the equation form but give solution in Taylor series form which sometimes 
needs very much terms for accurate solution and so the employment of such solution is not beneficial. 

Several methods have been proposed to obtain the analytical solution of governing equations in nonlinear 
autonomous/conservative systems in physics and mechanic which have oscillatory behavior. The methods are applicable when 
the initial condition is in the form of displacement and give an explicit relation between the frequency and amplitude, however, 
are not applicable in systems with initial velocity conditions. For instance, the energy balance method [26-29], Hamiltonian 
approach [30], Max-Min approach [31], He’s frequency formulation [32] and other similar approaches [33-39] are used to derive the 
frequency-amplitude relation. There are some methods to solve the nonlinear equations under desired initial conditions but the 
solution is in the form of time series and hence don’t give the explicit relation between the frequency and initial conditions of 
nonlinear systems. 

In this research, by using the energy conservation principle in autonomous conservative systems, the initial condition from 
velocity type with a time shift is changed to the initial displacement form and then other methods are employed to approximate 
the relation between the frequency and initial condition. In other words, the proposed method converted the initial condition 
from velocity type to initial amplitude one and then takes the advantageous of previous methods to extract the nonlinear 
frequency of motion. The accuracy of this method is also verified by studying well-known nonlinear problems. 

2. The Basic Idea 

Consider the autonomous conservative nonlinear oscillator as follows:  
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(a) 

 

(b) 

Fig. 1. (a) Low velocity impact on a beam, (b) schematic behavior of beam midpoint due to impact which is similar to excitation by initial velocity. 

( ) 0,u f u+ =ɺɺ  (1) 

with initial conditions 

(0) 0, (0) .u u B= =ɺ  (2) 

where ( )f u  is the restoring force. Several practical examples exist in which the system is excited by initial velocity; low velocity 
impact on structures is one of them. In modal analysis of structure’s identification, the system is excited by a hammer and 
exposed to initial velocity. Low velocity impact of a mass on a beam is shown in Fig. 1. (a) and the corresponding time history 
response of beam midpoint is plotted in Fig. 2. (b). It is assumed that the amplitude of oscillation is *A , which for the first time 
occurs at / 4T  after the beginning of motion, where 2 /T π ω= and ω  is the circular frequency of motion. Therefore, to 
describe the considered motion, two unknown parameters exist in the problem; *A  and ω .  
In order to determine the maximum amplitude *A , we use the energy conservation law which states that in the conservative 
systems, the total energy is a constant quantity and energy only changes form one type to another. In the conservative oscillator 
system, energy periodically changed from potential form to kinetic one and vice versa; although, the total energy is conserved. In 
autonomous conservative nonlinear oscillator under initial velocity, at the beginning of motion, the initial energy is totally in the 
form of kinetic energy and gradually converts to the potential energy until / 4t T= , at this time, the energy of the system is 
completely in the form of potential energy. We can determine *A  by equalization of initial kinetic energy with potential energy 
at / 4t T= . For the considered nonlinear oscillator in Eq. (1), the initial kinetic energy is: 

21
. . : ,

2
K E B  (3) 

and the potential energy at time / 4T  is as follows: 

*

0
. . : ( ) ,

A

P E f u du∫  (4) 

Thereby, the conservation of energy yields: 

*

2

0

1
( ) .

2

A

f u du B=∫  (5) 

In Eq. (5), ( )f u  and B  are known, therefore, after performing the integration, *A  will be obtained. Consider Fig. 2 in which the 
oscillator has the amplitude equal to *A  and zero velocity at / 4t T= . If we suppose that the motion starts at this point, it is 
considered that the oscillator has the initial amplitude and zero velocity. In other words, it is assumed the motion of oscillator 
caused by initial amplitude *A , when time measure from / 4t T= . There are various methods proposed to determine ω  in 
nonlinear oscillators in terms of initial amplitude and any of them could be applied to obtain the frequency of motion. When the 
amplitude and frequency of oscillating motion is determined, it is necessary to determine the time domain of solution. A trial 
solution can be considered as follows: 
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( ) sin( ).
B

u t tω
ω

=  (6) 

The solution, however, satisfies the initial conditions in Eq. (2), but not confirm the constraint applied at time / 4t T=  where 
*( 4)u T A= and so it’s not applicable. In order to solve this problem, the below trial solution is considered: 

( ) sin( ) sin(3 ),
3

B
u t t t

α α

ω ω

ω ω

−
= +  (7) 

It is clear that Eq. (7) satisfied the initial conditions. To determine the unknown parameters in the proposed solution, we 

employed the constraint of motion at / 4T , which leads to: 

* *( )
4 3

T B
u A A

α α

ω ω

−
= → − = → *3

4 4

B
Aα ω= +  (8) 

when α  determines the oscillating motion in which the time domain is valid.  

3. Applications 

3.1 Example 1 

Consider the nonlinear Duffing oscillator with cubic term and specified initial conditions as following: 

3 0, (0) 0, (0)u u u u B+ = = =ɺɺ ɺ  (9) 

restoring force is 3( )f u u= in the Eq. (9). Substituting restoring force into Eq. (5) and integrating yields: 

* 24 2A B=  (10) 

Duffing oscillator’s motion frequency under initial amplitude is calculated and reported in different references. A first order 
approximation which is obtained from homotopy perturbation method [40] for this oscillator is as follows:  

2*3
,

4
Aω =  (11) 

by substituting Eq. (10) into Eq. (11), the frequency- initial velocity relation is derived for oscillator in Eq. (9) as following: 

23
2 ,

4
Bω =  (12) 

On the other hand, by substituting *A  and ω  into Eq. (8), the unknown parameter in the assumed solution is determined as 
follows: 

(2 3 6) ,
8

B
α = +  (13) 

Finally, the analytical solution for nonlinear Duffing oscillator under initial velocity can be obtained as: 

2 2

2 2

(9 2 2 3) (2 3 3 2)3 3
( ) sin( 2 ) sin(3 2 ).

4 412 2 12 2

B B
u t B t B t

B B

+ −
= +  (14) 

The comparison between the analytical solution obtained in Eq. (14) in conjunction with numerical solution presented in Fig. 2 
and Fig. 3 demonstrates good agreement between the solutions. 

3.2 Example 2 

Consider the nonlinear oscillator with discontinuity under initial velocity as follows: 

0, (0) 0, (0)u u u u u B+ = = =ɺɺ ɺ  (15) 

restoring force is ( )f u u u=  and in the first quarter of motion by taking the absolute value it is equal to 2( )f u u= . By 

substituting the restoring force into Eq. (5) and after integrating the equation, we have: 

* 23
3

2
A B=  (16) 

An approximation for the frequency-amplitude is obtained from homotopy perturbation method [41] for this oscillator as follows:  

*8
,

3

A
ω

π

=  (17) 

by substituting Eq. (16) into Eq. (17), the frequency- initial velocity relation is derived for oscillator with nonlinear discontinuity 
described in Eq. (15) as follows: 

3
3

16

3

B
ω

π

=  (18) 
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Fig. 2. Comparison between numerical (solid line) and analytical solutions (dashed line) in the case of Duffing oscillator for 1B= . 

 

Fig. 3. Comparison between numerical (solid line) and analytical solutions (dashed line) in the case of Duffing oscillator for 1000B= . 

By substituting *A  and ω  into Eq. (8), the unknown parameter in the assumed solution is determined and then the analytical 
solution is obtained in the following form: 

23

3 3
3 3

12 16 16
( ) {(6 )sin( ) ( 2)sin(3 )}.

16 3 3

B B B
u t t tπ π

π π

= + + −  (19) 

The comparison between the analytical solution obtained by Eq. (19) in conjunction with the numerical solution is presented in 
Fig. 4 and Fig. 5 and shows acceptable agreement. 

3.3 Higher Order Approximation 

The accuracy of frequency-amplitude relation plays an important role to derive the solution of treated nonlinear oscillators 
under initial velocity. In the mentioned numerical examples, first order approximation is used. In this section, we obtain the 
second order approximation for Example 1. One more time, consider Duffing oscillator in Eq. (9). The second order homotopy 
perturbation solution yields the frequency-amplitude relation as follows [40]: 

2*23
,

32SPHM Aω =  (20) 

by substituting Eq. (10) into Eq. (20), the second order frequency - initial velocity relation is derived for Duffing oscillator in Eq. (9) 
as: 

223
2 ,

32
Bω =  (21) 

By substituting *A  and ω  into Eq. (8), the unknown parameter in the assumed solution is determined and after that the second 
order analytical solution is obtained for Duffing oscillator as follows: 

2 2

2 2

(69 2 4 46) (4 46 23 2)23 23
( ) sin( 2 ) sin(3 2 ).

32 3292 2 92 2

B B
u t B t B t

B B

+ −
= +  (22) 

The comparison between second order analytical solution obtained by Eq. (22) in conjunction with the numerical solution is 
presented in Fig. 6. and Fig. 7. As can be seen, the accuracy of solution increased very much and excellent agreement is observed. 
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Fig. 4. Comparison between numerical (solid line) and analytical solutions (dashed line) in the case of oscillator with discontinuity for 1B= . 

 

Fig. 5. Comparison between numerical (solid line) and analytical solutions (dashed line) for oscillator with discontinuity at 1000B= . 

 
Fig. 6. Comparison between numerical (solid line) and higher-order analytical solutions (dashed line) in the case of Duffing oscillator for 1B= . 

4. Conclusion 

In this study, a simple approach was proposed to analytically solve the governing equations of nonlinear oscillators under 

initial velocity. Previous methods could present an analytical relation between the frequency and amplitude of oscillator’s motion 

but at initial velocity condition wasn’t applicable. Therefore, the amplitude extraction in zero velocity state of the mentioned 

oscillators in the previous methods could be utilized. At start time, the total energy of the system is in the type of kinetic energy 

which when oscillator’s velocity become zero, the system’s energy converts to its potential form. By using the potential energy 

when the velocity becomes zero, the amplitude of motion could be calculated. By using the amplitude of motion, the frequency- 

amplitude relation extracted by previous methods is converted to frequency – initial velocity relation. The assumed solution 

should satisfy the initial conditions and also should have the value equal to the amplitude of motion when the oscillator’s 

velocity becomes zero at first quarter of its motion. Therefore, an unknown parameter enters to the solution which must confirm 

the mentioned constraint. The soundness of the obtained solutions are related to the accuracy of utilized frequency – amplitude 

relations. It was exhibited that the accuracy of proposed method increases by using the higher order approximations. 
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Fig. 7. Comparison between numerical (solid line) and higher-order analytical solutions (dashed line) for Duffing oscillator at 1000B= . 

Author Contributions 

Not applicable.  

Acknowledgments 

Not applicable. 

Conflict of Interest  

The author declared no potential conflicts of interest with respect to the research, authorship and publication of this article. 

Funding  

The author received no financial support for the research, authorship and publication of this article. 

Data Availability Statements 

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable 
request. 

References 

[1] Evensen, D.A., Nonlinear vibrations of beams with various boundary conditions, AIAA Journal, 6(2), 1968, 370-372. 
[2] Pirbodaghi, T., Ahmadian, M.T., Fesanghary, M., On the homotopy analysis method for non-linear vibration of beams, Mechanics Research 
Communications, 36(2), 2009, 143-148. 
[3] Sedighi, H.M., Reza, A., High precise analysis of lateral vibration of quintic nonlinear beam, Latin American Journal of Solids and Structures, 10(2), 2013, 
441-452. 
[4] Sedighi, H.M., Nonlinear free vibrations of quintic inextensional beams lying on Winkler elastic substrate based on three-mode assumptions, 
Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 228(2), 2014, 213-225. 
[5] Sedighi, H.M., Shirazi, K.H., Noghrehabadi, A., Application of recent powerful analytical approaches on the non-linear vibration of cantilever 
beams, International Journal of Nonlinear Sciences and Numerical Simulation, 13, 2012, 487-494. 
[6] Sedighi, H.M., Shirazi, K.H., Noghrehabadi, A.R., Yildirim, A., Asymptotic investigation of buckled beam nonlinear vibration, Iranian Journal of Science 
and Technology, Transactions of Mechanical Engineering, 36, 2012, 107-116. 
[7] Sedighi, H.M., Shirazi, K.H., Attarzadeh, M.A., A study on the quintic nonlinear beam vibrations using asymptotic approximate approaches, Acta 
Astronautica, 91, 2013, 245-250. 
[8] Sedighi, H.M., Daneshmand, F., Nonlinear transversely vibrating beams by the homotopy perturbation method with an auxiliary term, Journal of 
Applied and Computational Mechanics, 1(1), 2015, 1-9. 
[9] Khan, Y., Mirzabeigy, A., Arjmand, H., Nonlinear oscillation of the bifilar pendulum: an analytical approximation, Multidiscipline Modeling in 
Materials and Structures, 13(2), 2017, 297-307. 
[10] Srinil, N., Zanganeh, H., Modelling of coupled cross-flow/in-line vortex-induced vibrations using double Duffing and van der Pol oscillators, 
Ocean Engineering, 53, 2012, 83-97. 
[11] Wang, Y., An, J.Y., Amplitude–frequency relationship to a fractional Duffing oscillator arising in microphysics and tsunami motion, Journal of Low 
Frequency Noise, Vibration and Active Control, 38, 2019, 1008-1012. 
[12] Sedighi, H.M., Daneshmand, F., Static and dynamic pull-in instability of multi-walled carbon nanotube probes by He’s iteration perturbation 
method, Journal of Mechanical Science and Technology, 28(9), 2014, 3459-3469. 
[13] Sedighi, H.M., Bozorgmehri, A., Nonlinear vibration and adhesion instability of Casimir-induced nonlocal nanowires with the consideration of 
surface energy, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(2), 2017, 427-442. 
[14] Ouakad, H.M., Sedighi, H.M., Static response and free vibration of MEMS arches assuming out-of-plane actuation pattern, International Journal of 
Non-Linear Mechanics, 110, 2019, 44-57. 
[15] Tadi Beni, Z., Hosseini Ravandi, S., Tadi Beni, Y., Size-dependent Nonlinear Forced Vibration Analysis of Viscoelastic/Piezoelectric Nano-beam, 
Journal of Applied and Computational Mechanics, 2020, doi: 10.22055/jacm.2020.32044.1958. 
[16] Alijani, F., Bakhtiari-Nejad, F., Amabili, M., Nonlinear vibrations of FGM rectangular plates in thermal environments, Nonlinear Dynamics, 66(3), 
2011, 251. 
[17] Zukovic, M., Cveticanin, L., Maretic, R., Dynamics of the cutting mechanism with flexible support and non-ideal forcing, Mechanism and Machine 
Theory, 58, 2012, 1-12. 
[18] Sedighi, H.M., Shirazi, K.H., Bifurcation analysis in hunting dynamical behavior in a railway bogie: Using novel exact equivalent functions for 
discontinuous nonlinearities, Scientia Iranica, 19(6), 2012, 1493-1501. 
[19] Mirzabeigy, A., Madoliat, R., Free vibration analysis of a conservative two-mass system with general odd type nonlinear connection, Proceedings of 
the National Academy of Sciences, India Section A: Physical Sciences, 88(1), 2018, 145-156. 



 Alborz Mirzabeigy, Vol. 8, No. 3, 2022 
 

Journal of Applied and Computational Mechanics, Vol. 8, No. 3, (2022), 918-924   

924 

[20] Mirzabeigy, A., Madoliat, R., A note on free vibration of a double-beam system with nonlinear elastic inner layer, Journal of Applied and 
Computational Mechanics, 5(1), 2019, 174-180. 
[21] Big-Alabo, A., Ossia, C., Analysis of the Coupled Nonlinear Vibration of a Two-Mass System, Journal of Applied and Computational Mechanics, 5(5), 
2019, 935-950. 
[22] Emamzadeh, M., Rabbani, K., A Closed-Form Solution for Electro-Osmotic Flow in Nano-Channels, Journal of Applied and Computational Mechanics, 
2020, doi: 10.22055/jacm.2020.32020.1952. 
[23] Nourazar, S., Mirzabeigy, A., Approximate solution for nonlinear Duffing oscillator with damping effect using the modified differential transform 
method, Scientia Iranica, 20(2), 2013, 364-368. 
[24] Mirzabeigy, A., Yildirim, A., Approximate periodic solution for nonlinear jerk equation as a third-order nonlinear equation via modified 
differential transform method, Engineering Computations, 31(4), 2014, 622-633. 
[25] Ray, S.S., Bera, R.K., An approximate solution of a nonlinear fractional differential equation by Adomian decomposition method, Applied 
Mathematics and Computation, 167(1), 2005, 561-571. 
[26] He, J.H., Preliminary report on the energy balance for nonlinear oscillations, Mechanics Research Communications, 29(2-3), 2002, 107-111. 
[27] El-Naggar, A.M., Ismail, G., Periodic Solutions of the Duffing Harmonic Oscillator by He's Energy Balance Method, Journal of Applied and 
Computational Mechanics, 2(1), 2016, 35-41. 
[28] Khan, Y., Mirzabeigy, A., Improved accuracy of He’s energy balance method for analysis of conservative nonlinear oscillator, Neural Computing and 
Applications, 25(3-4), 2014, 889-895. 
[29] Hosen, M., Ismail, G., Yildirim, A., Kamal, M., A Modified Energy Balance Method to Obtain Higher-order Approximations to the Oscillators with 
Cubic and Harmonic Restoring Force, Journal of Applied and Computational Mechanics, 6(2), 2020, 320-331. 
[30] He, J.H., Hamiltonian approach to nonlinear oscillators, Physics Letters A, 374(23), 2010, 2312-2314. 
[31] He, J.H., Max-min approach to nonlinear oscillators, International Journal of Nonlinear Sciences and Numerical Simulation, 9(2), 2008, 207-210. 
[32] Liu, C., A short remark on He’s frequency formulation, Journal of Low Frequency Noise, Vibration and Active Control, 2020, doi: 
10.1177/1461348420926331. 
[33] Mohammadian, M., Application of the global residue harmonic balance method for obtaining higher-order approximate solutions of a 
conservative system, International Journal of Applied and Computational Mathematics, 3(3), 2017, 2519-2532. 
[34] Mohammadian, M., Shariati, M., Approximate analytical solutions to a conservative oscillator using global residue harmonic balance method, 
Chinese Journal of Physics, 55(1), 2017, 47-58. 
[35] Hosen, M.A., Chowdhury, M.S.H., Ismail, G.M., Yildirim, A., A modified harmonic balance method to obtain higher-order approximations to 
strongly nonlinear oscillators, Journal of Interdisciplinary Mathematics, 2020, doi: 10.1080/09720502.2020.1745385. 
[36] He, J.H., Jin, X., A short review on analytical methods for the capillary oscillator in a nanoscale deformable tube, Mathematical Methods in the 
Applied Sciences, 2020, doi: 10.1002/mma.6321. 
[37] He, J.H., The simpler, the better: Analytical methods for nonlinear oscillators and fractional oscillators, Journal of Low Frequency Noise, Vibration and 
Active Control, 38(3-4), 2019, 1252-1260. 
[38] He, J.H., The simplest approach to nonlinear oscillators, Results in Physics, 15, 2019, 102546. 
[39] He, C.H., Wang, J.H., Yao, S.W., A complement to period/frequency estimation of a nonlinear oscillator, Journal of Low Frequency Noise, Vibration and 
Active Control, 38(3-4), 2019, 992-995. 
[40] Mirzabeigy, A., Madoliat, R., Large amplitude free vibration of axially loaded beams resting on variable elastic foundation, Alexandria Engineering 
Journal, 55(2), 2016, 1107-1114. 
[41] Wang, S.Q., He, J.H., Nonlinear oscillator with discontinuity by parameter-expansion method, Chaos, Solitons & Fractals, 35(4), 2008, 688-691. 

ORCID iD 

Alborz Mirzabeigy  https://orcid.org/0000-0002-8524-5837 
 

© 2022 Shahid Chamran University of Ahvaz, Ahvaz, Iran. This article is an open access article distributed under 
the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 
license) (http://creativecommons.org/licenses/by-nc/4.0/). 

 

How to cite this article: Mirzabeigy A. A Simple Approach for Dealing with Autonomous Conservative Oscillator under Initial 
Velocity, J. Appl. Comput. Mech., 8(3), 2022, 918–924. https://doi.org/10.22055/JACM.2020.34302.2383 

 
Publisher’s Note Shahid Chamran University of Ahvaz remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.   


