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Abstract. The problem of occurrence of starting earthquakes in subduction zones is considered. Subduction is the phenomenon 
of movement of the oceanic lithospheric plate under the continental one. The oceanic lithospheric plate at a certain depth melts 
from below and can slide. The paper considers the occurrence of starting earthquakes under the assumption that lithospheric 
plates have different contact conditions, being on a rigid base in the subduction zone. A molten lithospheric plate has no 
tangential contact stresses, while the other, oceanic, is rigidly connected to the base. The block element method is used to study 
the occurrence of the starting earthquake and the peculiarity of its consequences. The conditions to generate of tsunamis as a 
result of such earthquakes are being studied. Solutions to boundary value problems that are constructed precisely, rather than 
approximatively, allow us to reveal the mechanisms of destruction of the environment that were not previously known. In 
particular, the results obtained allowed us to detect a new type of crack that was not previously described. They destroy the 
environment in a different way than Griffiths cracks, which is demonstrated in this paper and is important in engineering 
practice. 

Keywords: Block element, Earthquakes, Subduction, Tsunamis, Cracks. 

1. Introduction 

Models for describing fragments of the Earth's crust using block structures, in particular, the possibility of using Kirchhoff 
plates, are discussed in [1,2]. The importance of studying earthquakes and their forecasts goes beyond the interests of the Earth 
alone [3-5]. Studies of contact problems for describing the behavior of contact stresses on the edge of a deformable model of 
contact plates are devoted to [6-11].  

Various issues of earthquake prediction and protection of buildings and structures are studied in [12-25]. Special attention 
should be paid to the development of knowledge-intensive systems for assessing the seismic vulnerability of structures [12, 13]. 
Investigation of the possibility of predicting earthquakes by removing potential energy stored in lithospheric plates, the 
development of monitoring tools are important studies of protection against seismic impacts. Various theoretical and 
experimental questions of the behavior of deformable bodies, the destruction of the medium by cracks, are studied and discussed 
in [26-36]. Of particular interest are experimental approaches, in particular, the development of intelligent structures and systems 
for monitoring buildings and structures [27-28]. The problem of studying the process of destruction of the environment, structures 
and structures is of great importance. The object of research is cracks and faults. For a long time, research for strength assessment 
in engineering practice these were the Griffiths cracks that he had described a hundred years ago. There is a huge amount of 
research and publications related to the study and application of Griffith cracks [37-41]. A good example of research in this area 
that can make a long-term forecast of the development of cracks, in connection with the application of the probabilistic approach, 
is the work [38, 39]. Recently, a new type of cracks has been discovered that complement the Griffiths cracks [40.41]. These cracks 
have a different mechanism of destruction of the medium. They are formed as a result of the convergence of lithospheric plates 
located on a deformable base. In the previous work of the authors [1, 2], as a result of applying a mechanical approach, the 
possibility of starting earthquakes during the convergence of lithospheric plates at the Conrad boundary is shown. The reason for 
the destruction of the medium in the convergence zone is the occurrence of a singular concentration of vertical and horizontal 
components of contact stresses. The studied earthquakes are named as starting ones, since they occur before the interaction of 
lithospheric plates with each other. In this paper, this method is used to study the possibility of starting earthquakes in the 
conditions of subduction of lithospheric plates. Subduction is the phenomenon of movement of one lithospheric plate under 
another, arising in connection with the diversity of both geometric and physical parameters of approaching each other met 
lithospheric plates [29]. These phenomena can occur in areas of the ocean and in coastal areas. These phenomena are divided 
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into two types - subduction and collision. Collision processes are characteristic of the interaction of continental lithospheric land 
plates and lead mainly to the twisting and generation of new mountains, while subduction zones tend to cause earthquakes. 

During subduction, part of the ocean floor is submerged under the land plate. At a great depth, this part melts and, thanks to 
spreading, spreads and forms new crust, both under land and under the ocean. A subduction zone was discovered and described 
by seismologist Benioff. Earthquakes are most common in these areas. The Benioff called them seismic focal zones, now they are 
called zones of Benioff, Fig. 1. 

There are attempts to explain the reasons for such properties of Benioff’s zones, but they are not based on strict mechanical 
and mathematical approaches and are not convincing in the subduction zone. Taking into account these properties of 
lithospheric plates and the detection of starting earthquakes and their precursors [1, 2], it was possible to strictly mathematically 
study earthquakes in subduction zones. As the oceanic lithospheric plate moves under the continental plate, the plate can break 
and acquire faults. Then, moving deeper, it heats up and melts from below [30, 31]. As a result, the tangential stresses under the 
slab become small and can be ignored. A fragment of a lithospheric plate that has not yet fused, in contact with the compacted 
layer described by Beniof, has both tangential and normal stresses in the contact zone. Thus, the fault separates two lithospheric 
plates that have different properties in the contact zone. Fragments of the lithospheric plate, after the fracture, are close and only 
a fault separates them. Then the melted fragment of the lithospheric plate can move away from the neighboring one due to 
sliding Fig. 2, Fig. 3. Taking into account this statement of the problem, a boundary value problem is formed. 

 
 
 

Fig. 1. Diagram of the subduction process. The fault divides the lithospheric plate into two fragments. 

 

 

Fig. 2. Diagram of the location of lithospheric plates before interaction. The red arrows show the direction of the components of the contact 
stress vectors on the lower base of the lithospheric plates 
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Fig. 3. Converging lithospheric plates. The red arrows show the direction of the components of the contact stress vectors on the lower base of 
the lithospheric plates. 

2. Problem Statement 

We believe that the lithospheric plates lie on a deformable base. It is represented by semi-infinite Kirchhoff plates in the form 

of half-planes whose borders are parallel and at a distance 2 , 0θ θ ≥  from each other. Each lithospheric plate has individual 

mechanical properties. The coordinate axes 1 2x ox  lie in the plane of the plates, and the 3x  axis is directed along the external 

normal to the base. We consider the case of static effects on the surface of plates, of which the left one, which has an index b λ= , 

contacts the base without friction, and the right one , which has an index b r= , is rigidly connected to the base. 

We believe that lithospheric plates lie on a deformable base and are semi-infinite Kirchhoff plates in the form of half-planes, 

whose borders are parallel and at a distance 2 , 0θ θ ≥  from each other, and each has individual mechanical properties. Assume 

that the 1 2x ox  coordinate axes lie in the plane of the plate, and the 3x  axis is directed along the outer normal to the base. 

Consider the case of static effects on the surface of plates, of which the left, which has an index b λ= , contacts the base without 

friction, and the right, which has an index b r= , is rigidly connected to the base. We made the notation 
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The equations of boundary value problems for plates are have the form 

( )1 2 1 2, ( , ) 0, ,b b bx x x x b rλ∂ ∂ − = =R u s  (3) 

The { }1 2 3, ,b b bu u u=bu  is the vector of displacement the points of the plate along the horizontal 1 2,b bu u , and vertical 3bu  

directions of the median plane.  

There are no contact tangential stresses under the left plate so it is accepted 1 2( , ) 0, 0, 1,2nb nbs x x u n= = = . Applying the 

Fourier transform to the system of equations (2), we get 
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There are the normal stresses 3 , ,bt b rλ=  to act on the plate at the top and 3 , ,bg b rλ=  at the bottom. Similarly, the 

stresses act in the tangent plane, and - in the direction of the normal to the ends of the lithospheric plates.  
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There are the following designations: - bµ  shear modulus, bν - Poisson's ratio, bE - young's modulus, bh - thickness of 

lithospheric plates, H  - thickness of the base layer, bg  bt  vectors of contact stresses and external horizontal, 1 2,b bg g 1 2,b bt t , 

influences, respectively, acting tangentially to the base boundary and along the normal to it in the areas bΩ . 

2 2 1 2 1 1 1( , ), ( )α α α≡ ≡F F F F - two-dimensional and one-dimensional Fourier transform operators, respectively. The boundary 

conditions described in [2] are preserved here. Expressions for the normal 
2xN  and tangent 

1 2x xT  components of the stresses to 

the median plane at the ends of the plates are given by the relations, respectively 
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For a deformable base described by the boundary value problem, various models given by the ratios are applicable 
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g  - vector of tangent and normal stresses under the plates at the base boundary. Some types of matrix-functions ( , )α α1 2Κ

 
of bases, called the symbol of the system of integral equations, are given in [42]. For example, for an elastic layer with a fixed 
lower face, in the static case, it looks like 
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The matrix (2) of the boundary value problem is a block – diagonal matrix consisting of a second-order matrix located on the 
diagonal, representing a matrix operator or vector operator, and a separate scalar operator on the diagonal. Since the operators 
are independent, this greatly facilitates the study of the boundary value problem at the stage of external analysis, allowing you to 
use the results obtained in the works [1, 2].  

3. External Analysis of the Boundary Value Problem  

Three stages are required for solving boundary value problems for differential equations using the block element method: 
external algebra, external analysis, and factor topology. The solution is sought in topological spaces of slowly growing generalized 
functions. Such solutions can describe functions that numerical methods cannot describe-Delta functions, singularities, and 
other singularities. The external algebra stage ensures that the block structure is divided into separate blocks endowed with 
interblock boundary conditions and each block is considered individually. 

The boundary value problem of a block is immersed in a topological space and is considered as a manifold with an edge. The 
boundary is tangentially delaminated, which allows the introduction of external forms. After this, the boundary value problem is 
reduced to a functional equation using the Stokes integral. One scalar equation or matrix equation is obtained, which has a 
system of equations. The phase of the external analysis involves a mathematical analysis and transformation of external forms, 
participating in the functional equation. Differential factorization of the coefficient of the functional equation is performed. If it is 
a function, it is factorized into parts containing certain zeros of the function. If it is a matrix function, then factorization includes 
representation as a product of two matrix functions. After factorization, the calculation of Leray form-residues on polar sets in 
the right part ensures the automorphism of the boundary problem on the block element. This ensures both that the boundary 
conditions are met and that the boundary problem carrier is limited only to the area of the block element. The resulting pseudo-
differential equations contain all types of boundary conditions allowed by the boundary problem. Therefore, when solving them, 
the ones that are required by the task are selected. 

Solutions of pseudodifferential equations are introduced into external forms, which allows us to construct a solution of the 
boundary value problem for a block element from the functional equation. At this stage of external analysis is completed. Below, 
the block element method is implemented in scalar and vector cases. 

The functional equations of the scalar operator for functions 3bU , ,b rλ=  have the form [1,2] 
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To construct pseudodifferential equations in the scalar case, Lehrer deduction forms are calculated, including two-fold ones. 
Pseudodifferential equations of the boundary value problem, taking into account the accepted designations, can be represented 

for plates ,b rλ=  in the form 
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Respectively for the right plate 
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The functional equations of the boundary value problem for the vector case of the plate with rigit contact b r=  are matrix 
equations and have the form 

{ }

{ }

{ }

1 2 1 2 1 2

1 2 1 2 5 2 1 2

1 2 1 2

2 2
1 1 2 2 1 2

1 2 2 2
2 1 2 2 1 1

( , ) ( , ), , ,

, , ( , ) ( , )( ),

( , ) ,

( )
( , )=

( )

b

r r r r r r r

r r r r r r r

r r r

r r
r

r r

i i U U

S S

i i

α α α α

ω ω α α ε α α

α α

α ε α ε α α
α α

ε α α α ε α

∂Ω

− − = − + =

= = − +

=

+
− − −

+

∫R U S U

S F g t

S

R

ω

ω

 (5) 

Here rω  is a vector of external forms that have components 

{ }

{ }

, 1 2 1
1 1 2 1 2 1 1 1 1 2 2 2 2

2 1 1

, 1 2 2
2 2 2 2 1 1 1 1 2 2 2 1 2

1 2 1

( ) ( ) ,

( ) ( )

i x r r r
r r r r r r r r

i x r r r
r r r r r r r r

u u u
e i u dx i u i u dx

x x x

u u u
e i u dx i u i u dx

x x x

α

α

ω ε ε ε α α ε α

ω ε α ε ε α ε α

〈 〉

〈 〉

∂ ∂ ∂
= − + − + − −

∂ ∂ ∂
∂ ∂ ∂

= − + − + − −
∂ ∂ ∂

  

To construct pseudo-differential equations, differential factorization of the matrix function 1 2( , )r i iα α− − −R  of the functional 

equation is performed [2]. Using an external analysis algorithm, a factorizing matrix-function is constructed. Taking into account 

that the determinant of the matrix-function 1 2( , )r i iα α− − −R  has two-fold roots 2
2 1 1i iα α α± = ± ≡ ± , we obtain factoring matrix-

functions for the left and right plates in the form 
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After performing external analysis operations on these functional equations [1, 2], including differential factorization of the 
coefficient of the functional equation-matrix-function and calculating the Lehrer deduction forms, we construct pseudo-
differential equations. They have the form 
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Here are the inverse operators to the one-dimensional Fourier transform. We apply the Fourier transform operator to these 
systems of equations and introduce the following notation system 
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Similarly, for the vector, 

{ } { } { } { }

1 2 2 1 2 2

1 2 1 2 1 2 1 2

1 1 1 2 2 1 2

1 1 2 1 1 1 2 1

1 1 1 2 1 2 1 1 1 2 1 2

, , , , , , , ,

( ) , ( , ) ,

, , , ,

, , ,

r r r r

x x x r x x r r x r

r r r r

y y z z y y z z

g g g g

y T y N y T y N

z u z u z u z u

λ λ λ λ

λ λ λ λ

λ λ λ λ

α α α

= = = =

= =
= = = =

= = = =

r rY Z Y Z

F F F F

F F F F

F F F F

λ λ

 (7) 

In this case, the pseudo-differential equations are reduced to systems of algebraic equations. Solutions of these equations are 
introduced in the external forms of the functional equations in (4) and (5).  

4. Solving the Boundary Value Problem.  

To construct solutions to boundary problems, it is necessary to pair lithospheric plates with a three-dimensional base that has 
three-dimensional displacement and stress vectors on the border. To do this, it is necessary to present the parameters of the 
stress-strain state of lithospheric plates in the same form. To do this, enter the characteristics of both the left and right 
lithospheric plates into the vector representation.  

{ } { } { } { }3 3 1 2 3 1 2 30,0, , 0,0, , , , , , ,r r r r r r r rS S S Sλ λ λ λω ω ω ω= = = =S Sω ω   

Then the solutions in each plate can be represented as 

( ) ( )[ ] ( )

( ) [ ]

11
1 2 2 1 2 1 2

1

1 2

1
1 2

, ,0 , ( , ) ,

0 0 0

0,0, , ( , ) 0 0 0

0 0 ( , )

x x x x i i

u i i

R i i

λ

λ λ λ λ

λ λ λ

λ

α α

α α

α α

−−

∂Ω

−

−

= − − − +

= − − =
− −

∫u F R S

u R

ω

 (8) 

We perform the operation of building a factor topology-gluing block elements. All three components of the movement of 
lithospheric plates, both normal and tangent, are conjugated with the movements of the upper boundary of the base. We get 
relations of the form 

( ) ( ) ( ) ( )[ ( )
( ) ] ( ) ( ) ( )

[ ]

1
1 2 1 2 1 2 6 1 2 1 2

1 2 1 2 2 1 2 1 2 2 1 2

11
2 1 2 1 2

, ,0 , ,0 , ,0 , ,0 ,

, , , , , ( , ) ,

( , ) ( , ) , ,
p

r

r r r

p p p b

x x x x x x

x x x x

i i p r

θ λ

λ

ε α α α α

α α α α α α

α α α α λ

−

−−
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+ + = +

+ = =

= − − − + =∫

-1
2P u P u P u F K G

G G F P g G F P g

P u F R S

λ

λ

ω

 
(9) 

Here,
 

P
λ

, rP  θP - projectors on the left, right half-planes and on the middle interval, which are carriers of the corresponding 

plates and describing the interval 2x θ≤ . We add the relations (8) to the left parts of (9) and apply the Fourier transforms. Get the 

relations of the form 
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[ ]

[ ]

[ ]
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1 2

1

1 2

1 2 1 2 1 2
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x x

λ

λ λ λ θ

λ

θ θ

α α

α α
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∫

R S U

R S

K G G
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ω

ω
  

Vector functions 1 2 1 2( , ), ( , )rλ α α α αG G  that are Fourier transforms of functions with carriers in half-planes, there are regular 

functions of parameter
 2α  with fixed 1α  

in the lower and upper half-planes, respectively. In this regard, we can denote vector 

functions that are regular by parameter 2α  in the lower, minus sign, and in the upper, plus sign, half-planes by putting 

1 2 1 2 1 2 1 2,( , ) ( , ) ( , ) ( , )rλ
α α α α α α α α= =− +G G G G   

By adding these notations to the previous relation, we arrive at the Wiener – Hopf matrix functional equation. 

( )

1 1 1 1
- 1 1 2 2 6 1 6

1 1 1 1 1
1 2 1 2

, , ,

( ), ,
r

r r

r r r r r x x
λ

θ λ λ

λ λ λ λ λ θ θ

ε ε− − − −
+

− − − − −

∂Ω ∂Ω

= + + = = − = −

= + − − =∫ ∫

-1 -1MG G V K U M K K K R K K K R

V K R R R T R T U F P u

ε ε

ω ω ε ε
  

Unknown functions in this equation are 1 2( , )α α±G , and their functionals of the form 1 2( , )α α± ±G . They need to be defined. 

This is achieved as follows. A system of Wiener-Hopf functional equations is solved. Its solutions have the following matrix 
structure. 

1 2 1 1 2 1 2 2 1 2 1 2

3 1 2 1 2 4 1 2 1 2 5 1 2

( , ) ( , ) ( , ) ( , ) ( , )

( , ) ' ( , ) ( , ) ' ( , ) ( , )

α α α α α α α α α α

α α α α α α α α α α

± ± + + ± − −

± + + ± − − ±

= + +

+ + +

G C G C G

C G C G C
  

Here the matrices 1 2 1 2( , ), ( , )n nα α α α+ −C C  are known, and the vectors 1 2( , )α α+ +G , 1 2( , )α α− −G , 1 2 1 2' ( , ), ' ( , )α α α α+ + − −G G  need to 

be defined. To determine them, we differentiate the first and second matrix equations by 2α . Put in the first matrix equation and 

in the differentiated equation 2 2α α += , and in the second matrix and in the differentiated equation 2 2α α −= . We obtain an 

algebraic system of matrix equations for determining all of the above unknown vectors, solving which we find the desired 
functions. Adding the found solutions to the relations (6), (7) makes it possible to fully determine the stress-strain state of the 
block structure under consideration. 

5. Result and Discussion 

The factorization approach described in [42] was used to study the features of solving the functional equation. The study of 
the properties of solutions of this matrix functional equation has led to new results that were not met before.  

 When, 0θ>  that is, when the ends of the plates are removed by a distance 2θ , the contact stresses on the edges of the 
plates have a representation [42] of the form 

0,5 0,5
3 1 2 1 1 2 2 2 1 2 2 2

0,5 0,5
1 2 1 1 2 2 2 1 2 2 2

( , ) ( , )( ) ( , )( ) ,

( , ) ( , )( ) ( , )( ) , 0i i
r r r

g x x x x x x x x x

x x x x x x x x x

λ λ λ

γ γ

σ θ σ θ θ

θ θ θ γ

− −

− + − −

= − − + − − < −

= − + − > >g σ σ

 (10) 

Functions , 1,2n nλ =σ  and vectors , 1,2nr n =σ  are continuous in both parameters. The parameter γ  has representation 

( )arcth[1 2 ] / [2 1 ]γ ν ν= − −  where ν  is the Poisson ratio. When 0θ = , that is, when the ends of the plates are completely 

converged, both in the presence γ  and without it, the contact stresses have the form 

0,5
1 2 1 2 2

1
3 1 2 3 1 2 2

1
3 1 2 3 1 2 2

( , ) ( , )

1,2

( , ) ( , )

( , ) ( , )

i
nr nr

r r

g x x x x x

n

g x x x x x

g x x x x x

γ

λ λ

σ

σ

σ

− +

−

−

=
=

→

→

  

All functions 3 1 2 3 1 2( , ), ( , )rx x x xλσ σ  and 1 2( , ), 1,2nr x x n =σ  are continuous on both variables. All functions and are 

continuous over both variables. Knowing the stress concentrations obtained above, we can the movement of the surface of 

lithospheric plates in the fault zone can be calculated, as described in [1, 2]. The fault under consideration, located between the 

lithospheric plates, is a new type of crack [40, 41]. The result described in the article was obtained for the first time. It shows that a 

tsunami can occur if there is a vertical movement of the right and left lithospheric plates. This will happen if the pressure on the 

left and right fault plates is so loaded that stress concentrations are destructive under each plate. If, for example, they are weaker, 

then in this case, there will be no destruction. If the destructive load is realized only for the left plate, which arises from the 

pressure of the continental plate, then the destruction will occur to the left of the fault. Thus, the new type of cracks that occur in 

seismology in the form of faults can destroy the environment directionally, one or the other side. This is evidenced by the results 

of this article, obtained for the first time. Griffiths cracks destroy the environment in a straight line. Griffiths cracks are formed as 

a result of virtual compression from the sides of an elliptical cavity in the plate and have a smooth border Fig. 4.  

The new type of cracks are obtained as a result of virtual compression from the sides of a rectangular cavity in the plate and 

have a piecewise smooth border Fig. 5. The laws of fracture crack of a new type may be useful in engineering practice. 
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Fig. 4. Diagram of the formation of Griffiths cracks. 

 

Fig. 5. Scheme of formation of cracks of a new type. 

6. Conclusion  

Comparing this result with those obtained in [1,2] , it can be noted that when conditions for starting earthquakes appear in a 
block structure consisting of two lithospheric plates on a rigid base, only singular vertical stress concentrations in the converging 
lithospheric plates will cause an earthquake. The concentrations of contact stresses under the right lithospheric plate under 
horizontal impacts are summable, with limited energy and are not capable of destroying the environment. If the vertical impacts 
on the lithospheric plates are sufficient for the occurrence of the initial earthquake, then an instantaneous vertical displacement 
of the fault banks will occur at the epicenter on the surface of the plates. It can cause a tsunami due to a sharp change in the level 
of the ocean over the banks of the fault. Horizontal displacements of the right lithospheric plate cannot cause a tsunami. The 
fault of converging lithospheric plates is a new type of crack. Its feature is the ability to destroy the environment not only in the 
direction of its continuation, but also in lateral directions. Destruction is carried out by concentrations of contact stresses that 
occur in the zones of contact of lithospheric plates with the base at the top of the crack. 
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Nomenclature 

3 3,b bt g  Normal stresses 2kg m     H  Thickness of the base layer [ ]m  

1 2,b bg g  Horizontal bottom stresses 2kg m     bh  Thickness of lithospheric plates [ ]m  

1 2,b bt t  Horizontal top stresses 2kg m     { }1 2 3, ,b b bu u u=bu  Vector of displacement [ ]m  

bE  Young's modulus 2kg m     1 1 1( )α≡F F  One-dimensional Fourier transform operators 

bµ  Shear modulus 2kg m     2 2 1 2( , )α α≡F F  Two-dimensional Fourier transform 

bν  Poisson's ratio 1 2,α α  Parameters of the Fourier transform 

3 3,b bt g  Vector normal stresses 2kg m     1 2( , )α αK  Core of the integral equation 

1 2,b bg g  Vector horizontal stresses 2kg m     3bω  Scalar external form 

1 2,b bt t  Vector horizontal stresses 2kg m     rω  Vector external form 

θ  Distance between lithospheric plates [ ]m    
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