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Abstract. Control strategies for the visco-elastic Beck’s beam, equipped with distributed piezoelectric devices and
suffering from Hopf bifurcation triggered by a follower force, are proposed in this paper. The equations of motion of
the Piezo-Electro-Mechanical (PEM) system are derived through the Extended Hamilton Principle, under the assump-
tion that the piezoelectric patches are shunted to the so-called zero-order network and zero-order analog electrical
circuit. An exact solution for the eigenvalue problem is worked out for the PEM system, while an asymptotic analysis
is carried out to define three control strategies, recently developed for discrete PEM systems, that are here adapted
to improve the linear stability of the visco-elastic Beck’s beam. An extensive parametric study on the piezo-electrical
quantities, based on an exact linear stability analysis of the PEM system, is then performed to investigate the effec-
tiveness of the controllers.
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1. Introduction

Structural vibration mitigation is an interesting topic, that has been widely investigated due to its relevance in various fields
of engineering applications. Among the most used control devices, there are the so-called Tuned Mass Damper (TMD) [1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12] and the Nonlinear Energy Sink (NES) [13, 14, 15, 16, 17]. Both TMD- and NES-based control is grounded on the
idea that structural vibration mitigation can be obtained when the response of the controller (secondary system) resembles that
of the structure (primary system): this is known as the ‘principle of similarity’ [18]. Indeed, the frequency of the TMD is closely
tuned to that of the primary system, thus entailing the splitting of one peak of the frequency-response curve into two lower peaks
and, accordingly, a reduction of the response of the primary system to the external resonant excitations. In the NES-based control
similarity is achieved by connecting the device to the primary system through an essentially nonlinear elastic spring, thus rendering
it able to self-tune itself to the requested frequency, and allowing it to work in a larger frequency range with respect to TMD.

Since their first introduction in the early 1990s, piezoelectric materials have received great attention from researchers and re-
lated industrial applications have increased over the years. They have been exploited also asmetamaterials to obtain smart systems
[19, 20], with application as well in the context of civil and industrial engineering structures [21]. Piezoelectric controllers are usu-
ally designed according to the principle of similarity, i.e. by tuning the resonance(s) of the electric circuit, which is shunted to
piezoelectric device(s), to one (or more) natural frequencies of the mechanical system. Therefore, they could behave as a TMD,
or as an array of distributed TMDs, with the advantage of a simpler tuning procedure and less added weight than classic TMD. In
[22, 23, 24, 25, 26, 27, 28, 29, 30, 31] Piezo-Electro-Mechanical (PEM) systems are built up, by attaching arrays of piezoelectric patches
to primary systems and designing ‘similar’ analogous circuits. Due to the electro-mechanical coupling, the mechanical energy is al-
lowed to migrate to the electrical circuit and then dissipated by optimized resistors. In particular in [31], different analogous circuits
are formalized, by properly changing the space and time derivatives governing the flux-linkage equation.

Research on vibration mitigation is mainly oriented to analyze the behavior of controlled non-autonomous systems, subjected
then to external excitation, while further efforts may still be conducted to understand the response of controlled autonomous systems
under the action of non-conservative forces, of velocity- and/or position-dependent type. Several applications of structures, ranging
from aerospace to sport engineering, indeed, are subjected to this class of actions, e.g.: aircrafts, arrows, wings, sails, jets and
rocket motors, tall buildings, flexible pipes, vehicle brakes, javelins and arrows. Moreover, autonomous systems, loaded by non-
conservative forces of positional type such as follower forces, i.e. so-called ‘circulatory systems’, may exhibit the Ziegler’s paradox
(see, e.g., [32, 33, 34, 35, 36, 37, 38, 39, 40, 41]). This phenomenon consists in a destabilizing effect of damping, that manifests itself
through a finite reduction of the Hopf critical load of a circulatory system, when a small damping is added to it.

Piezoelectric control of autonomous systems, under follower forces is developed in [42, 43, 44, 18, 45, 46, 47]. In [42, 43] piezoelec-
tric devices are attached to a column and to a viscoelastic plate, respectively, and their effect in increasing the systems stability is
discussed. The principle of similarity was not actually applied, since the non-conservative effect, due to the follower force, is present
only in the primary system. In [18] it is shown that the similarity fails in controlling stability of non-conservative systems loaded by
follower forces, since similar controllers double the pair of the critical eigenvalues of the structure (lying on the imaginary axis) and
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the gyroscopic (piezoelectric) coupling splits them, generally entailing instability. The detrimental effects of a similar controller on
the stability of a generalized visco-elastic Beck’s beam (see, e.g., [33, 40, 48]) are also discussed in [18] where it is also conjectured
that a suitable designed non-similar PEM system could be successful in enhancing the stability performances of the beam. Control
strategies for non-similar and discrete PEM systems are defined in [44], for discrete systems, and it is shown that piezoelectric con-
trollers may successfully improve both the linear stability and the nonlinear behavior [45, 46] of the Ziegler’s column [34], also in the
presence of nonlinear damping [47].

Hence in this work, the performance of non-similar controllers, designed following the strategies of [44], is investigated for a
continuous system, the well-known visco-elastic Beck’s beam [33, 41, 40, 38], i.e. a damped cantilevered beam, loaded at the free-end
by a follower force, which triggers Hopf bifurcation. For this mechanical system in [41], the effects of lumped dashpots on the linear
stability are studied with the aim to increase the Hopf critical load. In this paper, the same goal is pursued by equipping the beam
with distributed piezoelectric devices, that are shunted to an analogous circuit, designed as the simplest possible of those presented
in [31]. An exact linear stability analysis is developed to show the effectiveness of the proposed piezoelectric control, in improving
the beam stability.

The paper is organized as follows. In Sect 2. the model of the PEM system is presented. In Sect 3. an exact linear stability
analysis is developed for both uncontrolled and controlled primary system. In Sect 4. the control strategies of [44] are adapted to
the visco-elastic Beck’s beam. In Sect 5. numerical evaluation of the stability domains is presented for different mechanical and
electrical parameters. In Sect 6. concluding remarks are drawn. Finally, an Appendix, containing details on model derivation, closes
the paper.

2. The Piezo-Electro-Mechanical model

A planar beam, displayed in Fig 1, is considered as the mechanical primary system. It is an Euler-Bernoulli beam, clamped at the
end A and free at the end B, of length ℓ, cross-section inertia I, mass per unit-length ρ. A follower force of intensity F is applied at
the beam tip B, thus entailing its compression in the reference rectilinear configuration. The direction of the force remains aligned
with the tangent to the deflected beam axis. The beam is made of a visco-elastic material obeying the Kelvin–Voigt law, of elastic
modulus E, and viscous coefficient η, which will be referred to as the ‘internal damping’. It is also assumed that the beam lies on a
viscous linear soil of constant c, to model the damping due to surrounding air, which will be called ahead the ‘external damping’.
The system here described is known in the literature as the visco-elastic Beck’s beam (see, e.g., [33, 38, 36, 40, 41, 49]).

Distributed piezoelectric devices are attached to the beam (here idealized as a continuous layer bonded to the beam and covering
the whole structure), and shunted to an electric circuit. This latter, sketched in Fig 1 with the box E.C., was designed in [31] to control
the vibrations of non-autonomous systems: it consists in a chain of interconnected RCL elements, called there zero-order network
and zero-order dissipation, namely (Z,Z), where (·, ·) has the meaning of the order of spatial derivatives appearing in damping- and
stiffness-like terms, entering in the flux-linkage equation, as it will be clear soon. In this way a Piezo-Electro-Mechanical (PEM)
system is built up.

The current state of the PEM system is described, at time t by: (i) the axial and transverse displacements of the beam, u (s, t) and
v (s, t), respectively, and by the rotation of the beam cross-section ϑ (s, t) = v′ (s, t), all referred to the initially straight configuration,
s ∈ [0, ℓ] being the material abscissa and the prime denoting s-differentiation; (ii) the flux-linkage ψ (s, t), which is the time primitive
of the electric potential.

E.C.

Fig. 1. Piezoelectric-controlled visco-elastic Beck’s beam.

The equations of motion of the PEM are derived through the Extended Hamilton Principle (see A for details on derivation). In
non-dimensional form they read:

v̈ + βmv̇ + αmv̇
′′′′ + v′′′′ + 2µv′′ − γψ̇′′ = 0,

νeψ̈ + βeψ̇ + κeψ + γv̇′′ = 0,

vA = v′A = 0,

− v′′′B − αmv̇
′′′
B + γψ̇′

B = 0,

v′′B + αmv̇
′′
B − γψ̇B = 0,

(1)

where the dot denotes t-differentiation. Equations (2)-a,b are the field equations; Eqs (2)-c and (2)-d,e are the geometrical and
mechanical boundary conditions at A and B, respectively. Moreover, αm and βθ (θ = m, e) are the non-dimensional internal and
external (mechanical and electrical) damping coefficients, respectively; νe and κe are the, here referred to as, non-dimensional
electricalmass and stiffness, respectively. Finally, γ is the coupling parameter and µ is the non-conservative force, which, throughout
the paper, is taken as the main bifurcation parameter.
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Fig. 2. Linear stability diagram for the visco-elastic Beck’s beam: (a) µ-isolines in the (βm, αm)-plane; (b) β-isolines in the (αm, µ)-plane. S stable
region, U unstable region.

3. Linear stability analysis

In this section an exact linear stability analysis is carried out for the PEM system. First the problem is addressed for the uncon-
trolled visco-elastic Beck’s beam (γ = 0) and some results of literature are recalled (the reader is referred to [48, 40, 49, 38]). Then,
the analysis is developed for the whole PEM system, aiming at build up the stability domains.

3.1 The mechanical subsystem

Stability of the trivial, rectilinear configuration of the visco-elastic Beck’s beam is governed by the linear eigenvalue problem,
associated with Eq (1). This space boundary value problem is obtained by taking a solution in the form v (s, t) = v̂ (s) eλt, and by
substituting it in Eq (1), that becomes:

(1 + αmλ) v̂
′′′′ + 2µv̂′′ +

(
λ2 + βmλ

)
v̂ = 0,

v̂A = v̂′A = 0,

− (1 + αmλ) v̂
′′′
B = 0,

(1 + αmλ) v̂
′′
B = 0.

(2)

The field equation (2)-a and the boundary conditions at the clamp A, Eq (2)-b, lead to the solution:

v̂ (s) = c1 [cos(ps)− cosh(qs)] + c2

[
sin(ps)

p
−

sinh(qs)
q

]
, (3)

where p = p (λ, µ, αm, βm) ∈ C and q = q (λ, µ, αm, βm) ∈ C. By enforcing the remaining boundary conditions at the free end B, an
algebraic system is obtained, namely:

Sλc = 0, (4)

where c := (c1, c2)
T is a vector collecting arbitrary constants, and Sλ is the ‘dynamic stiffness matrix’ of the problem, function of the

eigenvalue λ, of the control parameter µ, and of auxiliary parameters αm, βm, i.e. Sλ = Sλ(λ;µ;αm, βm). The characteristic equation
detSλ = 0 provides the eigenvalues λ = λ (µ;αm, βm); by letting λ = ξ + iω, with ξ, ω ∈ R, it can be written in real variables as:

f (ξ, ω;µ;αm, βm) + i g (ξ, ω;µ;αm, βm) = 0, (5)

with f, g ∈ R. For a given set of parameters (µ;αm, βm), the system f = 0, g = 0 furnishes the unknowns ξ, ω. Once the eigenvalue
is known, the solution of the (singular) system (4), under a proper normalization condition, gives the associated eigenfunction (3).

The (generic) Hopf bifurcation takes place at the manifold of the parameter space at which ξ = 0, ω ̸= 0, namely:

f (0, ω;µ;αm, βm) = 0,

g (0, ω;µ;αm, βm) = 0.
(6)

System (6) implicitly defines a multi-valued surface in the (µ, αm, βm)-space, parametrized by the frequency ω. It is important to
remark that, when damping is zero, i.e. αm = βm = 0, a circulatory system is obtained for which all the eigenvalues have zero
real part (they lie on the imaginary axis). In this case, a ’circulatory’ or ’reversible’ Hopf bifurcation occurs at the manifold of the
parameter plane on which two simple eigenvalues merge into a double eigenvalue. The manifold can no more be defined by the
system (6), since the second equation is identically zero, i.e. g (0, ω;µ;αm, βm) ≡ 0, hence, when this coalescence takes place, the
Hopf bifurcation manifold is defined by Eq (6)-a together with ∂f/∂ω = 0 (see [48] for further details).
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Linear stability diagram of the visco-elastic Beck’s beam

The linear stability diagram of the uncontrolled visco-elastic Beck’s beam (γ = 0) is determined by solving system (6), i.e. by
evaluating the parameters combination at which a generic Hopf bifurcation takes place. No closed-form solutions of Eqs (6) can be
found, but asymptotic and numerical methods can be applied. It is found (see, e.g., [40, 38]) that, when µ increases from zero, the
first eigenvalue, i.e. the one having the lowest frequency, is the responsible for the loss of stability of the beam, which occurs at a
critical load value µd (subscript dmeans damped system), and at critical frequency ωd, both depending on damping.

Figure 2-a shows the linear stability diagram of the visco-elastic Beck’s beam, in the (βm, αm)-plane, obtained by numerically
solving system (6). Each contour line µ = const of Fig 2-a, belongs to the critical locus, i.e. to the slice of the surface (6) that
defines the parameters combination at which the first mode of the beam manifests incipient instability. The points on the contour
lines represent generic Hopf bifurcation states: on the left side of each contour line, there are unstable systems (labeled with U in
Fig 2-a), while on its right side there are stable ones (labeled with S in Fig 2-a). It can be shown that (see, e.g., [36, 35, 38, 40, 39]),
the critical surface also contains the µ-axis, which represents the family of undamped systems (αm = βm = 0); these systems are
marginally stable, since the eigenvalues are purely imaginary and can only move along the imaginary axis, when µ changes. The
circulatory Hopf bifurcation takes place at µ = µc ≃ 10.02 (subscript cmeans circulatory), at which the first two eigenvalues collide,
at a frequency ωc, and, if µc is overcome, they separate, each in one of the two half-planes of the complex plane, thus entailing
instability.

Figure 2-a clarifies the fact that, small internal damping αm is detrimental in terms of beam stability, since it produces a finite
lowering of the critical load from µc to µd that, in the absence of external damping βm can be lowered up to a minimum value
µd = 5.47, below which the beam is stable for any damping combination [40]. This phenomenon is known in the literature as the
‘Ziegler paradox’ or the ‘destabilizing effect of damping’. On the contrary, βm has a beneficial effect on the beam stability since,
for a given αm the critical load increases with it. In particular, αm = 0 represents an optimal direction in the damping plane, along
which, adding βm to the system entails µd ≥ µc and µd → µc as βm → 0, i.e. no destabilizing effect exists at all. Moreover Fig 2-a
shows that, when αm is sufficiently large, it can increase the critical load µd, becoming stabilizing. Then, for damping parameters
belonging to the region filled in light blue in Fig 2-a, the effects of the destabilization paradox are exhausted since µd > µc.

Finally, analogous considerations can be drawn by looking at Fig 2-b, where the βm contour lines of the critical surface are
displayed in the (µ, αm)-plane. In particular, it is worth to notice that:

• for a given βm, introducing a small αm entails µd < µc;

• the larger is βm, the lower is the destabilizing effect of αm;

• for a sufficiently large αm, the destabilizing effect of internal damping vanishes, i.e. µd > µc;

• for a given (αm, βm), the critical load µd increases with βm, but it can also increase with αm, providing it is sufficiently large.

3.2 The PEM system

Stability analysis of the PEM system is now discussed. Due to the simplicity of the adopted electric circuit, it is possible to pursue
an exact solution on the same line of that carried out for the primary system.

First, the general solution of Eqs (1) is written in the form v = v̂(s) eλ t and ψ = ψ̂(s) eλ t, thus entailing:

(1 + αmλ) v̂
′′′′ + 2µv̂′′ +

(
λ2 + βmλ

)
v̂ − γλψ̂′′ = 0,(

λ2νe + βeλ+ κe
)
ψ̂ + γλv̂′′ = 0,

v̂A = v̂′A = 0,

− (1 + αmλ) v̂
′′′
B + γλψ̂′

B = 0,

(1 + αmλ) v̂
′′
B − γλψ̂B = 0.

(7)

Then, from Eq (7)-b, ψ̂(s) is found to be:

ψ̂ = −
γλ

λ2νe + βeλ+ κe
v̂′′. (8)

By eliminating ψ̂(s) in Eqs (7)-a,d,e, the following eigenvalue problem is obtained:

(1 + αmλ+ αpλ) v̂
′′′′ + 2µv̂′′ +

(
λ2 + βmλ

)
v̂ = 0,

v̂A = v̂′A = 0,

− (1 + αmλ+ αpλ) v̂
′′′
B = 0,

(1 + αmλ+ αpλ) v̂
′′
B = 0,

(9)

where:

αp (λ) :=
γ2λ

λ2νe + βeλ+ κe
, (10)

is the dissipation term due to the piezoelectric coupling and depending on the eigenvalue λ. It is apparent that, the effect of the
controller is to add, to the mechanical subsystem, an internal damping-like term. In fact, the eigenvalue problem (9) is formally
equivalent to that of the visco-elastic Beck’s beam (9), when the substitution αm → αm+αp is performed. Therefore, Hopf bifurcation
manifolds (6), can be found by following the same procedure described for the mechanical subsystem; in particular, an implicitly
defined multi-valued surface in the (µ, αm, βm, νe, κe, βe, γ)-space, parametrized by the frequency ω, is obtained. The slice of the
surface associated with the condition of incipient instability of the eigenvalue, which first crosses from the left the imaginary axis,
is the critical surface.
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4. The control strategies

The target is now to conceive suitable control strategies, i.e. to design the parameters of the secondary system in such a way
that the Hopf bifurcation of the PEM system takes place at a critical value of the load parameter larger than µd, i.e. larger than the
critical load of the uncontrolled primary system. To this end, the approach adopted in [44] is followed, with the aim to find the
parameters of the controller, able to maximize the electrical dissipation for given mechanical properties.

The control strategies are defined by considering the primary system loaded at µ = µd, assuming, as usual in applications, a
small coupling γ, and by conceiving to make the following experience: (i) the controller is turned off, while the visco-elastic Beck’s
beam is allowed to harmonically oscillate at a certain large amplitude and with a frequency ωd; (ii) the controller is turned on, so
that its motion is forced, via the gyroscopic coupling, by the larger response of the mechanical system; (iii) the electrical response
grows up from zero andmodifies the mechanical response, again through the gyroscopic coupling. In this framework, the definition
of suitable control strategies consists in maximizing the response of the electrical subsystem, so that it can effectively dissipate the
mechanical energy during the exchange process.

The task is accomplished by performing a straightforward expansion of the eigenvalue λ0 = ±iωd, assuming the electrical
response smaller than the mechanical one, and by searching for singularities of the solution at which an ordering violation occurs.
In these singular cases, the electrical response cannot be considered small but, in contrast, it is of the same order of, or larger
than, the mechanical response. Following [44], a suitable perturbation method is applied (details not reported here) to solve the
eigenvalue problem (7) under the above mentioned assumptions. The coupling parameter is rescaled as γ → εγ, where 0 < ε≪ 1 is
a perturbation parameter, and eigenpairs are expanded as:

λ = λ0 + ε2λ2 +O
(
ε4

)
,

v̂ = v̂0 + ε2v̂2 +O
(
ε4

)
,

ψ̂ = εψ̂1 + ε3ψ̂3 +O
(
ε5

)
,

(11)

consistently with the idea that the electrical response is smaller than the mechanical one. Substituting the expansions (11) into the
problem (7), a chain of linear perturbation equations follows. By solving them in cascade, the following ε-order expression for the
electrical amplitude is found:

ψ̂1 = −
γiωdv̂

′′
0(

−ω2
dνe + iωdβe + κe

) , (12)

where v̂0 is the solution of Eq (2).
An analysis of Eq (12) reveals that, by taking βe sufficiently small, ψ̂1 tends to infinite or becomes of the same order of v̂0, when

the conditions which follow hold. In particular, three controllers, whose coupling to the primary system is linear and gyroscopic,
can be defined (see [44] for details), namely:

• Non-Singular (resonant) Controller (NSC): κe = O(1), νe = O(1) and κe/νe = ω2
d; moreover, βe = O(ε);

• Singular Non-Resonant Controller (SNRC): κe = O(ε), νe = O(ε) and κe/νe ̸= ω2
d; moreover βe = O (ε);

• Singular Resonant Controller (SRC); κe = O(ε), νe = O(ε) and κe/νe = ω2
d; moreover, βe = O

(
ε3/2

)
.

It is worth to notice that each of the controllers resembles the characteristics of well-known control devices, namely: the NSC and
the SRC those of the TMD, having large (NSC) or small (SRC)mass and stiffness, respectively, entailing a semi-simple (non-singular)
or a defective (singular) eigenvalue at the bifurcation; the SNRC is close to the NES.

5. Numerical results

In this section, the behavior of the three controllers is analyzed by evaluating the linear stability domains of the PEM system and
their dependence on the electrical parameters. To this end, an exact linear stability analysis, carried out along the lines discussed in
Sect 3., is performed, with the aim to detect how the controllers affect the stability of the PEM system, and to evaluate their effective-
ness in increasing the beam’s critical load µd. The linear stability diagrams of the PEM system, are built up by evaluating the exact
Hopf bifurcation loci, Eqs (6): these, for a given mechanical damping (αm, βm), depend on five parameters, namely µ, νe, κe, βe, γ.

Two sample beams are selected, differing each other for the choice of the damping parameters. They are referred to as ‘under-
damped’ and ‘overdamped’ beams, respectively, according to the role played by damping, which in the former case has a destabi-
lizing effect with respect to the undamped system, while in the latter is stabilizing (remember Fig 2). The two cases are:

• underdamped beam: αm = 0.01 and βm = 0.1, entailing µd = 6.46 and ωd = 5.92, labeled with a gray bullet in Fig 2-b;

• overdamped beam: αm = 0.2 and βm = 0.1, entailing µd = 10.99 and ωd = 5.82, labeled with a blue bullet in Fig 2-b.

Before analyzing the quantitative effect of each controller, a preliminary linear stability analysis is presented. The aim is to clarify
how the stability diagram of the uncontrolled primary system, Fig 2-b, with βm = 0.1 (which corresponds to the definition of both the
underdamped and overdamped beams) can change because of the piezoelectric control, i.e to show how αp, defined in Eq (10), affects
the beam’s critical load. Clearly, this type of analysis requires a careful design of the electrical parameters for a given mechanical
subsystem. The specific choice, here made for the electrical coefficients, will be justified ahead through parametric analyses.

Figure 3 shows the stability domains of the PEM system in the (µ, αm)-plane, when γ = 0.1 and βe = 0.05, 0.25, 0.5. The PEM
system is equipped with: (i) NSC controller (Fig 3-a), when νe = 1, κe = ω2

d; (ii) SRC controller (Fig 3-b), when νe = 0.1, κe = 0.1ω2
d;

(iii) SNRC controller (Fig 3-a), when νe = 0.1, κe = 0.5. In the same figure the boundary of the stability domain of the uncontrolled
beam is represented by the black line, which actually separates the stable region Su (on its left), from the unstable one Uu (on its
right), where subscript u stands for uncontrolled; the stability boundaries for the controlled cases are represented by the blue lines,
separating the stable region Sc (on the left of each of them) from the unstable one Uc (on the right), where subscript c stands for
controlled.

Concerning the effect of theNSC on the stability of the PEM system (Fig 3-a), it is observed that, independently from the electrical
damping, for small αm (underdamped region of the stability diagram), the controller has considerable detrimental effect, since it
reduces the stable region Sc, i.e. the boundaries of the controlled system are on the left of the uncontrolled one; when αm increases
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(entering the overdamped region of the stability diagram), the NSC can have a beneficial effect, providing a proper design of βe. A
qualitative analogous behavior is shown by the SRC (Fig 3-b), for which, however, a higher sensitivity to βe is detected with respect
to the NSC, since it can have a significant quantitative effect in reducing or enlarging the stable region of the PEM system. Finally,
the SNRC (Fig 3-c) can have a beneficial effect on the beam’s stability, independently from αm, i.e. in both the underdamped and
overdamped regions: indeed, the boundaries of the controlled system are on the right of the uncontrolled one, providing a proper
choice of βe.
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Fig. 3. Stability domains of the PEM system in the (µ, αm)-plane, when γ = 0.1, βe = 0.05, 0.25, 0.5 and: (a) νe = 1 (NSC); (b) νe = 0.1 (SRC);
(c) νe = 0.1, κe = 0.5 (SNRC). Black lines correspond to uncontrolled beam. Blue lines correspond to controlled beam. Su, Uu denote stable and
unstable regions of the uncontrolled system. Sc, Uc denote stable and unstable regions of the controlled system.

The underdamped PEM system

Attention is here focused on the performance of the controllers in the underdamped PEM system. It was observed that, at low
αm, the contribution to PEM’s stability ofNSC and SRC (remember Figs 3-a,b) is detrimental, independently on βe, while the SNRC
revealed to be effective in the underdamped region (see Fig 3-c), providing a suitable design of βe.

The linear stability diagrams are reported in Fig 4 for the PEM system equipped with the three controllers: the Hopf bifurcation
loci are represented in the (∆µ, νe)-plane, ∆µ := 100(µ− µd)/µd being the percentage variation of the critical load of the controlled
system with respect to the uncontrolled one. The coupling parameter is taken γ = 0.1 and the electrical damping is varied, namely
βe = 0.05, 0.1, 0.2. Moreover: (i) for the NSC (Fig 4-a), the electrical mass is varied in the range νe ∈ [0.5, 4]; (ii) for the SRC (Fig 4-b),
νe ∈ (0, 0.5]; for the SNRC (Fig 4-c,d), the electrical mass is varied in the same range of the SRC, namely νe ∈ (0, 0.5], while two
values of κe are chosen, namely κe := κe,1 = 0.5 (Fig 4-c) and κe := κe,2 = 15 (Fig 4-d), to avoid tuning, and to give rise to, here
referred to as, sub-resonant and super-resonant controller, whose undamped electrical frequencies are, respectively, smaller and larger
with respect to the mechanical one.

It is found that theNSC (Fig 4-a) is not able to increase the beam’s critical load, disrespecting the adopted βe, since the Hopf loci
of the controlled system are on the left of the uncontrolled beam (i.e. ∆µ < 0). Therefore, in the underdamped case, the gyroscopic
coupling, together with resonance, reveals to be detrimental in terms of beam stability. A very similar behavior is observed when the
SRC controller is considered (Fig 4-b). Also in this case, it is apparent that, notwithstanding the different scaling of the parameters
and the defectiveness of the eigenvalues at the bifurcation, the SRC qualitatively behaves as the NSC, namely the Hopf loci are
mostly located in the stable region of the uncontrolled beam, ∆µ < 0: however, as shown in the figure, a suitable design of νe and
βe may allow to find limited stable regions at ∆µ > 0.

It is important to remark that the non-similar PEM system, built up with the visco-elastic Beck’s beam and the (Z,Z) circuit,
cannot be successfully controlled, in the underdamped case, with the resonant controllers NSC and SRC, which, indeed produce
detrimental effects on the beam’s stability. This behavior is not surprising, since it was also detected in [44], for a discrete non-similar
PEM system, i.e. the Ziegler’s column controlled withNSC and SRC. In particular, it was shown there that resonant controllers can
stabilize the primary system only: (i) when they do not act on all its degrees of freedom, i.e. they are located in suitable positions;
(ii) at higher values of the mechanical damping, i.e. for overdamped structures, where, however, small stabilizing regions were
detected.

The last controller to be investigated is the SNRC. It is seen that the sub-resonant designed controller (Fig 4-c) is effective in
increasing beam’s stability, since, for a sufficiently large νe, i.e. quite close to the resonance condition, the stability boundaries are
located on the right of the axis∆µ = 0: accordingly, the stable region of the controlled system, which is on the left of each βe-isoline
and denoted with Sc, increases with respect to that of the uncontrolled one: in particular, the larger βe the smaller the extension of
the stable region Sc. Moreover, it is worth to observe that if νe is too large, the controller contribution becomes negligible (∆µ→ 0).
On the contrary, the smaller νe, the larger Sc, but, when νe is such that

√
κe/νe is too close to ωd, the SNRC behaves as the SRC,

i.e. it has a detrimental effect on the beam’s stability (∆µ < 0). Moreover, concerning the super-resonant designed controller (Fig
4-d), it is found that the stability boundaries (blue lines) appear on the left of ∆µ = 0, thus the SNRC has a detrimental effect,
independently from βe; also in this case it can be seen that, close to the resonance, the behavior of the SNRC tends to resemble
that of the SRC (not shown in the figure).

It is important to remark that the effectiveness of the SNRC depends on the ratio κe/νe. In particular, the underdamped PEM
system can be controlled by the SNRC, quite far from the resonance, i.e. κe/νe ̸= ω2

d, and in sub-resonant condition, i.e.
√
κe/νe <

ωd. However, if κe/νe is taken too far from ω2
d, the resulting piezoelectric control may become negligible.

In order to complete the investigation about the effectiveness of the SNRC, the stability boundaries of the underdamped PEM
system are evaluated: (i) in the (∆µ, κe)-plane, when γ = 0.1, νe = 0.1 and βe = 0.05, 0.1, 0.2, Fig 5-a; (ii) in the (∆µ, βe)-plane, when
νe = 0.1, κe = 0.5 (sub-resonant controller) and γ = 0.1, 0.15, 0.2, Fig 5-b. It is found that the larger κe the higher the load increment
(see Fig 5-a), but, on the other hand, it is necessary to avoid the resonance-induced detrimental effects, according to what discussed
above. Moreover, it is seen that βe must be taken as small as possible, since when it increases, a reduction of the load increment is
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Fig. 4. Stability domains of the underdamped PEM system in the (∆µ, νe)-plane, when γ = 0.1 and βe = 0.05, 0.1, 0.2: (a)NSC; (b) SRC; (c), (d) SNRC
when κe,1 = 0.5 and κe,2 = 15, respectively. Su, Uu denote stable and unstable regions of the uncontrolled system. Sc, Uc denote stable and unstable
regions of the controlled system.

detected. This effect can be better observed in Fig 5-b, i.e. in the (∆µ, βe)-plane: indeed, when βe is sufficiently small, considerably
large load increments are detected, but when it is close to zero, ∆µ can be very small or negative. The curve cusp in Fig 5-b denotes
a change of the eigenvalue which triggers instability. Finally, it is seen in Fig 5-b that, when βe is sufficiently large, the piezoelectric
contribution becomes negligible, and when γ increases, the piezoelectric control becomes more effective.

The overdamped PEM system

The stability analysis is developed here to evaluate the performance of the controllers in the overdamped PEM system. It was
observed that, at large αm, the behavior of NSC and SRC depends on a suitable design of βe (remember Figs 3-a,b), while the
effectiveness of SNRC revealed to be less sensitive to βe (see Fig 3-c).

As previously done, the linear stability diagrams are shown in Fig 6, for the three controllers, in the (∆µ, νe)-plane, when γ = 0.1
and βe = 0.05, 0.1, 0.2. The same ranges of νe, adopted for the underdamped case, are selected.

The behavior of the NSC (Fig 6-a) is close to that observed in the underdamped case, when βe is sufficiently small, i.e. the
controller has a detrimental effect; however, if a sufficiently large βe is selected, small stable regions at ∆µ > 0 may be also found.
Moreover, it is found that the SRC (Fig 6-b) is much more effective in the overdamped case, since large load increments arise for
suitably designed βe: again, it is seen that βe must be sufficiently small, since, the stable region reduces when βe becomes too
large, i.e. the controller is ineffective. It is important to remark that these results confirm what found in [44], i.e. non-similar and
overdamped PEM systems may be successfully controlled also by resonant controllers (NSC, SRC).

The effect of the SNRC in the overdamped PEM system is quite similar to that of the underdamped case, in both sub-resonant
(Fig 6-c) and super-resonant (Fig 6-d) designed controllers. Indeed, stable regions are found at ∆µ > 0, when κe = κe,1 (Fig 6-c), and,
close to the resonance, the effectiveness of the controller is maximized. However, differently from the underdamped case, here:
(i) the regions in which ∆µ < 0 are negligible and detected for very small βe; (ii) the electrical damping can be optimized (i.e. not
the smallest possible like in the underdamped case, remember Fig 5-b), in order to maximize the load increment. Moreover, in the
super-resonant case, when κe = κe,2 (Fig 6-d), the SNRC has mostly a detrimental effect: this confirms what already found in the
underdamped case, but, here, when the SNRC approaches the resonance, i.e. it resembles the SRC, and for sufficiently large βe, it
becomes effective in stabilizing the PEM system.

In order to better understand the performance of the NSC and SRC in the overdamped PEM system, the stability domains in
the (∆µ, βe)-plane are shown in Fig 7, when γ = 0.1, 0.15, 0.2. In particular, Fig 7-a is referred to NSC, when νe = 1, while Fig 7-b is
relevant to the SRC, when νe = 0.1. It is seen that at low values of βe, both the NSC and SRC are detrimental in terms of stability,
i.e. ∆µ < 0, but stabilization is possible when βe increases; however, when βe is too large, a reduction of the stable regions, which
tend to that of the uncontrolled beam (∆µ = 0), is experienced. Therefore, it can be seen that an optimal value of βe exists which
for a given magnitude of the coupling parameter γ, maximizes the load increment. Again, it is found that the effectiveness of the
control increases with the coupling parameter. It is important to highlight that, when a curve cusp is encountered in Fig 7, a change
of the mode which triggers instability of the PEM system manifests itself.
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Fig. 5. Stability domains of the underdamped PEM system equipped with SNRC: (a) βe-isolines in the (∆µ, κe)-plane, when νe = 0.1 and γ = 0.1; (b)
γ-isolines in the (∆µ, βe)-plane, when νe = 0.1 and κe = 0.5. Su, Uu denote stable and unstable regions of the uncontrolled system. Sc, Uc denote
stable and unstable regions of the controlled system.

Finally, the stability domains of the overdamped PEM system, equipped with SNRC are shown in Fig 8, by adopting the same
electrical parameters of the underdamped case (remember Fig 5). In particular in Fig 8-a the linear stability diagram is displayed
in the (∆µ, κe)-plane, while in Fig 8-b it is shown in the (∆µ, βe)-plane. Similarly to what observed in the underdamped case, the
stability of the PEM system slightly improves when κe increases, see Fig 8-a. Moreover, also for the SNRC an optimal value for the
electrical damping may be designed to maximize the load increment, see Fig 8-b: indeed, βe allows an increase of the Hopf load
until it exceeds a threshold above which the load increment reduces, tending to that of the uncontrolled beam. It is remarked that,
βe = 0 is out of the range of Fig 8-b to avoid, as already observed in the underdamped case, that the PEM system encounters the
Hopf bifurcation at ∆µ < 0 (see Fig 5-b). Also in this case, the larger γ, the larger the beneficial effect of the controller.

6. Conclusions

Control strategies for the visco-elastic Beck’s beam, suffering from Hopf bifurcation due to the presence of a follower force,
have been proposed in this paper. Distributed piezoelectric patches, shunted to the so-called (Z,Z) electric circuit, have been taken
as the control device. The equations of motion, governing the resulting non-similar Piezo-Electro-Mechanical (PEM) system, have
been derived through the Extended Hamilton Principle. The exact solution of the eigenvalue problem has been worked out for the
PEM system. An asymptotic analysis revealed the possibility to adopt three different controllers, recently developed for discrete
PEM systems, in which the mechanical and electrical subsystems are coupled by small terms of gyroscopic nature. An exact linear
stability analysis has been carried out to show the effectiveness of the controllers in improving the linear stability of the visco-elastic
Beck’s beam, for different mechanical damping parameters, giving rise to an underdamped and overdamped system. A parametric
analysis has also been developed to detect the role played by each of the electrical parameters. The following conclusions are drawn.

1. The overall effect of the designed piezoelectric control is to add an internal damping-like term, function of the eigenvalue, to
the primary system: the destabilizing effect due to the (mechanical) internal damping, can bemitigated by properly governing
the magnitude of the piezoelectric damping.

2. The resonant controllers, namely NSC and SRC, are detrimental in terms of stability of the underdamped PEM system, ir-
respectively from the magnitude of electrical damping: indeed, as it occurs when the controller is similar, the secondary
system doubles the pair of the critical eigenvalues and the gyroscopic coupling splits them, generally causing Hopf bifurca-
tion at a critical load lower than that of the uncontrolled system. Moderately extended stable regions may be found for the
overdamped PEM system, when the electrical damping is suitably designed.

3. The non-resonant controller, namely SNRC, successfully works in improving the linear stability of the underdamped PEM
system, provided that its undamped frequency is sufficiently smaller than the critical frequency of the beam. In this case
the smaller is the electrical damping, the higher is the beneficial effect. The SNRC is effective also in the overdamped case,
where an optimal value of electrical damping, which maximizes the critical load increment has been numerically detected.

4. A suitable design of the SNRC may effectively improve the linear stability of the visco-elastic Beck’s beam. However, a careful
sensitivity analysis is required to avoid detrimental effects caused by resonance and to properly design the electrical damping
parameter.

5. The effectiveness of the controllers, in all the analyzed cases, increases with the magnitude of the gyroscopic coupling.

The study allowed to investigate the effectiveness of the proposed piezoelectric controller in enhancing the linear stability of the
Beck’s beam. Further investigationsmay be conducted to analyze the post-critical scenarios that the controlled beammay experience
when endowedwith such controller and investigate its effectiveness inmitigating the limit-cycle oscillations arising beyond theHopf
critical load. Another interesting aspect is to consider more complex controllers, i.e. different analog circuits, to investigate their
effect on a richer PEM system stability.

Author Contributions

Arnaldo Casalotti and Francesco D’Annibale contributed equally to this work. Francesco D’Annibale conceived the scientific idea
of this paper. Arnaldo Casalotti and Francesco D’Annibale developed analytical solutions and carried out numerical simulations.

Journal of Applied and Computational Mechanics, Vol. 7, No. SI, (2021), 1098-1109



-6 -4 -2 0 2
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

-10 0 10 20 30
0.0

0.1

0.2

0.3

0.4

0.5

(a) (b)

-5 0 5 10 15 20 25 30
0.0

0.1

0.2

0.3

0.4

0.5

-8 -6 -4 -2 0 2 4
0.0

0.1

0.2

0.3

0.4

0.5

(c) (d)

Fig. 6. Stability domains of the overdamped PEM system in the (∆µ, νe)-plane, when γ = 0.1 and βe = 0.05, 0.1, 0.2: (a) NSC; (b) SRC; (c), (d) SNRC
when κe,1 = 0.5 and κe,2 = 15, respectively. Su, Uu denote stable and unstable regions of the uncontrolled system. Sc, Uc denote stable and unstable
regions of the controlled system.

Themanuscript was written through the contribution of both the authors. All authors discussed the results, reviewed and approved
the final version of the manuscript.

Conflict of Interest

The authors declared no potential conflicts of interest with respect to the research, authorship and publication of this article.

Funding

The authors received no financial support for the research, authorship and publication of this article.

References
[1] Frahm, H., Device for damping vibrations of bodies, 1911, US Patent 989,958.
[2] Den Hartog, J.P., Mechanical vibrations, Courier Corporation, 1985.
[3] Yamaguchi, H., Harnpornchai, N., Fundamental characteristics of multiple tunedmass dampers for suppressing harmonically forced oscillations,

Earthquake engineering & structural dynamics, 1993, 22(1), 51–62.
[4] Abé, M., Fujino, Y., Dynamic characterization of multiple tuned mass dampers and some design formulas, Earthquake engineering & structural

dynamics, 1994, 23(8), 813–835.
[5] Kareem, A., Kline, S., Performance of multiple mass dampers under random loading, Journal of structural engineering, 1995, 121(2), 348–361.
[6] Rana, R., Soong, T., Parametric study and simplified design of tuned mass dampers, Engineering structures, 1998, 20(3), 193–204.
[7] Gattulli, V., Di Fabio, F., Luongo, A., Simple and double hopf bifurcations in aeroelastic oscillators with tuned mass dampers, Journal of the Franklin

Institute, 2001, 338(2-3), 187–201.
[8] Gattulli, V., Di Fabio, F., Luongo, A., One to one resonant double Hopf bifurcation in aeroelastic oscillators with tuned mass damper, Journal of

Sound and Vibration, 2003, 262(2), 201–217.
[9] Gattulli, V., Di Fabio, F., Luongo, A., Nonlinear tuned mass damper for self-excited oscillations, Wind and Structures, 2004, 7(4), 251–264.

[10] Ubertini, F., Prevention of suspension bridge flutter using multiple tuned mass dampers, Wind and Structures, 2010, 13(3), 235–256.
[11] Viguié, R., Tuning methodology of nonlinear vibration absorbers coupled to nonlinear mechanical systems, Ph.D. thesis, PhD Thesis, 2010.
[12] Casalotti, A., Arena, A., Lacarbonara,W., Mitigation of post-flutter oscillations in suspension bridges by hysteretic tunedmass dampers, Engineering

Structures, 2014, 69, 62–71.
[13] Gendelman, O.V., Gourdon, E., Lamarque, C.H., Quasiperiodic energy pumping in coupled oscillators under periodic forcing, Journal of Sound and

Vibration, 2006, 294(4-5), 651–662.
[14] Gourdon, E., Alexander, N.A., Taylor, C.A., Lamarque, C.H., Pernot, S., Nonlinear energy pumping under transient forcing with strongly nonlinear

coupling: Theoretical and experimental results, Journal of sound and vibration, 2007, 300(3-5), 522–551.
[15] Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S., Nonlinear targeted energy transfer in mechanical and structural

systems, vol. 156, Springer Science & Business Media, 2008.

1106 Arnaldo Casalotti and Francesco D’Annibale, Vol. 7, No. SI, 2021

Journal of Applied and Computational Mechanics, Vol. 7, No. SI, (2021), 1098-1109



Improving the linear stability of the visco-elastic Beck’s beam via piezoelectric controllers 1107

-10 -5 0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

-20 0 20 40 60
0.0

0.2

0.4

0.6

0.8

1.0

(a) (b)

Fig. 7. Stability domains of the overdamped PEM in the (∆µ, βe)-plane, when γ = 0.1, 0.15, 0.2 and: (a) νe = 1 (NSC); (b) νe = 0.1 (SRC). Su, Uu

denote the stable and unstable regions of the uncontrolled system. Sc, Uc denote the stable and unstable regions of the controlled system.

-2 0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30
0.01

0.2

0.4

0.6

0.8

1

(a) (b)

Fig. 8. Stability domains of the underdamped PEM system equipped with SNRC: (a) βe-isolines in the (∆µ, κe)-plane, when νe = 0.1 and γ = 0.1;
(b) γ-isolines in the (∆µ, βe)-plane, when νe = 0.1 and κe = 0.5. Su, Uu denote the stable and unstable regions of the uncontrolled system. Sc, Uc

denote the stable and unstable regions of the controlled system.

[16] Luongo, A., Zulli, D., Dynamic analysis of externally excited nes-controlled systems via a mixed multiple scale/harmonic balance algorithm,
Nonlinear Dynamics, 2012, 70(3), 2049–2061.

[17] Luongo, A., Zulli, D., Aeroelastic instability analysis of nes-controlled systems via a mixed multiple scale/harmonic balance method, Journal of
Vibration and Control, 2014, 20(13), 1985–1998.

[18] D’Annibale, F., Rosi, G., Luongo, A., On the failure of the ’similar piezoelectric control’ in preventing loss of stability by nonconservative positional
forces, Zeitschrift für angewandte Mathematik und Physik, 2015, 66(4), 1949–1968.

[19] Del Vescovo, D., Giorgio, I., Dynamic problems for metamaterials: review of existing models and ideas for further research, International Journal of
Engineering Science, 2014, 80, 153–172.

[20] Giorgio, I., Galantucci, L., Della Corte, A., Del Vescovo, D., Piezo-electromechanical smart materials with distributed arrays of piezoelectric trans-
ducers: current and upcoming applications, International Journal of Applied Electromagnetics and Mechanics, 2015, 47(4), 1051–1084.

[21] Pagnini, L.C., Piccardo, G., The three-hinged arch as an example of piezomechanic passive controlled structure, Continuum Mechanics and Thermo-
dynamics, 2016, 28(5), 1247–1262.

[22] Alessandroni, S., Andreaus, U., dell’Isola, F., Porfiri, M., A passive electric controller for multimodal vibrations of thin plates, Computers and Struc-
tures, 2005, 83(15), 1236–1250.

[23] Andreaus, U., dell’Isola, F., Porfiri, M., Piezoelectric passive distributed controllers for beam flexural vibrations, Journal of Vibration and Control, 2004.
[24] Alessandroni, S., dell’Isola, F., Porfiri, M., A revival of electric analogs for vibrating mechanical systems aimed to their efficient control by PZT

actuators, International Journal of Solids and Structures, 2002, 39(5295-5324).
[25] Alessandroni, S., Andreaus, U., dell’Isola, F., Porfiri, M., Piezo-electromechanical (pem) kirchhoff–love plates, European Journal of Mechanics A/Solids,

2004, 23, 689–702.
[26] dell’Isola, F., Porfiri, M., Vidoli, S., Piezo-electromechanical (PEM) structures: passive vibration control using distributed piezoelectric transducers,

Comptes Rendus de l’Academie des Sciences, Mécanique, 2003, 331, 69–76.
[27] dell’Isola, F., Santini, E., Vigilante, D., Purely electrical damping of vibrations in arbitrary PEM plates: A mixed non-conforming FEM-Runge-Kutta

time evolution analysis, Archive of Applied Mechanics, 2003, 73(1-2), 26–48.
[28] dell’Isola, F., Maurini, C., Porfiri, M., Passive damping of beam vibrations through distributed electric networks and piezoelectric transducers:

prototype design and experimental validation, Smart Materials and Structures, 2004, 13(2), 299.
[29] Porfiri, M., dell’Isola, F., Frattale Mascioli, F., Circuit analog of a beam and its application to multimodal vibration damping, using piezoelectric

transducers, International Journal of Circuit Theory and Applications, 2004, 32(4), 167–198.
[30] Rosi, G., Control of sound radiation and transmission by means of passive piezoelectric networks: modelling, optimization and experimental

implementation, Ph.D. thesis, Sapienza University of Rome, University of Paris 6, 2010.
[31] Maurini, C., dell’Isola, F., Del Vescovo, D., Comparison of piezoelectronic networks acting as distributed vibration absorbers, Mechanical Systems

and Signal Processing, 2004, 18(5), 1243–1271.

Journal of Applied and Computational Mechanics, Vol. 7, No. SI, (2021), 1098-1109



[32] Bolotin, V.V., Nonconservative problems of the theory of elastic stability, Macmillan, New York, 1963.
[33] Beck, M., Die Knicklast des einseitig eingespannten, tangential gedrückten Stabes, Zeitschrift für angewandte Mathematik und Physik ZAMP, 1952,

3(3), 225–228.
[34] Ziegler, H., Die stabilitätskriterien der elastomechanik, Ingenieur Archiv, 1952, 20(1), 49–56.
[35] Seyranian, A., Mailybaev, A., Multiparameter stability theory with mechanical applications, vol. 13, World Scientific, Singapore, 2003.
[36] Kirillov, O.N., Nonconservative stability problems of modern physics, Walter de Gruyter, Berlin/Boston, 2013.
[37] Kirillov, O.N., A theory of the destabilization paradox in non-conservative systems, Acta Mechanica, 2005, 174(3-4), 145–166.
[38] Kirillov, O., Seyranian, A., The effect of small internal and external damping on the stability of distributed non-conservative systems, Journal of

Applied Mathematics and Mechanics, 2005, 69(4), 529–552.
[39] Luongo, A., D’Annibale, F., A paradigmatic minimal system to explain the Ziegler paradox, Continuum Mechanics and Thermodynamics, 2015, 27(1-2),

211–222.
[40] Luongo, A., D’Annibale, F., On the destabilizing effect of damping on discrete and continuous circulatory systems, Journal of Sound and Vibration,

2014, 333(24), 6723–6741.
[41] D’Annibale, F., Ferretti, M., Luongo, A., Improving the linear stability of the beck’s beam by added dashpots, International Journal of Mechanical

Sciences, 2016, 110, 151–159.
[42] Wang, Q., Quek, S.T., Enhancing flutter and buckling capacity of column by piezoelectric layers, International Journal of Solids and Structures, 2002,

39(16), 4167–4180.
[43] Wang, Y., Wang, Z., Zu, L., Stability of viscoelastic rectangular plate with a piezoelectric layer subjected to follower force, Archive of Applied Me-

chanics, 2012, 83(4), 495–507.
[44] D’Annibale, F., Rosi, G., Luongo, A., Linear stability of piezoelectric-controlled discrete mechanical systems under nonconservative positional

forces, Meccanica, 2015, 50(3), 825–839.
[45] D’Annibale, F., Rosi, G., Luongo, A., Controlling the limit-cycle of the ziegler column via a tuned piezoelectric damper, Mathematical Problems in

Engineering, 2015, 2015.
[46] D’Annibale, F., Rosi, G., Luongo, A., Piezoelectric control of hopf bifurcations: A non-linear discrete case study, International Journal of Non-Linear

Mechanics, 2016, 80, 160–169.
[47] D’Annibale, F., Piezoelectric control of the hopf bifurcation of ziegler’s columnwith nonlinear damping, Nonlinear Dynamics, 2016, 86(4), 2179–2192.
[48] Luongo, A., D’Annibale, F., Double zero bifurcation of non-linear viscoelastic beams under conservative and non-conservative loads, International

Journal of Non-Linear Mechanics, 2013, 1–12.
[49] Luongo, A., D’Annibale, F., Nonlinear hysteretic damping effects on the post-critical behaviour of the visco-elastic beck’s beam, Mathematics and

Mechanics of Solids, 2017, 22(6), 1347–1365.

ORCID iD

Arnaldo Casalotti https://orcid.org/0000-0002-9047-9523
Francesco D’Annibale https://orcid.org/0000-0002-6580-9586

Appendix A Model derivation

To derive the equations of motion, the same variational methodology of [18], to which the reader is referred to, is followed. There,
a meta-model of a PEM system was formulated through a variational approach and by enforcing similarity between the
mechanical and electrical subsystems, such that the electrical subsystem could have the same spectral properties of the primary
system. As a result the dynamical behavior of the PEM was governed by mechanical and electrical partial differential equations
having the same structure and proportional coefficients.
In the variational framework of [18], the following assumptions are made in the present paper.

1. The principle of similarity is not enforced in the derivation of the PEM model.

2. Linear configuration-dependent actions, i.e. follower forces, act in the system but, differently from [18], only on the
mechanical subsystem.

3. Linear kinematics is assumed for the beam and its axial behavior is not taken into account in what follows.

4. Linear velocity-dependent actions are considered in the PEM system, both of mechanical (damping) and electric (resistivity)
nature. In particular: (i) the external dissipation is considered in both the mechanical and electrical subsystems, where it is
proportional to the mass and resistance operators, respectively; (ii) the internal dissipation, derived by adopting a
Kelvin-Voigt visco-elastic constitutive law, is taken into account only in the mechanical subsystem.

5. The adopted electric circuit is the so-called (Z,Z) of [31].

6. The mass and stiffness of piezoelectric devices, due to their smallness, are considered negligible.

In a first step, internal dissipation and external actions are neglected, so that the system can be described only in terms of its
Lagrangian L := Lm + Le + Lp, where subscriptsm, e, p refer to the mechanical, electrical and piezoelectric part, respectively.
Then, in the [t1, t2] interval, the first variation of the action functional is evaluated as:

δH :=

∫ t2

t1

δ (Lm + Le + Lp)dt = δHm + δHe + δHem, (13)

where δHm, δHe and δHem are the mechanical, electrical and electro-mechanical contributions, respectively. The third step is to
take into account for non-conservative actions, pumping into or extracting energy from the PEM system. To this end, the Extended
Hamilton Principle is adopted, namely:
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δH̃ := δH + δWm + δWe = 0, (14)

for any kinematically admissible field of variations. In Eq (14), δWm, δWe are the works expended by non-conservative actions
(subscriptsm and e refer to mechanical and electrical works, respectively).
Under the above mentioned assumptions, δHm, δWm and δHem read:

δHm =

∫ t2

t1

[∫ ℓ

0

(
ρv̇δv̇ − EIv′′δv′′

)
ds

]
dt,

δWm = −
∫ t2

t1

[∫ ℓ

0

(
cv̇δv + ηIv̇′′δv′′ + Fv′′δv

)
ds

]
dt,

δHem =

∫ t2

t1

[∫ ℓ

0
Eem

(
ψ̇δv′′ − v̇′′δψ

)
ds

]
dt.

(15)

Equations (15)-a is the first variation of the action functional of the Euler-Bernoulli beam; Eq (15)-b is the nonconservative work
done by mechanical (external and internal) damping forms and by the external action F ; Eq (15)-c defines the piezoelectric
electro-mechanical coupling, of gyroscopic type, governed by the coupling coefficient Eem.
The electrical contribution to the action functional (14) is given by the piezoelectric devices, shunted to the (Z,Z) electrical circuit:
this is idealized as an array of infinite in-parallel RCL elements (see [31]). Accordingly, δHe and δWe read:

δHe :=

∫ t2

t1

∫ ℓ

0

(
Cψ̇δψ̇ −

1

L
ψδψ

)
dsdt,

δWe := −
∫ t2

t1

∫ ℓ

0

1

R
ψ̇δψdsdt,

(16)

where C, L and R are linear densities of piezoelectric capacitance, of circuit inductance and resistance, respectively.
The variational principle (14) supplies the following equations of motion for the PEM system:

ρv̈ + cv̇ + ηIv̇′′′′ + EIv′′′′ + Fv′′ − Eemψ̇
′′ = 0,

Cψ̈ +
1

R
ψ̇ +

1

L
ψ + Eemv̇

′′ = 0.
(17)

The problem is completed by initial conditions (assuming the system at rest) and by the following set of boundary conditions of
geometric type at the clamped end A:

vA = v′A = 0, (18)

and of mechanical type at the free end B:
−EIv′′′B − ηIv̇′′′B + Eemψ̇

′
B = 0,

EIv′′B + ηIv̇′′B − Eemψ̇B = 0.
(19)

Finally, by introducing t̃ = t/t0, s̃ = s/ℓ, ṽ(s̃, t̃) = v/v0 and ψ̃(s̃, t̃) = ψ/ψ0, as the non-dimensional time, abscissa, displacement and
flux-linkage, respectively, the non-dimensional form of Eqs (17), (18) and (19) is that of Eqs (1) (tilde removed), where the following
definitions hold:

t0 := ℓ2
√

ρ

EI
, ψ0 =

√
ρ

C0
v0, αm =

ηI

ℓ2
√
ρEI

,

βm =
cℓ2

√
ρEI

, µ =
Fℓ2

2EI
, νe =

C

C0
,

βe = ℓ2
√

ρ

EI

1

C0R
, κe =

ρℓ4

EI

1

C0L
, γ =

Eem√
C0EI

(20)

and in which t0, v0 and ψ0 are the characteristic time, displacement and flux-linkage, respectively, and C0 is a scaling capacitance.
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