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Abstract. The Newell-Whitehead-Segel (NWS) equation is one of the most significant amplitude equations with a wider practical 
applications in engineering and applied physics. It describes several line patterns; for instance, see lines from seashells and ripples 
in the sand. In addition, it has several applications in mathematical, chemical, and mechanical physics, as well as bio-engineering 
and fluid mechanics. Therefore, the current research is concerned with obtaining an approximate periodic solution of a nonlinear 
dynamical NWS wave model at three different powers. The fractional calculus via the Riemann-Liouville is adopted to calculate an 
analytical periodic approximate solution. The analysis aims to transform the original partial differential equation into a nonlinear 
damping Duffing oscillator. Then, the latter equation has been solved by utilizing a modified Homotopy perturbation method (HPM). 
The obtained results revealed that the present technique is a powerful, promising, and effective one to analyze a class of damping 
nonlinear equations that appears in physical and engineering situations. 
 

Keywords: NWS wave equation; Analytic periodic solution; Nonlinear damping fractional Duffing oscillator; Riemann-Liouville 
fractional calculus; A modified Homotopy perturbation method. 

1. Introduction 

In wider fields of science, the non-linear partial differential equations have been encountered. This kind of equations had 
become a hot topic of research. They played a vital role in understanding the physical phenomena in depth especially in solid state 
physics, fluid mechanics, capillary–gravity waves, plasma waves, as well as chemical physics; for instance, see Polyanin and Zaitsev 
[1]. The following model formulated in eq. (1) could be considered as One of the most intriguing nonlinear dynamical wave equations, 
which arises in plasma physics, mathematical biology, and quantum mechanics: 

( )
2

2

( , ) ( , )
( , ) ( , ) ,

nv x t v x t
m v x t v x t

t x
κ β

∂ ∂
= + −

∂ ∂
 (1) 

Eq. (1) refers to the simplest one spatial dimensional nonlinear reaction–diffusion equation in a plane geometry. Herein, κ  and
β are non zero real constants, and m  is a positive integer. t  and x  are the temporal and spatial variables, respectively, where 

0t ≥ , x ∈ ℝ and nv vκ β− is the nonlinear reaction (source)term. As well as, ( , )v x t  may be considered as the flow velocity of a fluid 
in an infinitely long pipe with a smaller diameter or as the distribution of temperature in an infinitely long and thin bar. The 
theoretical model of the physical phenomenon is sketched in Fig. 1.  

 

Fig. 1. The flow velocity of a fluid in an infinitely long pipe with a small diameter. 

The first case is the Allen-Cahn (A-C) equation, which occurs when n and 1κ β= − = . This problem had various applications in 
quantum mechanics, biology and plasma physics; for instance, see Hariharan [2]. The second case is the Fishers equation, when 

2n = , and κ β= − . The last one appeared in various studies in describing the Rayleigh-Benard convection of binary fluid mixtures. 
Therefore, it was called the NWS equation when power took a commonly used value, i.e. 3n = . Herein, in addition to the commonly 
used value of the power, n , the NWS model with other values such as negative integer and fraction power i.e., 3n = −  and 1 / 3
will be studied. 

On the topic of the mathematical physics, there are many techniques to analyze the nonlinear dynamical wave equations. 
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Newell and Whitehead [3] and Segel [4] studied the nonlinear partial differential parabolic equation. During the past decades, a lot 
of researchers have been utilized distinct methods in solving the NWS equation. Zellal and Belghaba [5] as well as Nourazar et al. 
[6] utilized the HPM to get some analytical solutions for this model. Additionally, Jassim [7] used the Laplace transforms to obtain 
solutions for this equation. Valls [8] proposed an algebraic traveling wave for a description of the generalized NWS equation. 
Recently, Korkmaz [9] used an expansion method, based on the sine-Gordon equation, to achieve a complex wave solution for the 
same equation that describes a mathematical biology model. Furthermore, the readers can see other systems in a quantum 
simulator which based on the sine-Gordon model; for instance, see Refs. [10 and 11]. Moreover, various types of iterative method 
were utilized to obtain some approximate solutions of the NWS equation. Prakash and Kumar [12] and Akinlabi and Edeki [13] used 
the He’s variational and perturbation iteration transform methods to accomplish solutions of the NWS model. Patade and Bhalekar 
[14] utilized new iterative method to calculate an analytical periodic approximate solution of the NWS model. Moreover, via the 
Adomian decomposition method (ADM), some different studies have been applied to the same objective. Aswhad and Jaddoa [15] 
as well as Prakash and Verma [16] studied the Adomian decomposition method to calculate approximate solutions for the NWS 
equation. Mahgoub and Sedeeg [17] investigated the combined form of the Adomian decomposition and Elzaki transform methods 
to solve the NWS equation. In another study, a composite form of the ADM and Laplace transforms was utilized for the same 
purpose as described by Pue-on [18]. Saravanan and Magesh [19] introduced a comparative study between both of the ADM and 
reduced differential transform methods for the present model. Recently, Nadeem et al. [20] applied a couple of the He’s polynomials 
and variational iteration technique to achieve an analytical solution as well as an exponential finite difference was applied to find 
a numerical solution to this equation as shown by Hilal et al. [21]. Additionally, Almousa et al. [22] and Ahmad et al. [23] obtained 
analytic approximate solutions for this equation via the Mahgoub Adomian decomposition method and modified variations 
iterative methods, respectively. Furthermore, Saha and Das [24] presented an analytical and a computational approach for solving 
the perturbed/unperturbed generalized NWS equations.  

On the other hand, there are some important articles that were prepared to examine the fractional NWS equation. For instance; 
Edeki et al. [25] investigated the combined between the He’s polynomials and fractional complex transform method. Saadeh et al. 
[26] applied the fractional residual power series algorithm to calculate approximation solutions to this equation. Moreover, Lie 
symmetry analysis had been applied to compute an analytical solution of the same equation by Saberi et al. [27]. Additionally, an 
asymptotic-sequentially solution, based on the Caputo fractional calculus, has been formulated by Ali et al. [28]. Furthermore, a 
numerical approximation of the fractional NWS equation has been described by Kumar and Sharma [29]. Recently, Prakash et al. 
[30] proposed a fractional variational iteration approach to solve the same time-fractional equation. In reality, the fractional calculus 
is considered as an old topic, it was similar as the classical one; for instance, see Miller and Ross [3١]. Since the existence of the 
fractional calculus, great and significant approached has been developed. Therefore, on the fractional calculus topic, there was a 
lot of comprehensive books as well as research articles cited therein for example; for instance, see Samko et al. [32]. Also, various 
engineers, mathematicians, and physicists realized that ordinary/partial differential equations can be reformulated via the 
fractional derivative. For this reason, the reader should be noted that many real problems were modeled via the fractional calculus. 
For example, diffusion processes, visco-elastic and fractional stochastic systems, control and signal processing, ecology, and 
geometry in biology; for instance, see Refs. [33–35]. It should be noted that, there were various fractional derivative definitions. In 
general, these various definitions were not equivalent. The Riemann-Liouville derivative fractional calculus was considered as a 
one of the mostly used fractional derivatives; for instance, see Li et al. [36]. A comprehensive review of the various useful established 
formulas in the topic of the fractional calculus has been presented by Valério et al. [37]. Recently, Shadab et al. [38] exploited an 
interesting and new Riemann–Liouville formula of a fractional derivative operator. In addition, El-Dib [39] introduced an analytic 
approximate solution as well as the stability condition of a fractional-delayed damping Duffing equation based on the combination 
of Homotopy perturbation method with the Riemann-Liouville approach. Furthermore, a system of 3D forced-damped has been 
analyzed by Llibre et al. [40]. 

The fractional damped Duffing's equation has been investigated by Padovan and Sawicki [41]. They studied the effect of the 
damping term with a fractional order of the amplitude-frequency response. The influence of the optimization harmonic balance 
approach was utilized by Haitao Liao [42] to analyze of two different fractional order derivatives of the nonlinear Duffing equation. 
El-Dib [43] demonstrated a combination of both of the multiple scales and the parameter expansion in a stability behavior of the 
fractional derivative to analyze a cubic delayed Duffing oscillator. Shen et al. [44] used the averaging method to investigate the 
harmonic resonance of the Duffing oscillator fractional equation (two kinds of derivatives orders). Jiménez et al. [45] studied a 
fractional Duffing equation in the presence of both harmonic and non-harmonic external perturbations, at which the latter one 
arising in the geometrical resonances. The Homotopy analysis approach was utilized to derive an analytic solution to nonlinear 
Duffing Oscillator with fractional derivatives by Ejikeme et al. [46]. Recently, El-Dib and Elgazery [47] obtained a periodic solution 
and stability analysis of the time-fractional damping Duffing equation by using a modified HPM. Furthermore, Shen and El-Dib [48] 
derived a modification to the HPM to study the fractional sine-Gordon equation [48]. Furthermore, separable functional solutions 
for a nonlinear telegraph type and Klein–Gordon equations based on symmetry reductions have been introduced by Zhurov and 
Polyanin [49]. 

Based on the aforementioned topics, the NWS equation is described by a temporal-spatial nonlinear partial differential equation. 
It indicated the behavior of a lot of practical problems arising in physics, engineering in various real-world applications. Therefore, 
the major objective of the current study is to acquire a periodic solution as well as the stability analysis for the NWS model. The 
present method is mainly based on transforming the original partial differential equation to a nonlinear damping Duffing oscillator. 
An analytical periodic approximate solution of the latter equation has been formulated via utilizing the Riemann-Liouville 
fractional calculus and then using a modified HPM. To crystallize the presentation, it is organized as follows: Section 2 is devoted 
to introducing the temporal-spatial nonlinear NWS wave model. The fractional calculus and the procedure of the present equation 
are depicted in Section 3. Section 4 is devoted to represent two analytical periodic approximate solutions of fraction and negative 
integer power, temporal-spatial nonlinear NWS wave models, respectively. Finally, the concluding remarks are drawn in Section 5. 

2. The Governing Model  

Consider the following Newell-Whitehead-Segel (NWS) equation that results from eq. (1), in case of the following parameters: 

1 2 1, ,m mµ σ κ− −= = and 1Q mβ −= −   

Eq. (1) is then reduced to 

2
2

2 ,nv v
v Qv

t x
µ σ

∂ ∂
= + +

∂ ∂
 (2) 



A Periodic solution of the Newell-Whitehead-Segel(NWS)wave equation via fractional calculus 1295 
 

Journal of Applied and Computational Mechanics, Vol. 6, No. SI, (2020), 1293-1300 

where ( , )v x t  is an unknown function that to be determined. 

Assuming a spatial variable ζ  such as 

( , ) ( ); .v x t v x tζ ζ µ= = −  (3) 

It follows that 

2 2

2 2, and
x x t

µ
ζ ζ ζ

∂ ∂ ∂ ∂ ∂ ∂
≡ ≡ ≡ −

∂ ∂ ∂ ∂ ∂ ∂
 (4) 

Substituting from eq. (3) into the eq. (2), then using eq. (4), one gets 

2''( ) '( ) ( ) ( ) 0,nv v v Qvζ µ ζ σ ζ ζ+ + + =  (5) 

herein, the prime denotes the differentiation with respect to the independent variable ζ .  

The resulting eq. (5) represents a damping Duffing equation with the nonlinear coefficient, µ  and Q .  
It is worthy to notice that most of the perturbation methods failed to analyze the nonlinear damping Duffing eq. (5); even the 
straight forward expansion. In the present proposal, one shows throughout the fraction analysis technique, by applying the HPM, 
that the shortcomings in periodic solution will overcome. Therefore, the fractional analysis approach will overcome this difficulty 
without any need to apply the currently used methods in the literatures; such as multiple scales or the time-delay [50 and 51]. 

3. The Fractional Derivative  

In the development of using the fractional derivative of various practical problems, especially in engineering and physical 
problems, one should be noticed that there are several kinds of the fractional derivatives definitions. On the other hand, there are 
approximately four commonly fractional derivatives are prepared by the Riemann-Liouville, Caputo, Grünwald-Letnikov, and Miller-
Ross. The various definitions and properties of the fractional calculus were appeared in Refs. [31-32, 37, 52-54]. In addition, the most 
popular ones being the Riemann-Liouville fractional derivative that plays an important role mainly in the development of the theory 
of the fractional derivatives. However, the well-known Caputo fractional derivative is less involved since the associated integral 
operator manipulates the derivatives of the primitive function under the integral symbol; for instance, see [55]. Comparing the 
Caputo derivative definition with the Riemann-Liouville one, functions which are derivable in the Caputo sense are much fewer 
than those which are derivable in the Riemann-Liouville sense [56]. Therefore, a lot of mathematical scientists, widely utilized the 
fractional derivative, depending on the definition of Riemann-Liouville.  
Consequently, in the present proposal, the most famous fractional integral/derivative definitions that come from Riemann-Liouville 
will be used.  
The Riemann-Liouville time-fractional derivative of the function in order 0 1α< ≤  is defined as follows:  

( )
( )

( )
1

( ) ; 0 1;
1

t

a

a

fd
D f t d t a

dt t

α

α

γ
γ α

α γ
= < ≤ >

Γ − −∫  (6) 

Considering the fact that the Riemann-Liouville fractional derivative of ( ) , ,i tf t e t aω= ∈ → −∞ℝ ; for instance, see Ortigueira et 

al.[57], one gets  

( ) ( )and , .i t i t i t i tI e i e D e i e
α αα ω ω α ω ωω ω α

−

−∞ −∞= = ∈ ℝ  (7) 

Based on the definition (7), one finds 

( ) ( )1 1
2 2cos cos and sin sin .D t t D t tα α α αω ω ω πα ω ω ω πα−∞ −∞= + = +  (8) 

an additional ( )f t  formula may formulate as follows; for instance, see El-Dib and Elgazery [47]: 

 

( ) ( )
( )

1 2 11 111 2 02 2
0 2 2 4 2 1 1

0 0 2

[ cos( )]sin [ sin( )]cos
cos ,

2 sin( )

t t
D t

α α
α

α α

ω πα ω ω ω πα ω
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+ +
−+

+ +

+ −
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+ −
 (9) 

and 

( ) ( )
2 1 11 111 2 0 2 2

0 2 2 4 2 1 1
0 0 2

[ sin( )]sin [ cos( )]cos
(sin ) .

2 sin( )

t t
D t

α α
α

α α

ω ω πα ω ω πα ω
ω ω

ω ω ω ω πα

+ +
−+

+ +

− −
+ =

+ −
 (10) 

    

3.1 The Outline Solution of the Fractional Damping Duffing Oscillator 

    For the purpose of the analytical technique, one reformulates the original eq. (5) at ( 3n = ) to derive a periodic analytical 
solution of the nonlinear fractional order damping Duffing equation as follows: 

1 2 0; 0 1.nD v D v v Qvα

ζ ζµ σ α+ + + + = < ≤  (11) 

In the final results, the limiting cases, as α tends to 1 , the final solution of the original eq. (5) will be calculated. 

Moreover, here it is necessary to point out that the exact solution of the generalized NWS model with power law nonlinearity and 
time dependent coefficients is obtained by different methods; in [58] using tanh function method, in [6] by using the Homotopy 
perturbation technique. Additionally, Nadeem et al.[20] used a variational iteration approach with He's polynomials. The existence 
and uniqueness of solutions of parabolic equations are discussed by many authors. They used different methods; such as fixed 
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point theory (using contraction mapping in complete normed spaces), Fourier transform technique and potential theory 
(transforming the partial differential equation onto integral equation with singular kernel, see Refs. [59 and 60]. Furthermore, the 
existence and stability of fractional parabolic partial differential equations (as the fractional model (11)) are recently discussed even 
for fractional integro-partial differential equations with nonlocal condition and nonlinear fractional order partial differential 
equations with delay, see Refs. [61 and 62]. 

To construct the modified Homotopy equation of the nonlinear fractional Duffing equation at 3n = . Firstly, one operates on both 

sides of eq. (11) by the operator ( ) 12 1 2 ,D Dαζ ζ σ
−+ +  therefore, one gets the following modified equation: 

( ) ( )12 2 1 2 3 0.D v D D D v Qvα

ζ ζ ζ ζσ µ
−++ + + =  (12) 

Introducing the new auxiliary parameter 2Ω , so that the Homotopy equation established in the following form: 

( ) ( ) ( ){ }12 2 2 2 1 2 3 .D v v D D D v Qvα

ζ ζ ζ ζρ σ µ
−++ Ω = Ω − + +  (13) 

where [ ]0,1ρ ∈  is an embedding parameter. It is worthwhile to note that as 1,ρ→  eq. (11) arises again. 

One seeks a solution ( ; )v ζ ρ  in the Taylor expansion as follows: 

2
0 1 2( ; ) ( ) ( ) ( ) ...v v v vζ ρ ζ ρ ζ ρ ζ= + + +  (14) 

Employing the expansion (14) into eq. (13) and equating like the power of ρ on both sides, the first two unknowns 0( )v ζ and 1( )v ζ of 

the expansion (14) is given as     

( ) ( )0 cos ,v A Bζ ζ= Ω +  (15) 

where A  and B  are arbitrary constants. 

( ) ( ) ( )12 2 2 2 1 2 3
1 0 0 0 .D v v D D D v Qvα

ζ ζ ζ ζσ µ
−++ Ω = Ω − + +  (16) 

Inserting the solution (15) into eq. (16), then applying the formulas (8), (9), and (10), one obtains 

( ) ( )
( )

( )
( )

( )

2 2 4 2 2 1 2 2 11 1
2 2

2 2 2
1 2 2 4 2 1 1

2

1 2 2 11 1
2 2

2 9
2 2 4 2 1 1

2

3 3
cos( ) 2 sin( )

4 4 cos
2 sin( )

3
sin( ) cos( )

4 sin
2 sin( )

QA QA

D v A B

QA
A B

α α α

ζ α α

α α

α α

σ σ µ πα σ πα

ζ
σ σ πα

µ πα σ πα
ζ

σ σ πα

+ + +

+ +

+ +

+ +

   Ω + + + Ω Ω − + Ω    + Ω = Ω Ω +
 Ω + − Ω 
  

Ω Ω − + Ω
+ Ω Ω + +

Ω + − Ω

( ) ( )

( ) ( )( )

12 1
23 2

4 2 2 14 2 1
2

cos 3 3 3 sin(3 3 )
.

3 2 3 sin( )

B B
A Q

α

α α

σ ζ ζ πα

σ σ πα

+

+ +

 Ω + + Ω Ω + −  Ω
Ω + − Ω

 (17) 

To avoid the presence of the secular terms, one eliminates all terms that are represented the coefficients of the trigonometric 
functions: ( )cos BζΩ +  and ( )sin BζΩ + . It follows the next two conditions:  

2 2 4 2 2 1 2 2 11 1
2 2

3 3
cos( ) 2 sin( ) 0

4 4
QA QAα α ασ σ µ πα σ πα+ + + Ω + + + Ω Ω − + Ω =  

 (18) 

( )1 2 2 11 1
2 2

3
sin( ) cos( ) 0.

4
QAα αµ πα σ πα+ +Ω Ω − + Ω =  (19) 

According to the conditions (18) and (19), the finite solution of eq. (17) is given as 

( ) ( )

( ) ( )( )

13 2 1
2

1 2 2 14 2 1
2

9 cos 3 3 3 sin(3 3 )
( )

32 3 2 3 sin( )

A Q B B
v

α

α α

σ ζ ζ πα
ζ

σ σ πα

+

+ +

 − Ω + + Ω Ω + −  =
Ω + − Ω

 (20) 

Subsequently, one can construct higher-order problems easily. The solutions up to the first-order problem are enough to produce a 
good result. If the series solution as given in eq. (14) is convergent as 1,ρ =  then the periodic approximate solution can be obtained 
as follows: 

( )
( ) ( )

( ) ( )( )

13 2 1
2

2 2 14 2 1
2

9 cos 3 3 3 sin(3 3 )
( ) cos

32 3 2 3 sin( )

A Q B B
v A B

α

α α

σ ζ ζ πα
ζ ζ

σ σ πα

+

+ +

 Ω + + Ω Ω + −  = Ω + −
Ω + − Ω

 (21) 

Consequently, the final solution of the original nonlinear damping Duffing oscillator (5) arises when 1,α = in the form 

( )
( )( )

( )
3

22

9
( ) cos cos 3 3

32 3

A Q
v A B Bζ ζ ζ

σ
= Ω + − Ω +

− Ω
 (22) 
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Therefore, the periodic solution of the NWS eq. (1) with 3n = can formulate as 

( )
( )( )

( )
3

2

9
( , ) cos ( / ) cos 3 ( / ) 3

32 / 3

A
v x t A x t m B x t m B

m m

β

κ
= Ω − + + Ω − +

− Ω
 (23) 

where the frequency Ω is given in the next Section.  

3.2 Construction of the Frequency Equation and the Stability Analysis 

     Combining conditions (18) with (19), across removing the function ( )1
2cos πα , yields   

( )
( )

2 2 4 2 1 12 4
22 2

2 2 1 21
2

2 sin( )9 3
16 4 sin( )

Q A
QA

α α

α

σ σ πα

µ µ πα σ

+ +

+

Ω + − Ω
Ω = − +

Ω −
 (24) 

The limiting case as 1α→ , leads to 1
2sin( ) 1πα → . Consequently, the above frequency equation for 2 2σΩ ≠  takes the form  

2 2 2
2 2

2 2

3 3 3
1

4 4 4
QA QA QA

σ
µ µ

      Ω − = − +        
 (25) 

It ought to be noticed that the stability is conducted when the parameter 2Ω  becomes positive, i.e. 

2 2
2 2

2 2

3 3 3
1 0

4 4 4
QA QA

QA σ
µ µ

    + − >    
 (26) 

The positivity of the above criteria, required 

2

2

4
3

Q
A

µ
>  (27) 

The above condition (27) is the stability criterion of the classical nonlinear damping Duffing oscillator (5). It’s worthy to notice that, 
the frequency-amplitude eq. (25) and the periodic solution (22) can’t be evaluated by using the classical HPM. As appeared from the 
current examination, it is clear that the role of the fractional calculus to help us to obtain these results. In what follows, the same 
analytical approach will be applied to analyze the nonlinear NWS model (1) with a negative integer and fractional power.   

4. A Periodic Solution of a Negative Integer and Fraction Power NWS Wave Model 

     In the present Section, similar arguments as in the above Section will be applied to obtain an approximate for the nonlinear 
NWS model (1) with a fraction as well as a negative integer power i.e. at 1 / 3n =  and 3n = − . 
However, when n  is a set of these values, one may expose the problem of the appearance of the trigonometric functions ( )1/3

cosζ
and ( ) 3

cosζ
−

, which will overcome with by expansion into periodic formulas as shown in the appendix.   

4.1 A Periodic Analytic Approximate Solution of NWS Wave Model at 1 / 3n =  

     Now, applying the same procedure as in the above Section in the next NWS wave equation, one gets 

2
1/3

2

v v
m v v

t x
κ β

∂ ∂
= + −

∂ ∂
 (28) 

The next transformed nonlinear fractional derivative damping Duffing oscillator, yields 

1 2 1 /3 0; 0 1D v D v v Qvα

ζ ζµ σ α+ + + + = < ≤  (29) 

With the presence of the fractional power, that leads to the existence of this function, which can be expanded into a periodic 
expansion as presented in the Appendix. 
Therefore, the following the final periodic solution for the above fractional derivative eq. (29) can be formulated as:   

( )
( ) ( )

( ) ( )( )
( ) ( )

( ) ( )( )

1 12 21 11
2 2

3
2 2 1 2 2 14 2 4 21 1

2 2

cos 2 2 2 sin(2 2 ) cos 3 3 3 sin(3 3 )16 45
( ) cos .

81 5122 2 2 sin( ) 3 2 3 sin( )

B B B B
v A B QA

α α

α α α α

σ ζ ζ πα σ ζ ζ πα
ζ ζ

σ σ πα σ σ πα

+ +

+ + + +

    Ω + + Ω Ω + − Ω + + Ω Ω + −        = Ω + + × −
 Ω + − Ω Ω + − Ω  

 (30) 

In accordance of the next two solvability conditions: 

( )1 2 2 /3 11 1
2 2

85
sin( ) cos( ) 0

108
QAα αµ πα σ πα+ − +Ω Ω − + Ω =  (31) 

and  

2 2 4 2 /3 2 1 2 2 /3 11 1
2 2

85 85
cos( ) 2 sin( ) 0

108 108
QA QAα α ασ σ µ πα σ πα+ − + − + Ω + + + Ω Ω − + Ω =  

 (32) 

one puts 1α =  to formulate the final periodic solution NWS model (28) as: 
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( )
( )

( )( )
( )

( )( )
1 /3

2 2

cos 2 ( / ) 2 cos 3 ( / ) 316 45
( , ) cos ( / )

81 512/ 2 / 3

x t m B x t m BA
v x t A x t m B

m m m

β

κ κ

 
Ω − + Ω − + 

 = Ω − + − −
 − Ω − Ω  

 (33) 

With the next two solvability conditions: 

( )1 2 2 /3 11 1
2 2

85
sin( ) cos( ) 0

108
QAα αµ πα σ πα+ − +Ω Ω − + Ω =  (34) 

and  

2 2 4 2 /3 2 1 2 2 /3 11 1
2 2

85 85
cos( ) 2 sin( ) 0

108 108
QA QAα α ασ σ µ πα σ πα+ − + − + Ω + + + Ω Ω − + Ω =  

 (35) 

Furthermore, for 2 2σΩ ≠  the above two solvability conditions can be combined with the next frequency equation: 

( )
2 /3

2 2 /3 2 2
2

85 85
108 108

QA
QA σ

µ

−
− 

 Ω = − + Ω −
  

 (36) 

Therefore, by using the original parameters this condition, one can take the form:  

2 /3 2 /3 2 /385 85 85
1 0

108 108 108
A mA Aβ β β κ− − −    + + >      

 (37) 

4.2 A Periodic Analytic Approximate Solution of the NWS Wave Model at 3n = −   

By taking 3n = −  as a negative integer power into the NWS wave eq. (1), then applying the same approach as before. 
Consequently, by expanding the function ( ) 3

cosζ
−

that appears in these calculations as presented in the Appendix. The following 
periodic solution and its stability analysis for the NWS model (1) with 3n = −  can be formulated in the next forms: 

( )
( )

( )( )
( )

( )( )
3

2 2

cos 2 ( / ) 2 cos 3 ( / ) 3315
( , ) cos ( / ) 24

384/ 2 / 3

x t m B x t m BA
v x t A x t m B

m m m

β

κ κ

−  
Ω − + Ω − + 

 = Ω − + + −
 − Ω − Ω  

 (38) 

and      

4 4 4117 117 117
1 0

4 4 4
A mA Aβ β β κ− − −    − + >      

 (39) 

5. Conclusion 

     It is well-known that the class of the nonlinear dynamical waves in the mathematical biology, plasma physics, and quantum 
mechanics has been described by a temporal-spatial NWS model. Therefore, in this proposal, an attempt has been made to achieve 
an analytical approximate solution of the NWS model with positive and negative integer, and fraction power. A special temporal-
spatial transformation was proceeded to acquire a damping Duffing oscillator from the original nonlinear NWS model. Therefore, 
the transformed nonlinear damping Duffing oscillator is seeking, according to the Riemann-Liouville fractional derivative. In 
addition to that, a modified HPM is utilized to obtain an analytical periodic approximate solution for this yielding fractional 
derivative damping Duffing equation. Consequently, for three various values of the power n, these steps help in obtaining the 
periodic solutions and its stability analysis of the original NWS model. Thus, the present method is a promising, powerful and an 
effective technique to obtain a periodic solution of the time–space nonlinear dynamical wave equation. Furthermore, the success 
in applying the fractional derivative to the nonlinear damping Duffing oscillator is a very important tool and enable us to analyze 
different classes of the damping nonlinear equations. Briefly, the present technique will overcome the difficulties to calculate the 
periodic solution of the damping nonlinear equations without the need of applying the methods used in other publications such 
as multiple scales or the time-delay. 
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Appendix 

Herein, the HPM; for instance, see Refs. [53-66] is applied to obtain an approximate expansion of the function ( )cos
n
ζ  in the 

periodic forms: For the two fractional cases ( 1 / 3n = ) and negative integer ( 3n = − ) power as follows: 
 The function ( )1/3

cosζ  that appears in Section 4.1 may be rewritten via the HPM as follows: 

( ) ( )
1/31/3

1
cos lim 1 cos 1 ; 0 1

ρ
ζ ρ ζ ρ

→
 = + − ≤ ≤    

Expand for the parameter ρ  as follows: 

( )
1
3 2 3 2 3 2 3 4 2 3 4 5 3

1

1 1 5 1 2 5 1 5 40 5 40 220
cos lim 1 ... ... cos ... cos ... cos ...

3 9 81 3 9 27 9 27 243 81 243 729ρ
ζ ρ ρ ρ ρ ρ ρ ζ ρ ρ ρ ζ ρ ρ ρ ζ

→

               = − − − − + + + + − + + + + + + + +                        
  

If one approximates the above series to the cubic order for the parameter ρ  and take the limit as 1ρ→ . Therefore, 

( )1/3 2 340 20 8 5
cos cos cos cos ...

81 27 27 81
ζ ζ ζ ζ≅ + − + −   

 Furthermore, the HPM is utilized to refine the function ( ) 3
cosx

−
 that appears in Section 4.2 in a periodic formula as: 

( ) ( )
33

1
cos lim 1 cos 1 ; 0 1

ρ
ζ ρ ζ ρ

−−

→
 = + − ≤ ≤    

Following the above procedure, one finds: 

( ) 3 117
4

35
cos 38 cos 18cos2 cos3 ...

2
ζ ζ ζ ζ

− ≅ − + − +   
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