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Abstract. Research interest in predictive modeling within the structural engineering community has recently been focused on 
Bayesian inference methods, with particular emphasis on analytical and sampling approaches. In this study, we explore variational 
inference, a relatively unknown class of Bayesian inference approaches which has potential to realize the computational speed, 
accuracy, and scalability necessary for structural health monitoring applications. We apply this method to the predictive modeling 
of a simulated Bouc-Wen system subject to base vibration and compare the performance of this inference approach to that of the 
unscented Kalman filter. From this investigation, we find that though variational inference is more computationally intensive than 
the unscented Kalman filter, it exhibits superior performance and flexibility. 

Keywords: System identification; Predictive modeling; Bayesian inference; Unscented Kalman filter; Nonlinear systems. 

1. Introduction 

Predictive modeling allows civil engineers to expand the basis of their health monitoring decisions from observations of the 
current behavior of a structure to projections of its performance in future hazardous events. Bayesian inference methods give a 
unique and helpful perspective on this problem as they are able to quantify the inherent epistemic uncertainties that arise due to 
observations of the system which are both finite in length and limited in the information they contain regarding the states and 
parameters of interest. Although several approaches exist to implement Bayesian inference on practical identification and 
monitoring problems, research in the predictive modeling of civil engineering structures has typically focused on methods which 
operate from either an analytical or a sampling perspective.  

Analytical inference techniques refer to those inspired by the Kalman filter [1], which was developed in the 1960s as the optimal 
filter for linear systems whose model and observation uncertainties can be described as Gaussian. Several approximate forms of 
the Kalman filter, such as the extended (EKF) [2], [3] and unscented (UKF) [4], [5] adaptations, have been developed for nonlinear 
inference and have been found to be effective in a variety of experimental applications [6]–[8]. Recent advances in these methods 
have addressed improvements to joint state-parameter identification [9]–[12] and joint input-state identification [13]–[15], among 
other topics of concern for practical monitoring scenarios [16]–[18] . These Kalman filter methods have the common benefit of 
computational speed, allowing for near real-time structural identification, but are limited by the assumptions used to generate 
their analytical framework.  

Sampling techniques, such as particle filters [19] or sequential Monte Carlo algorithms [20], were developed to remove the 
barriers imposed by this analytical framework. Instead of operating on a limited set of probability models with a tractable analytical 
form, sampling approaches enable the use of any stochastic model of the system by drawing the necessary statistical information 
from a set of weighted sample points, or particles, which are propagated through the model. As the number of particles and the 
length of observation approach infinity, these techniques are guaranteed to converge in expectation to the true system posterior. 
Comparative studies with analytical techniques have indeed shown that sampling techniques provide a much more informative 
quantification of the structural monitoring parameters and their uncertainty [10], [21]. However, this enhanced representation of 
the system comes at the cost of increased computational time and limited scalability to larger problems, which create additional 
barriers to the application of these methods with practical structural systems [22]–[25]. A more extensive summary of these 
perspectives and the various techniques which embody them can be found in [26]. 

A third, optimization-based approach to predictive modeling with Bayesian inference has recently been developed which shows 
great potential for balancing the computational speed, accuracy, and scalability necessary for practical implementation to civil 
engineering structures. This approach, referred to as variational inference, is well-recognized in the statistics community as a 
computationally efficient alternative to Monte Carlo (MC) methods for the inference of the hidden states, initial conditions, and 
physical parameters of a system, �, from observations of its behavior, � [27]. The algorithm begins with the definition of the 
stochastic model of the system ���, ��, which asserts any prior beliefs about the hidden states and the relationship of these states 
with observations of the system. A distributional form, �, is then proposed which serves as an approximation of the posterior 
density, ���|��. This distributional form, called the variational family or guide, represents a family of distributions whose members, 
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	���, can be specified by tuning the distributional parameters to different values. Optimization is then performed by finding the 
member of the variational family which is most similar to the true posterior as defined by the Kullback-Leibler (KL) divergence 

	
 =  arg min� ∈ � KL�	��� ||���|���
                                                             =  arg min� ∈ �  �������log 	���� − ������log ���, ��� + log �����, �1� 

a measure of the information lost by approximating ���|�� with 	��� [28]. Although it is possible to propose a guide of any 
distributional form, proposing a simple and flexible guide allows for efficient computation of a posterior approximation which is 
well representative of the true posterior. 

Variational inference emerged as an alternative Bayesian inference strategy in the mid-90s as a result of the adaptation of mean-
field theory from statistical physics [29]–[32], with the first comprehensive statement of the method introduced in 1999 [33]. Initially, 
the explicit dependence of the optimization process on the analytical form of the approximate posterior restricted the 
implementation of the variational inference approach to small-scale data sets described by a limited selection of approximate 
posterior densities [27]. Though the impact of the method was expanded by the incorporation of additional probabilistic models 
into the set of allowable posterior approximations [34]–[36], its true power was made available by the development of stochastic 
variational inference [37], which introduced stochastic optimization on mini-batches of data, and black-box variational inference 
[38], which introduced gradient optimization on Monte Carlo (MC) samples of previously intractable expectations. These 
innovations allow for the scalable and flexible implementation of the variational inference approach, respectively. Automatic 
differentiation variational inference (ADVI) represents the current state-of-the-art in variational inference, combining the 
stochastic and black-box techniques with distributional transformations to enable the automatic implementation of the method 
on a wide range of probabilistic models [39]. Current research seeks to extend the method by introducing variations on the selected 
loss function [40], [41] and adapting the method for recursive inference [42], [43]. Variational inference has been used extensively in 
the fields of linguistics [44], [45], image processing [46], and computational biology [47], [48], among others, but has yet to be adapted 
for applications in predictive modeling for civil structures.  

In this paper, we apply ADVI to the identification of a simulated, single-degree-of-freedom Bouc-Wen system subject to base 
vibration. This study extends the comparative analysis between the ADVI and the UKF algorithms performed by the authors in [49] 
to address the relative accuracy of the identification methods, repeatability of the results given variations on the prior information, 
robustness to varying levels of measurement noise, and resilience to incorrect assumptions on the process noise between the two 
approaches. By so doing, we simulate many of the issues faced by experimentalists in applying these inference approaches and 
demonstrate the relative performance and flexibility of the two algorithms.  

The paper is organized as follows: Section 2 explores the implementation of the ADVI and UKF algorithms; Section 3 defines 
the simulated case study used to characterize the accuracy and reliability of the two inference approaches; and Section 4 discusses 
the influence of process noise assumptions and measurement noise intensities on the reliability of the results from each approach. 
The main conclusions are summarized in Section 5. 

2. Inference Methodology and Implementation 

Bayesian inference methods for system identification use noisy observations of the behavior of a system, �":$, over time % = 1 ∙∆%, 2 ∙ ∆%, 3 ∙ ∆%, … , + to discern its hidden states, �":$, initial conditions, �,, and physical parameters, -. These methods assume that 
the form of the system model is known and can be considered to be a sufficient, but imperfect, representation of the physical 
system. Structural identification is typically described in terms of stochastic dynamical systems, which are characterized by a 
Markovian transmission probability ���.|�./", - � and an emission probability ���0|�., -�. Note that though the states vary with 
respect to time, the parameters are herein assumed constant. With this understanding of the stochastic model, we can discern the 
hidden states and parameters using either a batch method or a filtering method. Batch methods infer ���,:$, -|�":$�, the full joint 
posterior on the states and parameters, from all data points simultaneously, such that  

���,:$, -|�":$� = ∏ ���.|�., -� ∏ ���.|�./", -�$.2"$.2" ���,, -����":$� , �2� 

where ���,, -� is the joint prior distribution on the initial conditions of the dynamic states and system parameters and ���":$� is 
the model evidence. Filtering methods operate recursively by instead determining ���., -|�":.�, the marginal posterior of states and 
parameters at the current time step. The marginal posterior is constructed by first determining the marginal prior through the 
Chapman-Kolmogorov equation,  

���., -|�":./"� = 3 ���.|�./", -����./", -|�":./"� 4�./", �3� 

and then developing the marginal posterior with Bayes’ Theorem,  

���., -|�":0� = ���.|�., -����., -|�":./"����.|�":./"� . �4� 

If necessary, the full posterior, ���,:$, -|�":$�, can then be constructed by iterating backwards in time with a smoothing algorithm [9]. 
However, even without the implementation of a smoothing algorithm, the marginal posterior on the parameters at time T, ��-|�":$�, 
is equivalent between the batch and filtering interpretations due to the treatment of - as constant in eq. (3).  

The UKF is a well-recognized filtering method which has been used to successfully identify the dynamic states and parameters 
of a variety of nonlinear structural systems, including the Bouc-Wen system which is the focus of this study [7], [50]. Variational 
inference, in contrast, traditionally operates in batch form. The details of these inference approaches are discussed in the following 
sections.  

2.1 Unscented Kalman Filter 

The Kalman filter is designed to give the optimal, analytical solution to eq. (3) and eq. (4) for linear systems with Gaussian-
distributed transmission and emission probability models [1]. However, practical engineering problems are often found to be 
nonlinear, either due to the configuration of the system or the need to identify parameters from the model using experimental 
observations. The UKF was introduced to accommodate these situations as an approximate form of the Kalman filter for highly 
nonlinear systems. To accomplish this, the UKF takes advantage of the concept of the unscented transform, which allows for the 
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approximation of the posterior from the statistics of a set of deterministically selected sigma points, 8�.�, which are passed through 
the nonlinear system equations [5].  

The filter first requires the definition of the prior distribution on the hidden states and parameters, ��9 -�~;�<,, =,�, and the 
nonlinear transmission and emission probabilities on those states, which can be formed from the generalized transition and 
observation models  

            �. = >��./", -, ?./"� + @./" �5� 

�. = B��., -, ?.� + C. �6� 

where ?.  refers to the input excitation which drives the system and @.~;�9, E.�  and C.~;�9, F.�  respectively represent the 
process and measurement noise terms, which add uncertainty to the otherwise deterministic system. The transmission and 
emission distributions can then be expressed as ���.|>��./", -, ?./"�, E./"� and ���0|B��., -, ?.�, F.�, respectively.  

Each filter iteration then begins with the deterministic selection of a weighted set of sigma points which describe the 
distribution of the states and parameters, ��G -�. The selection of the sigma points can be accomplished in a number of ways to 
emphasize different aspects of the generating distribution. The sigma point set used herein is constructed using an augmented 
system state, �.H = ��. - @. C.�I, such that 8�.� = �8��J� 8�-� 8�@J� 8�CJ��I, as described in [50]. These sigma points are then 
propagated through the state transition model given by eq. (5) to estimate ���., -|�":./"�, which is the predictive distribution of the 
states and parameters given prior information about the system and its measurement. Next, the predictive distribution is projected 
through the observation function, eq. (6), to estimate the distribution on the predicted measurement. This distribution is then 
compared with the true measurement to generate the marginal posterior distribution on the hidden states, ���., -|�":0�. For a more 
comprehensive explanation of the UKF algorithm, the reader is referred to [9]. 

Parameter identification is typically incorporated in the UKF through joint state and parameter identification. This method 
augments the parameters to the state vector, as in �.H, and imposes on their transmission a dynamic model with a mean of - and 
a process variance near 9. When the parameters are known to be constant throughout the course of the identification, as has been 
assumed in this derivation, there is no process variance on the parameters. The transmission dynamics can instead be viewed 
purely through the states, such that the prior on the parameters given the observations �":./" simply informs the propagation of 
the states to the next time step, �.. This treatment of the parameters asserts that the only update to their posterior distribution 
comes from new information available in the observations of the system, yielding an estimate of the parameters that is not prone 
to process drift. The identified parameters can then be reasonably interpreted from the final posterior at % = +. Though the state 
augmentation approach has been shown to work well in practice for a variety of structural identification problems, it has been 
observed to increase the frequency of the divergence of the algorithm [9].  

2.2 Automatic Differentiation Variational Inference 

ADVI generalizes and automates the variational inference method by combining the scalability of stochastic variational 
inference and the flexibility of black-box variational inference with distributional transforms that standardize the problem domain 
for compatibility with a generalized solution approach. Though ADVI incorporates elements from a variety of techniques, the 
procedure itself is quite simple and can be understood in terms of the four steps shown in Fig. 1. The derivation of the algorithm 
expressed herein is adapted from the work of Kucukelbir et al. [39]. The interpretation of variational inference for this class of 
problems enforces the conditional independence of the data and the Markovian nature of the stochastic dynamical system. The 
base algorithm remains otherwise unchanged. 

In the first step, defining the problem domain, we express the stochastic dynamical system in terms of prior distributions on 
the initial conditions ���,� and the physical parameters ��-� as well as through the transmission probabilities ���.|�./", -� and 
the emission probabilities ���.|�., -�. Given these probabilities, we can express the joint probability of the hidden states, initial 
conditions, parameters, and observations as 

���":$, �,:$, -� = K ���.|�., -�L
.2" K ���.|�./", -�L

.2" K ��z,,N�O
N2" K ��PQ�R

Q2" , �7� 

where M is the dimension of the state space and K is the dimension of the parameter space. The factorization of the prior 
distributions in eq. (7) implies mutual independence of the parameters and the initial conditions on the states, which is commonly 
a valid assumption for the inference of dynamical systems.  

To automate the solution approach, these distributions are transformed to have support on the Euclidean space ℝ$VOVR. The 
joint density is therefore expressed in terms of transformed states �
,:I and parameters -W given by ��
,:$, -W� = +���,:$, -��, such that 

���":$, �
,:$, -W� = � X�":$, ��,:$, -� = +/"���
,:$, -W��Y Zdet ^I_`���
,:$, -W��Z, �8� 

where +�∙� is a one-to-one differentiable function which transforms ��,:$, -� to have full support in ℝ$VOVR  and ^I_`�∙� is the 
Jacobian of the inverse of + [39]. 

In the second step, proposing a variational family, we specify the form of the approximate posterior model that we believe will 
adequately represent the system. As we have transformed the hidden states and parameters to have support in ℝ$VOVR , the 
Gaussian distribution is a simple and effective choice for the variational family. We represent the approximate posterior of the 
system states to be mutually independent and capture the Markovian transitions within each state through a tri-diagonal 
covariance matrix. This yields the variational families 

	��
; c�
� = ;��
|d�
 , e�
e�
f� �9� 

 

 

Fig. 1. Key steps of the ADVI algorithm [49] 
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which are parameterized by the variational parameters c�
 = �d�
 , e�
�, where e�
 is a lower triangular matrix with non-zero elements 
only on the two primary diagonals. These variational parameters are unconstrained in ℝO�hL/"�. Likewise, we propose a Gaussian 
variational family on the hidden parameters which enforces their assumed mutual independence through a diagonal covariance 
matrix, yielding  

	�-W; c-W� = ; X-W|d-W , diag�exp�k-W�l�Y �10� 

which is parameterized by c-W = �d-W , k-W� and produces a set of variational parameters which are unconstrained in ℝlR. The full 
model then requires optimization on ℝO�hL/"�VlR.  

In the third step, specifying the loss function, we set up our optimization problem. To do this, we first define the evidence lower 
bound (ELBO) as 

ELBO�	� =  −KL�	��� ||���|��� + log ����                                                                                                 = ����,-��log ���":$|�,:$, -�� + ����,-��log ���,:$, -�� − ����,-��log 	��,:$, -��= ����,-��log ���":$|�,:$, -�� − KL�	��,:$, -� ||���,:$, -��, �11� 

and note that the ELBO is equivalent to the negative KL divergence save for the addition of the log of the model evidence, which is 
constant for this class of problems. Maximization of the ELBO is therefore equivalent to minimization of the KL divergence and 
eliminates the need to compute the model evidence, ����, which can be difficult to determine. We therefore select the optimal 
member of the variational family � by maximizing the ELBO. The ELBO can be intuitively understood from its two components to 
strike a balance between encouraging densities which fit the observed data, ����,-��log ���":$|�,:$, -��, and encouraging densities 
which stay close to the prior, KL�	��,:$, -� ||���,:$, -�� [27]. When this balance is achieved, the optimal density will express the 
behavior of the true system without overfitting to the limited data set used for optimization. The ELBO can be expressed in terms 
of the transformed states and parameters in eq. (8) as 

ELBO�	� = ����
,-W;c� qlog � X�":$, +/"�r�
,:$, -Ws�Y + logZdet ^I_`�r�
,:$, -Ws�Zt − ����
,-W;c�rlog 	��
,:$, -W; c�s. �12� 

In the final step, performing stochastic optimization, our goal is to use a noisy estimate of the gradient of the ELBO to walk 
toward locally optimal values of the hidden states. It is difficult to take the gradient of the ELBO directly, however, as the ELBO 
involves the computation of an intractable expectation. To resolve this issue and allow for the use of automatic differentiation to 
evaluate the gradient, we introduce an additional transformation, referred to as elliptical standardization. This transformation can be 
expressed as u�
 = vc�
��
� = e�
/"��
 − d�
�  for the states and  u -W = vc -W � -W� = diag�exp�k -W��/"� -W − d -W�  for the parameters, yielding the 

modified ELBO  

ELBO�	� = �w�x;9,y� qlog � z�, +/" Xqvc�
/"�u�
�, vc-W
/"�u-W�tY{ + log |det ^I_` Xqvc�
/"�u�
�, vc-W

/"�u-W�tY|t − ����
,-W;c�rlog 	��
, -W; c�s. �13� 

Note that the expectation containing the joint probability on the observations, states, and parameters is now given in terms of a 
standard normal distribution, without any explicit dependence on the variables to be optimized. This allows for the use of Monte 
Carlo methods, typically with only 1 sample, to obtain a noisy approximation of the ELBO for the automatic evaluation of the 
gradient. Stochastic optimization can then be performed using a number of algorithms. In this study, we implement ADVI using the 
ADAM stochastic optimization algorithm [51] as part of the python library pyTorch [52]. For further information about variational 
inference and ADVI, the reader is referred to [27] and [39].  

3. Case Study – Single Degree-of-Freedom Bouc-Wen System 

To evaluate the relative performance of the ADVI and UKF algorithms, we propose to identify the states � = �}, }~ , �� and the 
parameters, - = ��, �, �, �, ��, from the Bouc-Wen system 

����%� + ��~ �%� + ���%� = −�����%�, �14� 

where the term ���  is representative of an arbitrary base acceleration input and the states  }  and }~  describe the physical 
displacement and velocity of the system, respectively. The state � describes the non-physical Bouc-Wen hysteretic component of 
the motion, the dynamics of which are expressed by 

�~�%� = �~ �%� − �|�~ �%�||��%�|�/"��%� − ��~ �%�|��%�|�. �15� 

A schematic of this system is shown in Fig. 2. For this simulated case study, the true parameters of the system are set in accordance 
with those used in [50], such that the physical parameters of mass, stiffness, and damping are given values of � = 1 kg, � = 0.3 
Ns/m, and � = 9 N/m, respectively. The non-physical Bouc-Wen shape parameters are assigned the values of  � = 2 m-2, � = 2, 
and � = 1 m-2. We choose to observe only the absolute acceleration of the system, which is shown in Fig. 3(c) and given as 

��%� = −��~ �%� − ���%�. �16� 

 

Fig. 2. Schematic Diagram of the SDOF Bouc-Wen System 
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Fig. 3. Base acceleration and structural responses used in this case study.  
(a) base acceleration (b) Bouc-Wen hysteresis (c) noise-contaminated response acceleration [49] 

Nondimensionalizing the equations of motion can ease the computation of the approximate posterior for many inference 
approaches, as it often puts the states and parameters on a similar scale and allows the inference algorithm to operate in a reduced 

space of potential solutions [53]. We therefore nondimensionalize eq. (14) – eq. (16) using the time scale %� = �� �⁄ = �� = 3 and the 
length scale �� = 0.05 m, yielding transition and observation equations 

�̅� ��� + 2��̅~ ��� + �̅��� = − ����� ��⁄ �
����l , �17� 

�̅~��� = �̅~ ��� − ����|�̅~ ���||�̅���|�/"�̅��� − �����̅~ ���|�̅���|�, �18� 

����� = −2��̅~ ��� − �̅���, �19� 

where � = � 2���⁄ = 0.05 is the damping ratio. The problem is now transformed such that the states and parameters we wish to 
infer are �� = �}�, }�~ , �̅� = �}", }l, }h� and -� = ��, �� , �, �, �� = �P", Pl, Ph, P�, P��. The transition dynamics can therefore be expressed in state-
space form as  

�}~ "}~ l}~ h� =
⎣⎢
⎢⎡

}l
−2P"}l − }h − ����� Pl⁄ �

��Pll}l − Ph���|}l||}h|��/"}h − P����}l|}h|��⎦⎥
⎥⎤ . �20� 

Inference on this continuous system is performed using an Euler discretization scheme at a sampling frequency of ¡¢ = 128 Hz. 
Although some methods are available for inference on continuous systems, this strategy was selected to preserve the practical 
comparison of the UKF and variational inference methods.  

For the purpose of identification, a base excitation should be selected such that the resulting system response contains 
sufficient information to identify all parameters of the system. This condition is a particularly important consideration for 
nonlinear systems, as variations in the input signal may allow the system to express different aspects of its nonlinear behavior. In 
accordance with these considerations, we select a band-limited white noise (BLWN) base excitation signal with a maximum 
amplitude of ~10 m/s2 and a frequency cut-off of 10 Hz, as shown in Fig. 3(a). The selection of the BLWN excitation is primarily 
made based on the indications of parameter identifiability from a Sobol’ sensitivity analysis [54] conducted using the python library 
SALib [55]. Of the variety of signals tested, the BLWN excitation produced a response with the highest level of sensitivity to all 
parameters, and particularly to the nonlinear shape parameters. The results of the Sobol’ analysis for the BLWN signal are given in 
Fig. 4, which shows that the response of the Bouc-Wen system to this input signal is sensitive to variations in all parameters, though 
it is significantly more sensitive to the parameters � and ��. These results indicate that both algorithms should be able to identify 
all parameters of the system, though the identification will be less reliable, or more likely to result in different identified parameters 
given variations on the prior, for the nonlinear parameters [53]. Further indications of system identifiability are given in Fig. 3(b). 
The response in this figure shows that the BLWN input excites the system into its nonlinear range of response, and should therefore 
contain information concerning all parameters of interest.  

3.1 Parametric Studies 

Understanding the performance of an inference algorithm in the face of model uncertainty and measurement error allows an 
experimentalist to determine where various algorithms can be applied for greatest effect. These practical issues pervade 
experiments at all scales and are therefore specifically evaluated in this comparative study of the UKF and variational inference 
techniques.  

Model uncertainty describes the difference between the computational model used for inference and the true experimental 
system from which data is being collected. It is often difficult to characterize this uncertainty robustly in an experimental setting 
and as such the model uncertainty is often over- or under-estimated, which can have a large impact on the accurate inference of 
the system model. To study this effect in simulation, we develop our ‘true’ system model such that it includes an additive, zero-
mean Gaussian model uncertainty term on the states, given as @. in eq. (5). The standard deviation of this term with respect to 
each of the states is selected such that the imposed noise represents a 1%, 2%, and 2% root-mean-square noise-to-signal ratio (RMS-
NSR) on the displacement, velocity, and Bouc-Wen displacement, respectively. This scaling factor on the imposed RMS noise is 
expressed by the vector @£O¤/¥¤£ = �0.01, 0.02, 0.02�. The additive model uncertainty term is then given by 

@.~; z0, diag X√Δ� ∙ @£O¤/¥¤£ ∙ RMS����Yl{ , �21� 
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Fig. 4. First order sensitivity of the BLWN response to the system parameters  

where the √Δ� scaling factor is included to represent the uncertainty associated with discretizing the continuous ODE [56]. This 
noise is then propagated through the equation of motion to generate the true response. The difference between the true response 
and the response of the computational model can be seen in Fig. 3(b). To study the impact of over- and under-estimating the true 
process uncertainty, we vary the modeling assumption on the process noise covariance according to  

E = diag�√Δ� ∙ @£O¤/¥¤£ ∙ RMS���� ∙ ª«�l, �22� 

where ª« ∈ �80, 90, 100, 110, 120�% expresses the degree to which the true process noise in eq. (21) is over- or under-estimated. This 
process noise covariance matrix, modified by the appropriate ª«, is assumed known for all parameter studies and is taken as 
constant throughout the inference process. 

Measurement uncertainty describes the variations in our observations of the system which are not representative of its true 
behavior and is commonly attributed to noise in the sensors or testing environment. Although this uncertainty is simpler to 
estimate experimentally, it can be difficult to control, leading to observation signals with very high NSRs. To study the impact of 
measurement uncertainty on the selected inference algorithms, we vary the measurement noise covariance of the true response 
data used for inference according to  

F = �v£O¤/¥¤£ ∙ RMS�����l, �23� 

where v£O¤/¥¤£ ∈ �0.1, 5, 10, 20, 30, 40, 50�%. This measurement noise covariance matrix is assumed known for all parameter studies 
conducted herein and is taken as constant throughout the inference process.  

For each parameter study, we hold one uncertainty measure constant while the other is varied. We select the base example to 
connect these two parameter studies as the case in which ª« = 100% and v£O¤/¥¤£ = 20%, representing the case in which the model 
uncertainty is correctly characterized and the measurement uncertainty is moderately high. The results from these parameter 
studies are explored in detail in Section 4.  

3.2 Implementation with Selected Inference Methods 

Knowing the two approaches to have distinct differences in their means of approximating the inference process, we seek to 
make an equitable comparison between them to assess their relative proficiency in predictive modeling for structural systems. 
Understanding the reliability of these algorithms with respect to reasonable variations on the selected prior is a key aspect of this 
assessment, as the choice of prior distributions on the states and parameters can have a large impact on the results obtained from 
the UKF and variational inference methods [12], [53]. In practice, low variance prior distributions can often be determined for the 
states, but prior knowledge of the parameters is usually far less explicit. We therefore evaluate the robustness of these methods to 
variations in the priors on the parameters by selecting 50 distributions for the parameter priors which are representative of likely 
assumptions that an experimentalist might make in defining this problem. These 50 prior distributions are used with each case in 
the parameter studies. In all cases, prior distributions on the dynamic states are uniformly set as �®�0�~;�0, 0.25l�, as the system is 
known to be at rest prior to excitation.  

The prior distributions on the parameters are selected such that the representation of the priors is equivalent between the two 
algorithms. The 50 preliminary mean values are first selected using a Latin hypercube (LH) sample on � ¯�0.1,1�, �� ¯�0,10�, � ∈ �0,25�, � ¯�2,6�  and � ∈ �0,25� . Different distributional representations are then selected for each algorithm to accommodate their 
implementation. In the case of the UKF, all prior distributions must be Gaussian. To accommodate this constraint while also 
reflecting the existence of the parameters in the positive domain, inference is performed on the logarithm of the parameters, 
resulting in the prior distributions ln��� ~ ;�ln �°±�, ²±l� , ln���� ~ ;�ln �°³´�, ²³´l �,  ln��� ~ ;�ln �°µ�, ²µl�,  ln��� ~ ;�ln �°��, ²�l� , and ln��� ~ N�ln �°·�, ²·l�, where the means °Q are members of the LH sample and the variance terms ²Ql are hand-selected to represent 
the uncertainty level a typical experimentalist might assign to the parameter. Due to the flexibility of variational inference, the 
priors on the parameters can be expressed directly with a lognormal distribution as �~ ¸¹º;¹��»¼�ln �°±�, ²±l� , ��~ ¸¹º;¹��»¼�ln �°³´�, ²³´l �,  �~ ¸¹º;¹��»¼�ln �°µ�, ²µl�,  �~ ¸¹º;¹��»¼�ln �°��, ²�l� , and �~ ¸¹º;¹��»¼�ln �°·�, ²·l� . Inference then 
proceeds on the parameters directly instead of on their natural logarithm. It should be noted that the support of the prior 
distributions selected for VI are constrained to a subset of ℝR . To allow for full support in ℝR  when implementing the ADVI 
algorithm, the parameters are transformed within the algorithm according to 

-W =  f½¾�-� = ¿À�-� . �24� 
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Fig. 5. Priors and posteriors of the minimum RMS error identification trials. (a-e) UKF identification trials (f-j) variational inference identification 
trials. 

 
The emission and transmission probability models are represented slightly differently between the two inference algorithms. 

For the UKF these densities are described primarily by their means, which are given by the deterministic functions  

>���Á, ln�-�Á� , ���,Á� = ��"�l�h
�

Á
+ ∆�

⎣⎢
⎢⎢
⎡ �l

−2P̅"�l − �h − �����τ − 1� P̅l⁄ �
��P̅l�l − P̅h�����|�l||�h|���/"�h − P̅�������l|�h|���⎦⎥

⎥⎥
⎤

Á/" �25�
 

B���Á, ln�-�Á�� = −2P̅Ã,"�Ã,l − �Ã,h. �26� 

The covariance associated with these mean terms is given by the process noise and measurement noise distributions, as defined 
in eq. (22) and eq. (23). Note that the structure of the UKF algorithm phrases the augmented state as a multivariate Gaussian, where 
dependence is implied across the states and parameters. Using variational inference, the emission and transmission probabilities 
for this system can be understood by 

���Ã,"Z��Ã, -�� = ;��"���| �Ã/"," + Δ� ∙ �Ã/",l, Ä"l�, �27� 

���Ã,lZ��Ã, -�� = ; Å�Ã/",l | �Ã/",l + Δ� Å −2P̅"�Ã/",l − �Ã/",h − �����τ − 1� P̅l⁄ �
��P̅l Æ , ÄllÆ , �28� 

���Ã,hZ��Ã, -�� = ; X�Ã/",h | �Ã/",h + Δ� X�Ã/",l − P̅h�����Z�Ã/",lZZ�Ã/",hZ���/"�Ã/",h − P̅�������Ã/",lZ�Ã/",hZ���Y , ÄhlY , �29� 

���ÁZ��Á, -�� = ;��Á |  − 2P̅"�Á,l − �Á,h, Çl�, �30� 

where the assumption of independence across the states and parameters is enforced by the separation of the distributions 
expressed in eq. (27)-eq. (30). 
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Fig. 6. Comparison of the true system response with model responses re-simulated from the minimum RMS error identification trials. 
(a) displacement response (b) velocity response (c) Bouc-Wen displacement response. 

 

Fig. 7. Distribution of the posterior modes on the parameters for all 50 identification trials. 

4. Results and Discussion 

As discussed in Section 3, the goal of this case study is to ascertain the relative effectiveness of the UKF and variational inference 
methods in identifying the hidden states �� and parameters -� from the responses of the nondimensionalized Bouc-Wen system 
when measurement noise levels and process noise assumptions are varied. To gain a preliminary understanding of the results, we 
first examine the case in which the measurement uncertainty factor is set to v£O¤/¥¤£ = 0.1% and the process uncertainty factor is 
set to ª« = 100%. This scenario represents the most ideal case of those studied herein, as the selected uncertainty factors reflect a 
situation in which the difference between the model and the true system can be defined with certainty and the measurements can 
be trusted explicitly.  

For each inference method, 50 identification trials are conducted corresponding to the 50 prior distributions on the parameters 
defined in Section 3.2. For each identification trial, the identified model is selected as the one which maximizes the posterior 
probability on the parameters, or in other words, the model which minimizes the 0-1 loss [57]. The resulting 50 candidate models 
are then used to re-simulate the response of the inferred system to the given BLWN base excitation. The system models inferred 
by each algorithm which respectively result in the minimum RMS error on the states are shown in Fig. 5 in terms of the prior and 
posterior distributions on the parameters. It should be noted that the modeling approach for the parameters in the UKF allows for 
correlations between them which are not expressed in the variational inference method, where the parameters are explicitly 
assumed independent through the definition of their variational family. Fig. 5 therefore shows the marginal posteriors of the 
respective parameters for the UKF to allow for a general comparison with the variational inference approach. The results suggest 
that both models express similar levels of certainty and accuracy in their posterior approximations of the linear parameters � and ��. The two algorithms also appear to produce similar results in their expression of the nonlinear parameters �, �, and �, though 
the results from variational inference express greater certainty. Although slight differences exist between the identified models, 
they result in nearly identical approximations of the system response, as shown in Fig. 6. Here, the true response of the Bouc-Wen 
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system is compared with model responses which are re-simulated from the posterior modes given in Fig. 5. These re-simulated 
responses show minimal variation from the true response of the system, suggesting that both of the inferred models are adequate 
solutions. 

However, the effectiveness of an inference approach lies not only in its best performance, but in the repeatability of that 
performance given realistic variations on the assumptions used in the model. We therefore analyze the relative accuracy of the UKF 
and variational inference methods over all 50 identification trials, as shown in Fig. 7 and Fig. 8. Fig. 7 gives the distribution of the 
posterior modes for all identification trials. In large part, these data show what we might expect from such an ideal case in which 
our measurement error is low and our modeling error is known. The distributions of the modes around all parameters are fairly 
well concentrated, particularly for the linear parameters � and �� to which the sensitivity of the response of the system is known 
to be high. There are no significant outliers, which indicates that both the UKF and variational inference trials did not begin to 
diverge in their search for the true system model. It is interesting to note, however, that the relative spread of posterior modes in 
the nonlinear parameters resulting from the UKF is wider than those identified with variational inference. These results suggest 
that the variational inference method is better able to consistently identify parameters with relatively low levels of practical 
identifiability than the UKF.  

A final comparison of the two inference methods in this ideal case is given in Fig. 8. Here, the RMS error in the states for each 
inference trial is plotted in a case-by-case comparison between the UKF or variational inference methods. The data clearly show 
that, regardless of the variations in the parameters, variational inference consistently provides a low-error response with respect 
to the true states. The UKF is able to match this performance for the majority of the identification trials, but experiences larger 
variations in error due to the variations in the parameter posteriors shown in Fig. 7. These results suggest that even though the 
posteriors may not precisely match the true parameters, the variational inference approach is more adept at consistently finding 
parameter combinations which locally minimize the error between the true response and the re-simulated model.  

The results from this preliminary study focusing on a particular case of model and measurement uncertainty allow us to 
approach the results from the parameter studies on these noise terms from a more informed perspective. 

 

Fig. 8. Comparison of the RMS error on the states for the 50 identification trials. 
(a) displacement comparison (b) velocity Comparison (c) Bouc-Wen displacement comparison 

 

Fig. 9. Percentage of inference trials yielding models whose parameters are all less than a certain percentage error, 
shown as the process noise uncertainty factor (ÈÉ) is varied. (a) UKF Models (b) VI Models. 

 

 

Fig. 10. Statistics of the RMS error in the states given the identified models for each inference method when the process noise uncertainty factor 
(ÈÉ) is varied. 
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4.1 Influence of Process Noise Assumptions 

In this study, we evaluate the effect of process noise assumptions during inference on the resulting identified models. To 
accomplish this, we take the measurement uncertainty factor as constant at v£O¤/¥¤£ = 20%, representing a moderately high level 
of measurement noise, and allow the process uncertainty factor to vary according to ª« ∈ �80, 90, 100, 110, 120�%. The results of this 
study are given in Fig. 9 and Fig. 10.  

Fig. 9 shows the accuracy of the posterior models identified for each inference method at each level of variation in the 
assumptions on process noise. The information in this graph can be viewed as a consolidated form of the information presented in 
the histograms of Fig. 7. For each value of ª«, the percentage of models for which all parameters exhibit less than a 10% error from 
their true values are recorded by the black line. The percentage of models for which the parameters exhibit other levels of error are 
recorded similarly, in varying shades of grey. The results show a similar level of accuracy and consistency between the two inference 
methods, though the increase in suitable models with error tolerance for the variational inference approach suggests a larger 
concentration of models close to, if not exactly meeting, the correct solution. One can additionally observe from these plots that 
the UKF is relatively indifferent to process noise in terms of the accuracy of the models produced, and settles at around 5% of 
models having an accuracy of 50% or better regardless of the assumption on the process noise covariance. The variational inference 
method, in contrast, appears to benefit from an underestimation of the process noise covariance, yielding 10% of models having an 
accuracy of 50% or better when the process noise covariance is assumed at 80% of its true value, as opposed to the 6% of models 
with accuracy 50% or better achieved when the process noise is assumed to be 120% of its true value.  

Further insight into the robustness of these methods with respect to incorrect process noise assumptions is given in Fig. 10. 
Similar to a box-and-whisker plot, this figure shows the minimum value, first quartile, median, third quartile, and maximum value 
of the RMS error in the states at each level of ª«. The results show that, in addition to the nominally higher degree of model accuracy 
suggested by Fig. 9, variational inference also produces models which more consistently achieve low errors in comparison with the 
true response of the system. This behavior is particularly evident through a comparison with the UKF results, as the third quartile 
of the variational inference model responses lie consistently below the median of the UKF model responses for all system states. It 
is also significant to note the large number of outliers produced by the UKF in comparison with variational inference. In combination 
with the results from Fig. 9, this result suggests that the UKF experiences a greater number of outliers during model generation 
which do not generate locally optimal solutions in relation to the true system response. Variational inference, in contrast, seems to 
generate models which are more representative of the true behavior of the system, despite having a similar rate of parameter error 
to the UKF models. Even when an accurate model is not produced, this method finds locally optimal models which reduce the error 
of the inferred model relative to the true response. Overall, variational inference appears to produce superior results when 
assumptions on the process noise are varied.  

4.2 Influence of Measurement Noise Level 

For the second parameter study, we evaluate the impact of measurement noise in the response data on the resulting identified 
models. To study this effect, we take the process uncertainty factor as constant at ª« = 100%, representing a correct assumption 
on the process noise covariance, and allow the measurement noise to vary according to v£O¤/¥¤£ ∈ �0.1, 5, 10, 20, 30, 40, 50�%. The 
results of this study are given in Fig. 11 and Fig. 12.  

Fig. 11 shows the accuracy of the posterior models identified for each inference method at each level of variation in the 
measurement noise. The results express the relative levels of accuracy and rates of degradation in accuracy exhibited by each 
approach. The UKF achieves a peak level of accuracy and consistency at 5% measurement noise with only around 15% of models 
having an accuracy of 50% or better, while variational inference peaks at 0.1% measurement noise with around 45% of models 
having an accuracy of 50% or better. This lack of performance in the UKF is compensated by a slower rate of degradation in 
performance. For measurement noise levels with v£O¤/¥¤£ = 30% or greater, variational inference does not produce any models 
with at least 50% accuracy, whereas approximately 5% of UKF models can still claim to be within 50% of the true parameters. These 
results suggest that variational inference is a very effective tool in cases of moderate measurement uncertainty, but that the UKF 
is much more reliable for cases where measurement uncertainty is extremely high.  

These results are in agreement with those given in Fig. 12. This plot shows that the error in the states as a result of the inferred 
models increases significantly for the variational inference cases when measurement noise levels are greater than or equal to 30%. 
The error resulting from the UKF inference cases, in contrast, increases slowly and consistently across all measurement noise levels 
tested. It is only for cases of low to moderate measurement noise, where v£O¤/¥¤£ ∈ �0.1, 5, 10, 20�%, that the performance of the 
variational inference method exceeds that of the UKF. However, as was mentioned in the previous parameter study, the inferred 
UKF responses show a greater number of outliers than those of the variational inference method. The consistency of this result 
between the case studies suggests that the variational inference method is more adept at consistently finding parameter 
combinations which locally minimize the error between the true response and the re-simulated model, even though the local 
minima may shift away from the true solution in the presence of excessive measurement noise. 

4.3 Comparison to More Informative Variational Inference Priors 

The results expressed in previous sections give a one-to-one comparison of the UKF and variational inference algorithms, 
expressing the problem formulation for both algorithms in terms compatible with the more constrained UKF representation. 
However, part of the value of the variational inference approach is its ability to offer a more precise expression of both the prior 
and posterior uncertainty on the states and parameters. In this section, we demonstrate the impact of this flexibility by 
reimplementing the variational inference approach with prior distributions on the parameters which take full advantage of the 
level of knowledge that would be available to an experimentalist faced with this identification problem. Particularly, the parameters �  and �  parameters have clear domains of �¯�0,1�  and �¯�1,6�  for this case study. With variational inference, preliminary 
knowledge concerning these parameters can be described by the prior distributions by �~Ê�Ë¡¹���0, °±� and �~Ê�Ë¡¹���0, °��, 
where °±  and °�  are as described in Section 3.2. This expression of the prior probability requires the definition of the 
transformation  

-WÌ =  +Ì�-Ì� = ln z-Ì − »Í − -Ì{ , �31� 

to allow for full support in ℝR when implementing ADVI, where -Ì refers to the parameters with uniform prior distributions and » and Í refer to the respective lower and upper bounds on the uniform prior. All other parameters are given the same prior 
distributions as expressed in Section 3.2. Inference using these prior distributions is then repeated on the same parameter studies 
examined in previous sections.  
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Fig. 11. Percentage of inference trials yielding models whose parameters are all less than a certain percentage error, 
shown as the measurement noise uncertainty factor (CFÎÏ/ÐÏF) is varied. (a) UKF Models (b) VI Models. 

 

Fig. 12. Statistics of the RMS error in the states given the identified models for each inference method when the measurement noise uncertainty 
factor (CFÎÏ/ÐÏF) is varied. 

 

Fig. 13 Percentage of inference trials yielding models whose parameters are all less than a certain percentage error. 
(a) ÈÉ is varied for VI models with lognormal priors, (b) ÈÉ is varied for VI models with lognormal priors incorporating uniform priors, 

(c) CFÎÏ/ÐÏF is varied for VI models with lognormal priors, (d) CFÎÏ/ÐÏF is varied for VI models incorporating uniform priors. 

The results of these inference trials are reported in Fig. 13 and Fig. 14 in comparison with the variational inference results 
obtained using solely lognormal priors on the parameters. It is significant to note the key differences in the two sets of variational 
inference results. Overall, the variational inference case with more informed parameter priors performed better than the case with 
solely lognormal priors, which indicates the value of the flexibility of variational inference to clearly specify the prior information 
known to the problem. One key exception to this trend is shown in Fig. 13(c,d), which shows the results of the measurement noise 
study. Here, the informed variational inference trial expresses no accurate models at v£O¤/¥¤£ = 0.1%, whereas the variational 
inference trial with less informative priors yields the largest number of accurate models at this same measurement noise level. The 
precise reason for this behavior is unclear, but it is likely associated with a distortion of the local optimum of the ELBO due to the 
low level of noise and the particular expression of the prior on the parameters. Indeed, all parameters of the model for this case are 
identified with high levels of accuracy, except for � which is consistently identified at ~0.02. This result validates research avenues 
in the field of alternative loss functions for variational inference as it demonstrates that though the ELBO is an extremely useful 
loss function, it is not infallible.  

Perhaps the most critical feature of these results, however, is their consistency. Though some specific features of the results 
change, and often improve, when a more informed prior is used, the underlying trends in the data remain the same. Fig. 13(c,d) 
shows this effect clearly with respect to the trends in model accuracy as measurement noise is increased. Regardless of the prior 
distribution on the parameters, the variational inference does not produce any models with an accuracy of at least 50% for 
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measurement noise levels with v£O¤/¥¤£ = 30% or greater. These same trends are expressed in Fig. 14(d-f), where the RMS error on 
the states increases significantly, and nearly equivalently, between the two variational inference trials when v£O¤/¥¤£ = 30% or 
greater. The response of the variational inference trials with respect to variations in the process noise is also similar, with both 
exhibiting consistently high levels of model accuracy and corresponding low levels of RMS error in the states. These results suggest 
that the variational inference method is fairly robust to even significantly different interpretations on the prior uncertainty in the 
parameters, which make it ideal for experimental settings where the limited knowledge is available concerning the parameters in 
advance of experimentation. In contrast, the UKF results in the previous sections express the dependence of this algorithm on the 
selection of the parameter priors, without any clear indication of which priors will be well-performing prior to inference. 

 

Fig. 14. Statistics of the RMS error in the states given the identified VI models when the 
(a-c) process noise uncertainty factor (ÈÉ) is varied, (d-f) measurement noise uncertainty factor (CFÎÏ/ÐÏF) is varied. 

5. Conclusions 

In this paper we compared the ability of the UKF and variational inference methods to identify the hidden states and parameters 
of a simulated single degree-of-freedom Bouc-Wen system excited by a BLWN base motion. These inference approaches were used 
to conduct two parameter studies which assessed their accuracy and reliability with respect to variations on the assumptions of 
modeling error in the inference model and the level of measurement noise present in system response. An equivalent comparison 
of the algorithms in these parameter studies revealed that the UKF generates models with a greater number of outliers than the 
variational inference approach. Results from the modeling error study indicate that both algorithms result in similar rates of model 
accuracy when assumptions on the process noise are varied. When measurement noise levels are varied, variational inference only 
produces superior models to the UKF for moderate levels of measurement noise. Models produced using the UKF are more likely to 
give accurate results when measurement noise levels are extremely high. When the variational inference approach was 
reimplemented with more informative and flexible expressions of the prior distributions on the parameters, its overall performance 
was shown to increase, though the trends in its behavior remained consistent. Overall, the variational inference method was shown 
to be robust to the typical experimental conditions of moderate levels of measurement noise and general uncertainty in the level 
of model error. The accuracy and robustness of the variational inference method does come at the cost of some increased 
computational time. Whereas the UKF executes on the order of seconds, variational inference requires execution times on the order 
of hours. As this issue is addressed in future implementations of variational inference, it will become an even more valuable option 
for structural health monitoring applications.  
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Nomenclature 

�  Damping [N∙s/m] }  Displacement relative to ground [m] ¡¢  Sampling frequency [Hz] }~   Velocity relative to ground [m/sec] �  Stiffness [N/m] ��  Characteristic length scale [m] �  Mass [kg] ���  Base acceleration [m/sec2] �  Bouc-Wen shape parameter [-] �  Bouc-Wen shape parameter [m-n] �  Bouc-Wen displacement relative to ground [m] �  Bouc-Wen shape parameter [m-n] %, �  Dimensional [sec] and non-dimensional [-] time �  Damping ratio [-] %�  Characteristic time scale [1/sec] ��  Natural frequency [rad/sec] 
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