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Abstract. The main purpose of this study is to develop an understanding of the turbulent boundary layer calculation to analyze 
displacement of the separating point in diffusers. An approximate method has been used which is based on an analogy with the 
rheological power law and is applied in the study of non-linear viscous flows. At first, the method has been validated with the 
experimental data in the same experimental cases study. An appropriate geometric with and without the Nano-fluids in the 
straight-wall and curved-wall conical diffusers has been investigated. Its analyses output was compared with the results obtained 
by a numerical code. Also, the proposed method is more practical and can be used in diffuser design procedures. 

Keywords: Turbulent boundary layer, Separating point, approximate method, Straight-wall, Curved-wall Conical diffusers. 

1. Introduction 

A diffuser is a divergence channel which decelerates the velocity and also recovers the pressure head of the fluid. Today, a 
significant amount of energy passes through the diffusers each year such as in jet engines, compressors, pumps, turbines, air-
conditioning equipment in general. This is necessarily done to decrease the fluid velocity and to increase the static pressure 
during the passage. Optimal performance in diffusers is associated with a reduction of the total pressure losses in the diffuser. 
Losses in diffusers are classified into two categories: friction and expansion losses. Frictional losses are due to the diffuser's 
geometry, on its interior wall surface. Expansion losses are due to changes in pressure gradient and velocity field in the diffusers. 
Since 1960s, researchers have been investigating the reduction of such losses and improvement of the diffuser's performance as 
well as the separation point of flow and its displacement. Furthermore, to date, studying diffuser's flow has been a challenge in 
the field of mechanical engineering because of wide application in energy conversion systems. The literature on diffusers exists 
in large numbers with analytical, numerical and experimental methods. Reporting the nature of the flow in details has not yet 
been agreed by the researchers in the field and there is still some controversy. Von Den and Tetervin [1] used the shape factor as a 
criterion to determine the nature of the flow. They concluded that increase in the value of shape factor led to the consequence of 
the stronger adverse pressure gradient, indicating the beginning of boundary layer separation. Accordingly, the values of the 
shape factor for the separation point in the laminar and turbulent flow are about 3.5 and 2.4, respectively. As they reported, the 
basic output of a diffuser was the pressure-recovery coefficient CP, which was defined as: CP = (P2(x)-P1(x=0))/(0.5U0), and its ideal 
value in term of the area ratio (CP,ideal=1- (A2/A1)-2) was a basic parameter in the diffuser's design. The nature of the flow in the 
diffuser changes with the air geometry and inlet flow conditions. Whitman et al. [2] examined the effects of the inlet condition of 
boundary layer of two-dimensional diffusers with flat walls and found that increasing the thickness of the boundary layer at 
diffusers' entrances could be reducing the diffusers performance. Moore and Kline [3] and Fox and Kline [4] classified the flow in 
diffuses into four regimes (1- no appreciable stall, 2- Transitory stall, 3- fully developed stall and 4- jet flow). A typical design 
would have area ratio=5:1, for which the ideal value is CP=0.96, almost full recovery. In fact, measurements of Cp for the above area 
ratio are only as high as 0.86 and can be as low as 0.24. Some experimental studies have been conducted by Rao and Raju [5], 
Furuya et al. [6], Senoo and Nishi [7], Cochran and kline [8] in order to delay the separation point and increase the diffuser's 
performance, using various mechanisms and techniques such as vortex generators, splitters, suction at the entrance and short 
flat vanes, respectively. In recent years and the past decade, researches and publications on diffusers have been appeared to be 
more experimental and numerical. In addition, in some cases the control of separation or study of the above phenomena has 
been an important issue. For example, Yongsen and Kobayashi [9] used numerical methods and a k-e turbulence model in a 
conical diffuser, having a total divergence angle of 8o and 30o with a high Reynolds number. They examined the turbulent flow 
inside the conical diffuser and described the perforated screen effect in order to increase efficiency. Through numerical 
simulation, Apsley and Leschziner [10] examined the effect of Reynolds number on separation point in diffusers and showed that 
increasing Reynolds number reduced the separation boundary layer. Experimental methods can be commonly used to determine 
a diffuser's pressure drop. Thus, by measuring the total pressure at the inlet and outlet of the diffuser, the pressure drop of the 
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diffuser can be measured. Furthermore, the separation point phenomenon and its location can be investigated by measuring the 
velocity distribution all along the diffuser inside. In this line of research, Singh and Azad [11] measured the characteristics of the 
turbulent boundary layer and the position of the separating point in a straight-wall conical diffuser. They reported that a total 
divergence angle of 8o, an area ratio of 4:1, an inlet diameter of 0.1016m and length of 0.745 m were observed. In so doing, hot-
wire and pulse-wire anemometry together were used to obtain the results of the complex flow in the conical diffuser. Turbulent 
flows such as instantaneous flow reversal in the wall region also were investigated. Additionally, Andre Brunn and Wolfgang N. 
[12] investigated separation control in turbulent flow through an axisymmetric diffuser. They aimed to examine the separated 
flow effect in diffusers in order to reduce the separation length for the aim of minimizing the related pressure losses. For this aim, 
the measurements were conducted in a closed pipe-flow channel with an optically fully accessible test section via a laser Doppler 
velocimeter. In an experimental investigation, Charry et al., [13] studied the separated flow in a three-dimensional diffuser. 
Furthermore, Johan Ohlsson et al. [14], in a numerical simulation (DNS) in the similar cases, provided accurate and detailed 
information about the flow physics which have been confirmed by the experimental data. Similarly, Dehghani [15] numerically 
examined the nanofluid inside a plane diffuser with Cu-water with the finite volume method. As he concluded the steady 
nanofluid flow was assumed incompressible, laminar, and Newtonian. His study considered the influence of Reynolds number in 
the range of 100 to 500 and volume fraction of nanoparticles (<0.05) on the skin friction coefficient and pressure recovery 
coefficient. The essential reason for the discrepancy in CP was the flow separation. All in all, the increasing pressure in the 
diffuser is an unfavorable gradient, which can lead to viscous boundary layers to separate from the wall and significantly reduce 
the performance. Consequently, controlling the separation and maintaining the attached flow at some diffusers can be efficient in 
development of the diffuser design. Therefore, we analyzed a novel interesting solution in this research, intending to develop the 
rheological theories which would predict this behavior more realistically. Askovic R., [16] has developed a new variant of the 
phenomenology semi-empiric turbulent boundary layer theory that is founded on analogy with the rheological power laws widely 
used in the study of non-linear viscous flows. It is also to be noted that this phenomenologic theory has been applied and 
confirmed by Askovic R. [17] in some cases of turbulent boundary layer. Estimation of pressure drop and separation point are the 
great importance for diffuser design procedure. In this paper, in order to improve the diffusers performance by prescribing a 
velocity distribution in diffusers, the separation point was practically predicted and its location could be shifted by choosing 
appropriate geometry. In the first part of this paper, an approximate method in base of the rheological power laws has been 
proposed to explain turbulent boundary layers in the conical subsonic diffusers. In the second part, the problem is detailed in a 
subsonic straight-wall conical diffuser and validate with the experimental studies and, in the third part, the method developed in 
curved-wall conical diffuser in order to reduce the separation length and thus to minimize the related pressure losses; and then 
the separation point with and without nanofluid, numerically has been investigated.  

2. Basic Equations 

The flows near a surface where viscous forces are important are known as the axisymmetrical turbulent boundary layer 
equations which for two-dimensional incompressible flow are written as: 
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where (x, y) are orthogonal curvilinear coordinates and ( u , v ) are velocity components at (x, y) in the boundary layer while the 

external velocity is represented by ( )eu x . Both viscosity and turbulence contribute to the shear stress global as follows:  
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Due to the rheological power low, the Prandtl turbulence model has been used: 
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and initial condition: 

0( )u u y= ,  for  0 ,x x=  (6) 

where ( )xδ  is the boundary layer thickness. After integrating the system equations (1), the momentum equation results in the 

following form:  
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If v  is eliminated from the system of equations (1): 
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3. Falkner-Skan Equation 

By substituting ,τ T, ue, and u , into equation (8), and after carrying out several transformations, it follows: 
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The differential equation (9) was recently numerically resolved by Askovic [16] for various pairs of values n and nk . The values of 

0.66n =  and 0.55nk =  have the greatest significance for the calculation of the axisymmetrical turbulent boundary layers. 

 
3.1. Approximate method to calculate the axisyimmetrical turbulent boundary layer for arbitrary ue(x) 

Introducing at first:  
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with 0 0 0. /x U x ν=ɶ  and applying (10), it is found that:  
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It could be found that 
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where ( )* * *
1 2/ /H H Qδ δ η η= = = . Equation (11) may be accepted as approximately valid in a more general case for which ( )eu x  

is an arbitrary function. The parameter Q(x) can be determined by replacing expressions (11) into (7), which is transformed into 
the form:  
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Thus, a differential equation results for calculating Q(x) as:  
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The best agreement was obtained with the experimental results in the case in which n=0.66 and 0.55nk =  were taken to 

determine E(Q). In this particular case, detailed computations have been carried out regarding the functions G(Q), E(Q) and H(Q) by 
the series expressions:  
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Thus, by inserting equation (15) into (13), for an approximate calculation of the turbulent boundary layer, in the case of n=0.66, we 
obtained a Riccati like differential equation: 
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In order to avoid the singularity due to the function '
eu  in zero, equation (16) should be changed in the following way: 
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with the new function ( )z x , equation (16) reduces to a Riccati like equation:  
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The approximate method in order to calculate the turbulent boundary layer proposed in this study consists of the following steps: 

- At first, for a given ( )eu x , the differential equation (18) is to be integrated with a prescribed initial condition of 2δ : 
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- After finding z(x), 2δ  has been determined by using equation (19), Q(x) has been given by equations (10) and (17): ( ) ( ) ( ).Q x g x z x=  

- The next step is to determine the function ( )G Q  and ( )H Q by using the relationship (15).  

- The formulas: 

( ) ( ),H x H Q=   
1

4 ( ),fC z G Q
−
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- Offering two characteristics of the turbulent boundary layer. In order to demonstrate and validate the approximate method 
developed above, the interesting case in the straight and curved-wall conical diffusers was chosen and stated in the following 
sections. 

4. Turbulent Boundary Layer in the Straight-wall Conical Diffusers 

    To apply the approximate method in this case, a flow produced by a punctual source and limited by conical divergent walls 
is supposed. The geometrical parameters are shown in figure 1, where 1R  and θ  are respectively the diffuser inlet radius and 

half angle.  
 

 
Fig. 1. Geometry of the straight-wall conical diffuser. 

 



Analytical Solutions and Analyses of the Displacement Separating Point in Diffusers  
 

Journal of Applied and Computational Mechanics, Vol. 8, No. 3, (2022), 891-903 

895 

The distribution of the external velocity ( )e nu x  for it is given by:  

2
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where 0 ( 0)eU u x= =  and 1 sinSR R θ= . Let the velocity ( )eu x  at the external frontier of the boundary layer be given by: 
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The general solution is in the following form: 
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after substituting equation (17), we have: 
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By determining the function z(x) and Q(x), all the characteristics of the global boundary layer as well the momentum thickness 
can be calculated as:  

322 4
1

(1 ) .
S e S

x
z

R R R

δ
= +  (34) 

5. Validation 

In order to validate the approximate method in conical diffusers, the experimental study of Singh and Azad [11] is preferred. 
In this study, the characteristics of the turbulent boundary layer and the position of the separating point in a conical diffuser have 
been investigated. The conical diffuser had a total divergence angle of 8o, inlet diameter of 0.1016m with a length of 0.745m. The 
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obtained results can be used as a test case for the development, verification, and realization of engineering calculation methods 
to predict flow in conical diffusers. Some of the experimental results of these authors have been compared with the present 
results obtained by the approximate method. In particular, the details of the results correspond to the separating point. The 
approximate method has been applied to the same geometry with a flow condition as used by these authors which is presented 
in the following. 
For all the measurements, the Reynolds number of flow has maintained based on the initial velocity and inlet diameter Di (the 
inlet section of the diffuser). In the experimental study, it has been reported that the recirculation flow starts at position 2, 
X=0.156 m at the wall, which increases as the flow moves towards the diffuser exit. This position corresponds to the position of 
the initial separation. 

Table 1. Characteristics of the turbulent boundary layer in the straight-wall conical diffuser. 

x(m) Q(x) G(Q) z(x) 2δ (m) H(x) Cf (x) 

0.030 -0.0055 0.0830 1075.89 0.00336 1.665 0.015 

0.060 -0.0120 0.0720 2218.24 0.00368 1.679 0.011 

0.090 -0.0190 0.0600 3463.10 0.00402 1.695 0.007 

0.120 -0.0280 0.0410 4858.60 0.00441 1.714 0.004 

0.155 -0.0410 0.0016 6769.26 0.00497 1.741 0.001 

0.160 -0.0430 - 0.0072 7075.28 0.00506 1.746 0.000 

6. Comparison of Approximate Method with the Experimental Data  

The most important characteristics of the turbulent boundary layer of a conical diffuser calculated by the approximate 
method have been compared with the same geometry and similar flow condition which was used by Singh and Azad [11]. The 
divergence angles 2θ = 8°, inlet section, R1 = 0.0508 m, input debit flow, 85.08V =ɺ l/s the kinematic viscosity of fluid, 

5 21.54 10 ,m sν −= ⋅  and the Reynolds number Ret = U0D0/ ν  was maintained 46.9 10×  based on 0U  and the inlet diameter of the 
diffuser. 

It can be seen that the separating point of the boundary layer (G(Q)=0 appears at X=0.15 m. This value corresponds to station 2 in 

the experimental data of Singh et al. [11] where the parameter pγ  is about 0.99 and matches the position of the initial separation 

point. This gives a deviation of about 10% from the abscise of the separation point related to the instantaneous recirculation that 

begins at about the wall and increases when the flow moves towards the output of the diffuser (see Figures 2 and 5). 

  

Fig. 2. Comparison of CP with approximate method and the 
experimental data. 

Fig. 3. Comparison of 1δ  and 2δ  obtained by the approximate 

method and the experimental data. 

  

Fig. 4. Distributions of the friction coefficient (Cf ) along the longitudinal 
direction obtained by the approximate method. 

Fig. 5. Comparison of H obtained by approximate method and the 
experimental data. 
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Fig. 6. A family of diffuser of types ( )dp dx const= . 

 
Fig. 7. Geometrical relation of the curved-wall conical diffuser.  

By the distribution of the friction coefficient, the separating point could be predicted. The results in the experimental data 
showed that the friction coefficient significantly decreased about 80% of its initial value at x= 0.2 m at the entrance of the diffuser 
(Figure 4-7). The separating point of the boundary layer calculated by the approximate method (Cf=0) appeared at x=0.155m. From 
this point of view, it can also be concluded that the prediction of the separating point with the approximate method was also 
reasonable. In Figures 2 to 5, the results obtained by the approximate method are compared with the experimental data of Singh 
and Azad [11]. 

These results show that there are average deviations of %20, %10, %7, and %5, assigned to PC , 1 ,δ  2δ , and H respectively. Thus, it 

can be observed that the trend of the curve relative to the approximate method is a good match with the experimental results. 

7. Turbulent Boundary Layer in Curved-wall Conical Diffuser  

The central problems of diffuser design are prediction and prevention of flow separation. In this case, the calculation method 
is basically the same as that for the conical diffuser, except that the geometrical relations require the radii for curve diffusers 
rather than the straight-wall. In these types of diffusers, increasing the opening passage occurs more slowly at the beginning than 
at the end so that the pressure gradient is more continuous. Thus, the main cause of separation flow and consequently the main 
source of losses are considerably reduced. From this point of view, the best diffuser is that in which, for potential flow, the 
pressure gradient remains relatively constant along with the diffuser ( )dp dx const= . Accordingly, geometrical relations of curved-
wall conical diffusers are expressed as (see Fig. and equation (35)): 

42

2 1

2 42
2

1
1

( ) .

( ) ,       0 x .
( ) 1

4 1 1 .( 1)

R
L

R R
R x

R
R x

R
R L

= ≤ <
   −  − − −     

 (35) 

In figure 6, a family diffusers of obtained by equation (35) are shown. To apply the approximate method in curved-wall conical 
diffusers, similar to the previous example, flow is produced by a punctual source but in this case, limited by divergent curved-
walls. The geometrical parameters are shown in figure 7, where 1R  and θ  is the diffuser inlet radius and half-angle respectively.  

where 1 ( 0)R R x= =  and 2 ( ).R R x L= = The distribution of the external velocity ( ),eu x  for the curved- wall diffuser is given by: 

1

4
0

. L
( ) (1 ) ,       0 x

de

d x
u x U

L
= − ≤ <  (36) 

where 0 ( 0)eU u x= = , 4
1 21 ( / )d R R= − . In the case of the turbulent boundary layer, according to the method developed above, 

first of all, we should solve the problem in general manner.  
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( ) ( ) ,m
e

L
u x C x

d
= −  (37) 

where -m
0(L/d)  C U= and 1 / 4m= . Replacing (37) into (16), to find out that: 

2( ) 23.163  (0.66 3.097 ) 0.063  .
L dQ

x m Q m Q m
d dx
− =− + + −  (38) 

Introducing the new variable:  

23.163  ln( ) ,
L

m x
d

λ = −  (39) 

The last equation reduces to:  

1 223.163. .( )

1

2 0

.

m Q Q
L

x
Q Q d
Q Q c

−  −  −   =   −    

 (40) 

Thus, finally: 

1 2( ) ,
1

Q qQ
Q x

q

−
=

−
 (41) 

using the abbreviation:  

1 223.163. .( )

0

( ) ,

m Q Q
L

x
dq x

c

−  −    =      

 (42) 

where the integration constant 0c  will be calculated with the help of the initial condition (17); while according to (10) and (37), 

we have: 

1( ) (1 ) ,m

e

md dx
g x

R L
− −−

= −  (43) 

i.e., (0) 0g ≠ , then the condition (0) 0z = involves (0) 0,Q =  taking into account (41) and (42), it results: 

1 2

1

23 1632
0

1

. m(Q Q )L Q
c ( )( ) ,

d Q
−=  (44) 

The solution of equation (38) was determined completely: 

1 223.163 ( )1

2

( ) (1 ) .    m Q QQ d
q x x

Q L
−= −  (45) 

The general solution of the differential equation (38), offering parameter Q(x), is defined by: 

1.853

1.853

0.1755 0.1755(1 )
( )

1 11.28(1 )

d
x

LQ x
d

x
L

− −
=

− −
 (46) 

After determining the functions z(x) and Q(x), we can calculate now all global boundary layer characteristics as well as 2δ  by (19) 
and the other functions G(x), ( )H x  et ( ).fC x  In order to study the separation point of turbulent boundary in a straight-wall 
conical diffuser, considered in 4, and compared with curved-wall conical diffusers, the numerical example in particular case has 
been computed. The case of curved-wall conical diffuser, in the same condition flow and geometrical corresponding, has been 
regarded. 

8. Numerical Example 

- Turbulent boundary layer in the curved-wall conical diffusers. 

The distribution of the external velocity ( )e nu x  for it is given by equation (36) and the particular parameter as follows: 

1 0.05R = m, 2 0.4R = m, 0.745L= m and 2 8θ = �  with the initial velocity 0 10.5U =  m/s and 

0. i
eL

U D
R

ν
= =

5

13 1

1.52 10−
⋅

=
⋅

46.9.10  
(47) 

For this case study, the results are given in Table 2, where it is clear that the separation point of turbulent boundary layers 

( ) 0.041Q x =−  appears at xn=0.55, indicating considerable displacement of separation point. The other characteristic of the 

turbulent boundary layer, given by table 2 and figures 8, appears to be also physically acceptable. 
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Table 2. Characteristics of the turbulent boundary layer in the Curved-wall conical diffuser. 

x(m) z(x) Q(x) G(Q) 2δ (m) H(Q) 1δ (m) Cf(x) CP(x) 

0.05 2723.88 -0.0013 0.091 0.0004 1.656 0.0007 0.0130 0.038 

0.15 8395.35 -0.0044 0.085 0.0011 1.662 0.0018 0.0090 0.113 

0.25 14500.0 -0.0087 0.078 0.0017 1.672 0.0029 0.0070 0.188 

0.35 21129.0 -0.0150 0.067 0.0024 1.685 0.0040 0.0060 0.263 

0.45 29240.0 -0.0240 0.051 0.0032 1.704 0.0055 0.0040 0.338 

0.55 39260.0 -0.0380 0.011 0.0042 1.736 0.0074 0.0008 0.413 

 

  

Fig. 8. Evolution of 1δ  and 2δ  in the curved-wall conical diffuser. Fig. 9. Distributions of the friction coefficient (Cf ) along the 
longitudinal direction, obtained by the approximate method in straight-

wall and curved-wall diffusers. 

 
 

Fig. 10. Evolution of H in the curved-wall conical diffuser. 

9. Nanofluid Effectiveness on the Diffuser Performance 

 As mentioned, control of separation and maintaining the attached flow through the diffusers is a favor in the diffuser design 
and development to minimize the related pressure losses. In the practical techniques, the aspiration, blowing, vanes deflector, 
and other features had been used to better control the separation flow. One probability for this proposition can be using nanofluid 
and, by this, changing the condition flow is meant. In all the fluid properties, viscosity requires the greatest effects in the study of 

fluid flow. Normally, the viscosity µ  is referred to as absolute viscosity in kinematic viscosity relation ( / )ν µ ρ= . Inlet Reynolds 

number (Re=U0.Di/ ν ) is a function of ν , the kinematic viscosity. Therefore, the effect of the nanoparticle addition on the pressure 
recovery coefficient in Reynold number is investigated in this study. There are some existing formulas to estimate the viscosity of 
nanofluids. Although extensive research has been carried out in this field and it still needs more attention [18]. Some papers have 
reported results on the effects of particle shape, particle size, volume fraction, and temperature on nanofluids. Wide variations 
exist in the development of these studies. Classical models for the description of nanofluid viscosity can be found in the literature 
such as Einsten Model, Brickman Model, and Batchelor Model. In addition, in these models, the effects of the other factors such as 
aggregation, dispersion techniques, acidity or PH value, etc. have not been reported. So, in this study, the viscosity of nanofluids 
has been examined based on rheological study (Krinenger and Dougherty Model) as the following: 

1
m

nf bf

m

ηϕ

ϕ
µ µ

ϕ

−  = −   
 (48) 

where, nfµ  is dynamic viscosity of the nanofluid (m. Pa. s) and bfµ  is dynamic viscosity of the base fluid. Moreover, ϕ  is 

volumetric fraction of particle with mϕ = 0.49-0.54 and η = 2.5. By choosing a particle-water nanofluid, the mass density can be 
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calculated by: 

( ). 1 .Pnf bfρ ϕ ρ ϕ ρ= + −  (49) 

where: nfρ  nanofluid density, Pρ  particle density and bfρ  based fluid density in (kg/m3). 

10. Numerical Example and Results  

Calculation of the turbulent boundary layer in the curved-wall conical diffusers has been investigated using different particle-

water nanofluid in the same case using the approximate method. The distribution of the external velocity ( )e nu x  for it is given 

by equation (36) and the particular parameter as follows: 1 0.05R m= , 2 0.4R m= , 0.745L m= , 2 8θ = � and 0.1iD m= .  

 (Re=U0.Di/ nfν = 6.9.104) Reynolds number is regarded constant.  

 ϕ = 0.05 Cu, ϕ = 0.95 water volumetric fraction 

 wµ = 10-3 N.s/m2, wρ = 1000 kg/m3, nfµ  = 1.14.10-3. 

Table 3. Characteristic of different particle-water nanofluid. 

Nanofluid wρ (kg/m3) npρ (kg/m3) nfρ (kg/m3) nfµ (N.s/m2) nfν (m2/s) U0 (m/s) Re=U0.Di/ ν  S. P. 

TiO2- Water 1000 4250 1161 1.14.10-3 2.68.10-7 0.18 6.9.104 0.47 

Al2O3- Water 1000 3900 1145 1.14.10-3 9.96.10-7 0.67 6.9.104 0.48 

CuO- Water 1000 3620 1131 1.14.10-3 1.00.10-6 0.69 6.9.104 0.45 

Cu- Water 1000 8933 8933 1.14.10-3 8.16.10-7 0.56 6.9.104 0.48 

 

Fig. 11. Distributions of the velocity obtained by numerical method in straight-wall diffusers. 

  

Fig. 12. Distributions of the Wall Shear Stress along the longitudinal 
direction, obtained by numerical method in straight-wall diffusers with 

and without the nanofluids. 

Fig. 13. Distributions of the Wall Shear Stress along the longitudinal 
direction, obtained by numerical method in straight-wall diffusers with 

the nanofluids. 
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Fig. 14. Distributions of the Wall Shear Stress along the longitudinal direction, obtained by numerical method in straight-wall diffusers with the 
nanofluids (in logarithmic scale). 

 

Fig. 15. Distributions of the velocity obtained by numerical method in curved-wall diffusers 

  

Fig. 16. Distributions of the Wall Shear Stress along the longitudinal 
direction, obtained by numerical method in curved-wall diffusers with 

and without nanofluids. 

Fig. 17. Distributions of the Wall Shear Stress along the longitudinal 
direction, obtained by numerical method curved-wall diffusers with the 

nanofluids. 

 



 Ebrahim Sharifi Teshnizi and Fereshte Momeni, Vol. 8, No. 3, 2022 
 

Journal of Applied and Computational Mechanics, Vol. 8, No. 3, (2022), 891-903   

902 

 
 

Fig. 18. Distributions of the Wall Shear Stress along the longitudinal direction, obtained by numerical method curved-wall diffusers with the 
nanofluids (in logarithmic scale). 

In these cases, it was found that, in the whole numerical example, the results of the calculation revealed diminutive initial 
velocity U0 and no significant effect on the displacement of the separation point. Also, by choosing U0=10.5 m/s, the Reynolds 
number, Re, did not have any significant effect on the separation point in this method of calculation. For the verification of these 
results, an experimental study was required to be carried out. The above calculations were studied in a numerical code, too. 
Numerical results were obtained using Ansys Fluent 17.2. Grid type of Quadrilaterals was selected. Several different grid 
distributions were examined to ensure that the calculated results are grid-independent. It can be said that by choosing 30, 60, and 
300 nodes, respectively, in the inlet, outlet, and axial direction, numerical results become independent from the grid. The results 
have been shown in Figures 11 to 14 for the straight-wall conical diffuser and the curved-wall conical diffuser in Figures 15 to 18 
with and without nanofluid. In the above-mentioned method, considering changes of the Wall Shear Stress in the longitudinal 
direction, tending to zero, it represents the separation point. As shown in the Figures, the presence of nanofluid is not in favor of 
the displacement of the separation point. Therefore, it might not be considered as a good technique for controlling separation 
point in diffuser's performance. 

11. Conclusion 

In this paper, analytical, experimental and numerical method has been analysed concerning the turbulent boundary layer in 
diffusers. An approximate method based on the analogy with the rheological power law in the case of Prandtl model of 
turbulence was investigated by two empirical constants n=0.66 and kn=0.55. The global turbulent boundary layer in the case of 
axisymmetrical straight-wall conical diffusers was computed and validated with the experimental data in the literature. In Table 
1, and Figures 2 to 5, it can be seen that the results are physically acceptable. In addition, it was observed that the separation point 
( 0)fC ≅ appeared with x=0.1 m having a relatively good agreement with the experimental results of Singh and Azad [8] with a 
deviation of about 5%. The global turbulent boundary layer in a case of axisymmetrical curved-wall conical diffusers was 
computed. The numerical results presented in Table 2 and Figs. 7 to 10. The separation point of the turbulent boundary layer 
appeared at about 0.55m, while the other global characteristics of the turbulent boundary layer can be physically acceptable. With 
the suitable prescribed geometrical curved-wall, the displacement of separation point was found to be significant and could be 
helpful in the diffuser's performance. Based on the numerical results presented in Table 3, it was found that the presence of 
nanofluid did not have any significant effect on the separation point. In addition, results obtained via Ansys Fluent 17.2 were 
similar to those obtained by the approximate method, indicating that nanofluid revealed some feeble effects, though it was not 
significant. Although such results were in line with the results obtained by Dehghani [15] in the case of incompressible, laminar, 
and Newtonian nanofluids, experimental verification and its effects on the diffuser's performance in this particular case is felt 
necessary in the future investigations.  
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Nomenclature 

0 ( 0)eU u x= =  Initial velocity θ  Diffuser half angle 

( , )u v  Velocity components wρ  Water density 

eu  External velocity nfρ  Nanofluid density 

tτ  Shear stress global Pρ  Particle density 

pC  Pressure-recover coefficient bfρ  Based fluid density (kg/m3) 

δ  Boundary layer thickness eR  Inlet Reynolds number 

1δ  Displacement thickness ϕ  Volume fraction of nanoparticles 

2δ  Momentum thickness µ  Dynamic viscosity 

fC   Friction coefficient ν  Kinematic viscosity 

H  Shape factor nfν  Nanofluid Kinematic viscosity 

1R  Diffuser inlet bfµ  Dynamic viscosity of the base fluid 

2R  Diffuser outlet radius nfµ  Dynamic viscosity of the nanofluid 

( )R x  Diffuser radius at x direction ρ  Density 
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