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Abstract. The magnetohydrodynamic flow of a viscous fluid over a constant wedge in three- dimensional boundary-layer has 
been analyzed both numerically and asymptotically. The magnetic field is applied normal to the flow. The mainstream flows 
aligned with wedge surface are assumed to be proportional to the power of the coordinate distances. The system is described 
using three-dimensional MHD boundary-layer equations which are converted to couple nonlinear ordinary differential equations 
using similarity transformations. The resulting equations are solved numerically using the Keller-box method which is second-
order accurate and asymptotically for far-field behavior. Both numerical and asymptotic solutions give good agreement in 
predicting the velocity behaviors and wall shear stresses. The effects of Hartmann number, pressure gradient and shear-to- 
strain-rate on the velocity fields are studied. Particularly, it is shown that the solutions of three-dimensional boundary-layer for 
variable pressure gradient exist, its effects are important on the boundary-layer flow. Results show that there are new families of 
solutions for some range of shear-to-strain-rate and there exists a threshold value of it beyond which no solutions exist. For 
some range of parameters, there is a reverse flow at which our boundary-layer assumptions are no longer valid. Various results 
for the velocity profiles, wall-shear stresses and displacement thicknesses are also obtained. The physical mechanisms behind 
these results are discussed. 

Keywords: Three-dimensional flow; Wedge flow; Keller-box; Asymptotic; Shear-to-strain- rate; Displacement thickness. 

1. Introduction 

A canonical problem in fluid mechanics concerns about two-dimensional boundary-layer flow in which the velocity components 
depend on two spatial coordinates, and the viscosity effects are confined near the surface. This gives a good deal of simplifications 
in the Navier-Stokes equations. The two-dimensional boundary-layer flows, originally developed by Prandtl have significant 
applications such as aerodynamics, design and analysis of aircraft, boats, submarines, rockets, jet engines, wind turbines, 
biomedical devices, the cooling of electronic components and the transportation of water, crude oil and natural gases, etc. 
Although there is a good understanding of two-dimensional boundary-layer flow, an understanding of three-dimensional 
boundary-layer flow is progressed recently due to its vast applications such as boundary-layer flow over swept wings, turbine bodies, 
also in biomedical engineering and industries, etc. These flows, in many ways, are linked to a much-complicated flow structure which 
results into difficult mathematical problems and hence solutions. When solutions exist, they certainly predict interesting flow 
phenomena and corresponding physical mechanisms. Also, a significant progress in understanding fundamental dynamics of 
three-dimensional boundary-layer flow has been derived from its two-dimensional analogue (Sowerby [1] and Banks [2]). 

An important attempt at describing the three-dimensional flow of a viscous and incompressible fluid was carried out by 
Davey [3]. In this study was assumed that the outer-mainstream flows were allowed to vary linearly and were irrotational that 
lead to a stagnation-point flow problem. However, the numerical solutions of the problem were obtained only for / 1V U∞ ∞ >− , 
where U∞ , V∞ are strain and shear rates, beyond which no solution exists. It was shown by Davey and Schofield [4] that the 
above three-dimensional boundary-layer problem exists near the two-dimensional stagnation-point by setting V∞ →∞ . Most of 
the studies on three-dimensional boundary-layer flows have been restricted to a stagnation point flow. In addition, Davey and 
Schofield [4] have reported dual solutions of the three-dimensional boundary-layer flow. Recently, Weidman [5] has obtained 
non-axisymmetric stagnation point flows in three-dimensional boundary-layers in which the outer potential flow is modified by 
adding periodic and azimuthal velocities, and this leads to a new class of asymmetric stagnation-point flows.  

The pressure is supposed to be uniform throughout the flow field i.e. the value of the pressure gradient in the boundary-layer 
region equals with that of the potential flow, and thus pressure is prescribed by the inviscid flow. In the case of the two-
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dimensional, the inviscid flow is one-dimensional whereas, for the three-dimensional boundary-layer flows, it is two-
dimensional. In any case, the pressure gradient from the outer inviscid flow is impressed on the boundary-layer with either 
negative (accelerated flow), zero (the flow over a flat surface) or positive (decelerated flow). Thus, with an appropriately 
impressed pressure gradient on the boundary-layer, the streamlines are strongly skewed in the viscous boundary-layer than in 
the inviscid flow. Hirschel et al. [6] studied the three-dimensional boundary-layer flows of the above type usually appear in the 
context of wing-body junctions. Further, Duck et al. [7] have approximated both outer freestream flows by a power of distance of 
the form mx , where x is measured along a distance from leading edge and m is a constant. For zero pressure gradient m=0 similar 
to the classical Blasius flow, the three-dimensional solution is also possible in which the both velocity profiles have accelerated 
boundary-layer characters. For m=1, the details of three-dimensional boundary-layer stagnation-point flow can be found in 
Rosenhead [8]. Duck and Dry [9] have shown that the similarity-type solutions to the three-dimensional boundary-layer flows do 
not exist for general values of m. Thus, these observations provide the motivation for the present investigation. 

We will examine the effects of the pressure gradient on the general three-dimensional boundary- layer flows over a wedge 
surface possessing the velocity profiles in both directions and this work is an extension of the two-dimensional boundary-layer flow 
and of Duck and Dry [9]. Since the pressure variation is constant along the normal direction (z > 0), it is a function of x and y along 
the main flow and secondary flow respectively. The outer freestream flows are characterized by power-law relations (i.e. the outer 
freestream flows vary as a power of distances along the wedge surfaces) that are proportional to xm and ym. There are other forms 
of the power law approximations, see (Hayat et al. [10]). The same m is taken in both relations because the pressure is uniform 
quantity in the boundary-layer. Thus, the parameter m now defines the strength of the pressure gradient and introduces an 
additional parameter in the boundary-layer equations. When m < 0, the flow has an adverse pressure gradient i.e 

)/ 0,( / 0p x p y∂ ∂ > ∂ ∂ >  and for m > 0, the flow becomes a favorable pressure gradient i.e. )/ 0,( / 0p x p y∂ ∂ < ∂ ∂ < . Further, once 
the self-similar forms are assumed, these power-law relations give a good deal of simplification and lead to discovering a new 
family of boundary-layer solutions as a function of the shear-to-strain-rate ratio parameter α . Crucially, it is important to note 
that although this parameter is absent in two-dimensional flow ( 0V∞ = ), it does encompass a wide range of three-dimensional 
boundary-layer flows. In particular, when this parameter α  is negative, the key point is that the secondary flow has a boundary-
layer separation only at which power-law assumptions fail. At this point, it is worth to mention that for certain values of α  (say 

0α  and is negative), the occurrence of flow separation is common in the y-direction. This is, however, a function of pressure 
gradient parameter. By increasing pressure gradient the flow separation could be delayed resulting into decrease the value of 0α  
and at the same time solution domain also increases (Hirschel [6]). 

On the other hand, the boundary-layer separation could be prevented by including the external forces on the boundary-layer 
flow. One option is to include the MHD effects on the boundary-layer flow in which it is applied normal to flow directions (x- and y-
directions). This applied force naturally prevents the flow separation by releasing more energy to the flow. This applied magnetic 
field certainly removes the decelerated fluid particles present in the flow, thereby making the fluid to attain accelerated flow. 
Also, the applied magnetic field strictly balances the flow oscillations (Oskam and Veldman [11]) in the boundary layer and has 
stabilizing effects on three-dimensional flow disturbances (Sommeria and Moreau [12]). Besides this, on the other hand, when the 
outer freestream velocities are reduced to zero and the wedge is allowed to stretch along its own plane, then this model is described 
using a three-dimensional laminar boundary layer flow over a stretching surface. In this case, the boundary-layers grow upstream 
from the leading edge. This model is quite delicate by the fact that the stretching rate needs to be managed and small enough so that 
the sheet should not break and be flat throughout. This can effectively be done by applying the magnetic field normal to the surface 
in which it is stretched. In this context, a certain amount of effort has been directed to study the MHD effects on the boundary-
layer flow in general, and in particular, the nature of the velocity profiles, although MHD greatly complicates the problem by the 
fact that the flow is three-dimensional. Allowing the outer freestream velocity to grow linearly in both co-ordinates, Takhar et al. [13] 
have studied three- dimensional laminar boundary-layer flow when the magnetic field is applied normal to the flow. Also, Hayat et 
al. [14] studied the magneto hydrodynamic three-dimensional flow of a viscous fluid over a stretching sheet in a porous medium. 
Ishak et al. [15] have considered magnetic boundary layer flow due to moving extensible surfaces in which the surface is stretched 
in a uniform manner. To this end, the present work is also devoted to investigating the MHD effects on three-dimensional 
boundary-layer flows considering a variable pressure gradient, in which the boundary-layers grow downstream from the leading 
edge at which boundary-layers first form. Awaludin et al. [16] have studied the stability of MHD boundary layer flow and heat 
transfer and showed that the model shows a dual solution structure for the same set of physical parameters in which the 
additional solution is always leads to unstable and hence practically cannot be encountered. Recently, Singh et al. [17] have 
obtained analytical-type solution to the MHD boundary layer flow due to stretching sheet which is embedded in the porous medium. 

Thus, the variety of meaningful comparisons between theoretical predictions and experimental observations has led to 
developing rational mathematical analysis of the three-dimensional model. We will study the effects of the variable pressure 
gradient and applied magnetic field on general three-dimensional boundary-layer flows. These two parameters alter the nature of 
the boundary-layer flow but complicate the problem and have been the subject of much interest. These effects lead to several ideas 
mentioned above including boundary-layer separation. Thus, the equations describing this boundary-layer flow can be derived 
from Prandtl’s equations, Maxwell’s equations, Ohm’s law, Faraday’s law and admit similarity type solutions. These equations are 
justifiable on the basis of the large Reynolds number, but give all solutions that are independent of Reynolds number. Both 
numerical and asymptotic methods are presented for tackling various aspects of the problem. In most of the boundary-layer 
computations, as commonly employed, the finite-difference based Keller-box method which is second-order accurate is used. This 
method is particularly useful because it allows adopting a variable grid size during the computations (Keller [18]). 

The presentation of the paper proceeds as follows. In §2 we derive the problem under discussion including various governing 
equations, the similarity transformations, etc. The solution procedure by the Keller-box method is discussed in detail in §3. The 
special case m=1 and M=0 is considered which corresponds to the stagnation point flow (Davey [3] and Rosenhead [8]) in three-
dimensional boundary-layers. For other values of these parameters a new class of solutions is obtained and are analyzed. Section 
4 devotes to assess the results obtained for m, M and α  (including large α ) by taking large α  asymptotics of the problem. For 
large α , the regular perturbation method is considered. Further, the large η  asymptotics is also performed. The model is 
reduced to a system of linear ordinary differential equations and solved in terms of confluent hypergeometric functions which 
are fully analyzed. The final §5 summarizes the discussion on the important results. 
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Fig. 1. A schematic configuration of the three-dimensional boundary-layer in presence of Magnetic field. 

2. Flow Theory and Analysis 

Consider a steady three-dimensional laminar viscous boundary-layer flow over a constant wedge in the presence of an electrically 
conducting fluid. We employ a system of Cartesian coordinates (x, y, z) in which x- and y- axes are measured (quite large) along the 
direction of the flow and z-axis is measured along normal to the flow, and the flow is in half-space z > 0. The fluid of viscosity µ 
and constant density ρ is driven over the wedge surface in which the viscosity effects are confined to the boundary surface and 
away from the surface the flow is governed by the potential flow. The outer freestream velocities in both x-and y- directions are 
taken respectively U (x) and V (y) (these will be defined shortly) (see figure 1). Further, the magnetic field is applied normal to the flow 
(in the z-direction) in which an entire flow field is completely magnetized as shown in figure 1. The induced magnetic field produced 
by the motion of an electrically conducting fluid is almost negligible in comparison with the applied magnetic field since magnetic 
Reynolds number is very small i.e. Rm(= ULσµm) ≪ 1 where µm is magnetic permeability and other variables will be defined later. It is 
assumed that no external electrical field is applied and the effect of polarization of the fluid is negligible. This is supported by the 
fact that the electrical energy is small compared to magnetic energy. We first give the Navier- Stokes equations for a viscous and 
incompressible fluid in the presence of applied magnetic field so that exact derivation of three-dimensional boundary-layer 
equations becomes simple. Thus, the continuity and momentum equations are 

0,q∇⋅ =
�

 (1) 

21 1
( )q q p q J B

µ

ρ ρ ρ
⋅∇ =− ∇ + ∇ + ×

� �� � �
 (2) 

where ( , , )q u v w=
�

is velocity vector in ,x y and z-directions, p is the pressure, J
�

 is the current density and 0(0,0, )B B
�

 is the 
magnetic field applied in z-direction. The last term in (2) is the body force between applied magnetic field and the fluid motion 
and is called the Lorentz force. It is defined as 

[ ]J q Bσ= ×
� ��

 (3) 

where σ  is electrical conductivity of the fluid. Thus, the evaluation of the last term in (2) using (3), we obtain 

2 2
0 0
ˆ ˆ ˆ[ 0 ].J B uB i vB j kσ× = − − + ⋅

� �

 (4) 

Further, for a large Reynolds number ���= �	/�� (in usual notations) flow, the viscosity effects are confined to a thin layer 
near the boundary. Within this thin layer, very large velocity gradients exist, i.e. the velocity gradient increase from the zero at 

the surface to the inviscid flow at the edge of the boundary- layer and also ���� , ���� ≪ ���� and ���� , ���� ≪ ����. Let δ be the thickness 

of the boundary-layer, then we have that � ≪ 	, except at the onset of the boundary-layer, where L is some reference length scale 

defined in the spatial direction. The velocity components ( , , )u v w  are non-dimensionalized with respect to the mainstream 

velocities , ,U V W . We define the following independent dimensionless variables:  

* * * * * * *, , , , , ,
yx z u v w p

x y z u v w p
L L U V W Pδ ∞

= = = = = = =   

where δ  and P∞  are certain reference quantities. With the above scaling and approximations, equations (1-4) can be written in 

boundary-layer form as (dropping superscript stars) 

0,
u v w

x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (5) 
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2 2

2

1
,

u u u p u B
u v w u
x y z x z

σ
ν

ρ ρ

∂ ∂ ∂ ∂ ∂
+ + =− + −

∂ ∂ ∂ ∂ ∂
 (6) 

2 2

2

1
,

v v v p v B
u v w v
x y z y z

σ
ν

ρ ρ

∂ ∂ ∂ ∂ ∂
+ + =− + −

∂ ∂ ∂ ∂ ∂
 (7) 

0
p

z

∂
=
∂

 (8) 

where � represents the kinematic viscosity and is assumed constant. The pertinent boundary conditions are  

at 0 : 0,z u v w= = = =  and as :            and         z u U v V→∞ → →  (9) 

where ( )U U x=  and ( )V V y=  are velocity components in x- and y-directions outside the boundary-layer region. The above 
system (5-9) obviously restricts to the class of flows to be considered in the boundary-layer, however, the resulting class is 
significant from both theoretical as well as practical point of view. Also reduction of the above equations is fully rational i.e. all 
derivations can be justified on the basis of large Reynolds number theory, but we rather obtain Reynolds number independent 
solutions. Equation (8) shows that the normal pressure gradient is zero, i.e. the pressure is assumed uniform across the flow 
region. This means that an imposed pressure distribution in the potential flow is chosen to match exactly the pressure field of 
boundary-layer. This pressure gradient in the above system can be approximated from inviscid flow with ( )u U x= , the 
momentum equation (6) becomes (Sowerby [1]) 

21
.zdU p B

U U
dx x

σ

ρ ρ

∂
=− −

∂
 (10a) 

Similarly, with ( )v V y=  the momentum equation (7) becomes 

21 zdV p B
V V
dy y

σ

ρ ρ

∂
=− −

∂
 (10b) 

Following Batchelor [19], both potential flow velocities are expected to vary in a power-law manner with co-ordinate distance 
measured along the corresponding boundaries 

( ) ,         ( )m mU x U x V y V y∞ ∞= =  (11) 

where ,U V∞ ∞  and m are constants. Here m defines the mainstream forcing on the boundary-layer in both directions (see (10)). 
When m is negative, the system has an adverse pressure gradient (i.e. / 0p x∂ ∂ >  and / 0p y∂ ∂ > ) and for positive m, it has a 
favorable pressure gradient (i.e. / 0p x∂ ∂ <  and / 0p y∂ ∂ < ). From (6), (7) and (10) we have 

2 2

2
( ),

u u u dU u B
u v w U u U
x y z dx z

σ
ν

ρ

∂ ∂ ∂ ∂
+ + = + − −

∂ ∂ ∂ ∂
 (12) 

2 2

2
( ).

v v v dV v B
u v w V v V
x y z dy z

σ
ν

ρ

∂ ∂ ∂ ∂
+ + = + − −

∂ ∂ ∂ ∂
 (13) 

The components (dependent variables) in (12) and (13) can easily be reduced by introducing two unknown stream functions 

1ψ  and 2ψ , and defining them in the form 

1 2 1 2( , , ) , ,u v w
z z x y

ψ ψ ψ ψ  ∂ ∂ ∂ ∂   = − +     ∂ ∂ ∂ ∂  
 (14) 

which satisfy the continuity equation identically, and the momentum equations (12) and (13) become 

2 2 2 3 2
1 1 2 1 1 2 1 1 1

2 3
,zdU B

U U
z x z z y z x y z dx z z

ψ ψ ψ ψ ψ ψ ψ ψ σ ψ
ν

ρ

   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ + − + = + − −     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 (15) 

2 2 2 3 2
1 2 2 2 1 2 2 2 2

2 3
.zdV B

V V
z x z z y z x y z dy z z

ψ ψ ψ ψ ψ ψ ψ ψ σ ψ
ν

ρ

   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ + − + = + − −     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 (16) 

In a similar way, as discussed by Rosenhead [8] for a stagnation point (m=1), the number of independent variables ( , ,x y z ) in 

(15) and (16) can be reduced to one in accordance with similarity transformations if we set 

1

2( 1)
.

2

m U
z

x
η

ν

 + =   
 (17a) 

The above similarity variable η
 
helps to determine stream functions 1ψ  and 2ψ  in terms of new functions ( )f η  and ( )g η . See 

the appendix for details on the stream functions. We set / ( )u U F η= , / ( )v V G η=  and making use of the above stream unction 

1 /u zψ= ∂ ∂  in (14) and integrating it with respect to �, we get 
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�� = � 2���� + 1�� !��� (17b) 

where ( ) ( )f F dη η η= ∫ . Similarly, we get another stream function 

� = " #�$%&'� ()* +���  (17c) 

where +��� = ∫ -���.�. This new set of transformations generally offers some advantages over the previous system (15-16) as it is 
beneficial to work with the �- differentiated form of (15-16). Substituting (17) in (15) and (16) we get a system of third order 
nonlinear ordinary differential equations 

!/ + !0�! + 12+� + 2�1 − !4 � − 5 �!4 − 1� = 0,  (18a) 

+/ + +0�! + 12+� + 12�1 − +4 � − 5 �+4 − 1� = 0,  (18b) 

and the corresponding boundary conditions (9) become 

 !�0� = 0, !4�0� = 0, !4�∞� = 1, 
+�0� = 0, +4�0� = 0, +4�∞� = 1. 

(18c) 

(18d) 

where ! = !���, + = +��� and 2 / ( 1)m mβ = +  is pressure gradient parameter, 2 2 / ( )2 ( 1)zM LB m Uσ ρ= +  is the Hartmann number 
which is the ratio of electromagnetic force to the viscous force in the boundary layer, /Vx Uyα=  is the shear-to-strain-rate 
parameter. Note that both ( )f η  and +��� in (18) are functions of x and y (see (17)), however, Benzi et al. [20], [21] have proved that 
if x and y are replaced by L in the final equations, then dependence of x and y in (18) can easily be removed. Thus, /V Uα ∞ ∞= . 
This approximation is justified in the boundary-layer approximation since the spatial direction length L is quite large, and 
also 8� ≫ �8�, 8�). Further, if we interchange x and y in (17) then ( )f η  and +��� will get interchanged in (18) which will not alter the 
physics of the problem. System (18) has been derived for the first time which describes the three-dimensional boundary layer 
flow of a viscous incompressible fluid in the presence of applied magnetic field with variable pressure gradient. The solutions of 
system of differential equations encompass wide variety of boundary layer flows including the standard two-dimensional 
classical boundary layer flows for some parameters. The last two derivative boundary conditions in (18c-18d) are such that both 
stream wise velocities approach the main stream flows as η→∞  (i.e, η η∞→ , where η∞  is large, is utilized explicitly in our 
calculations). Further, we define when 0β >  the system has a favorable pressure gradient while for 0β <  it has an adverse 
pressure gradient. The effects of pressure gradient shall be described later. In absence of magnetic field (M=0), Howarth [22] 
reported solution of (18) in the range 0 1α≤ ≤ , and Davey [3] showed that similarity solutions exist for the system (18) in the 
range 1 0α− ≤ ≤  for the case of stagnation point flow ( 1)β = . We anticipate that the presence of magnetic field in the boundary-
layer flow would modify this range of values of α  for which the velocity profiles in both directions exist.  

Once similarity solutions to the problem exist for ,β α  and M, these, in fact, are exact solutions of the Navier-Stokes 
equations in the boundary layer limit � ≪ 	. While quantitative solutions can be expected only for those physical parameters 
neither too small nor too large, the predictions would capture many important features of boundary layer flow such as flow 
oscillations, flow separations, etc. An equivalent asymptotic model for large α  will also be performed to support these numerical 
solutions. 

When 0α=  and 0M= , both solutions are similar and are the two-dimensional classical Falkner-Skan boundary-layer flow 
(Rosenhead [8]) whilst for other values of α  and M, the full three-dimensional nonlinear differential equations may be studied by 
considering the effects variable pressure gradient, which is not carried out in the literature. In the light of above considerations, 
we now study direct numerical solution of the system (18). 

3. Numerical Solution 

Coupled nonlinear system (18) is numerically integrated across the boundary layer region using implicit finite-difference 
scheme. We discretize an entire flow domain with a very small grid size, and use the Keller-box solution method for the system 
(18) that consists of several steps. The two third-order differential equations (total order is six) is converted to the system of six 
first-order equations by introducing some additional unknowns. This first-order system is discretized with help of central finite-
difference scheme which is second order accurate. This discretization produces nonlinear algebraic equations that are linearized 
via Newton's linearization technique. Once the system is linearized, we use the factorization method to solve the linear system 
and update the correction at each iteration until we obtain the convergent solution. In all our simulations, the error tolerance 
was set to 810− . Our code adopts a variable grid-size and different flow domains to get the precise wall stress values (0)f ′′  and 

(0)g′′ . The Keller-box solver works well and can be adjusted by adopting a very fine grid in the flow domain in order to capture 
any significant flow variations (Cebeci and Bradsha [23]). Once the solutions have been determined, the two-dimensional 
boundary-layer displacement thicknesses xδ  and yδ  may be calculated from the following relations 

∫ �1 − !4����.�:; = ��, ∫ �1 − +4����.�:; = ��.  (19) 

Also of interest is the wall shear stress 

< = = >8?8@ A + 8B8@ CD�E; = = �� + 12�� �� �F [!0�0�A + 1+0�0�C] (20) 

in which i and j are unit vectors directed along x- and y- axes. 
Two further points of detail are worth mentioning. First for the class of similar solutions when α  is held constant and both 

β  and M are varied, it is found that there is always a rapid convergence of the numerical scheme. Convergence of numerical 
scheme is achieved at  I: ≃ K. Secondly, when α  is varied, though there is a fast convergence in the x- momentum, very slow 
convergence in the crossflow direction is found. This computation turns out to be more challenging and the slow convergence is 
associated with the Keller-box code which is unable to satisfy the end condition asymptotically; it took larger flow domain and 
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hence several numbers of iterations. The convergence is finally achieved only at 14η ≥ . Therefore, the results of y-momentum 
are qualitatively different from x-momentum profiles and also from the former case (when α  is held constant). In contrast to the 
earlier range of value of α , the Keller-box code gives the similarity Solution of the system (18) in the range 1 α− ≤ <∞  for all 
possible values of β  and M. This lower limit of α  is effectively a function of magnetic field M and pressure gradient β  i.e. 

( , )Mα α β= . As M increases the lower limit still decreases that makes existence of some more velocity profiles. 
The first numerical comparisons for the streamwise component of wall shear-stress (0)f ′′  and crossflow component of wall 

shear-stress (0)g′′  in three-dimensional boundary-layer system in the absence of applied magnetic field M=0 are computed for 
the case of the stagnation point flow and are presented in table 1. Note that these results are in good agreement with those given 
in Rosenhead [8] and Davey [3] for the same value of α . Since this case has been discussed previously by Rosenhead [8] and 
Davey [3], these results are no longer discussed in this paper, and these calculations serve as a benchmark for our further 
computations. Further, for pressure gradient 0.5β = , the values of stresses (0)f ′′  and (0)g′′  are displayed in table 2 for various 
values of M and α . Also for given magnetic field (M=1), the values of the wall stresses (0)f ′′  and (0)g′′  are displayed in table 3 for 
various values of pressure gradient β  and α . In each case the velocity profiles ( )f η′ and ( )g η′  exist in the boundary layer. Note 
that as stated above, the self-similar solutions do exist for some range of negative α beyond -1 and as M increases this range 
further decreases. For example for M=3, the solutions exist in the range 6 α− ≤ <∞  whereas for M=0, this range is 1 α− ≤ <∞ . 
This is due to the viscous forces in y- the direction in the boundary-layer are dominating over the inertial forces in x-directions, 
hence the outer boundary condition would not be satisfied. 

4. Asymptotics 

4.1 Large α asymptotics 

Here we consider the asymptotic analysis of the three-dimensional boundary-layer equations for large α. The solution of the 
full three-dimensional problem faces a considerable computational task for large α. As discussed the slow convergence before, the fast 
convergence of the numerical scheme can be expected only for the moderate values of α, it is required to perform large α 
asymptotics on the full three-dimensional boundary-layer system (18). Although the present asymptotic analysis is qualitatively 
similar to the work of Weidman [5], there remains a huge numerical task because the system is still nonlinear and has applied 
magnetics force and pressure gradient effects. The asymptotic analysis for large α is an alternative model that validates results 
obtained by the direct solution of the problem (18). Therefore, we pursue our analysis on the system (18) in the limit of large α. This 
can be done by modifying f (η) and +(η) by incorporating large α as 

!��� = L�M�√$ , +��� = O�M�√$ , 5∗ = Q√$ , R = √1�.  (21) 

In this ansatz, since the uniform magnetic field is applied in the normal direction to the flow field, we can always modify our 

definition of M by a factor of √1 to get the same magnetic force in the system (18). With the new transformations (21), the system 
(18) can be written as 

S/ + "L$ + 2-( S0 + T$ U1 − S4 V − 5∗ �S4 − 1� = 0,  (22a) 

-/ + "L$ + 2-( -0 + 2�1 − -4 � − 5∗ �-4 − 1� = 0,  (22b) 

where all derivatives are with respect to ξ . Because 1 / 1α ≪ , it is appropriate to make use of the regular perturbation 

expansions in the system (22) as 

( ) ( )20 1 2( ) ( ) 1 / ( ) 1 / ( ) ...F F F Fξ ξ α ξ α ξ= + + +  (23a) 

( ) ( )20 1 2( ) ( ) 1 / ( ) 1 / ( ) ...G G G Gξ ξ α ξ α ξ= + + +  (23b) 

for which a series of boundary value problems emerges at increasing order of 1 / α . The zeroth order system is given by 

S;444 + 2-;S;44 − 5∗ �S;4 − 1� = 0,  (24a) 

-;444 + 2-;-;44 + 2�1 − -;4 � − 5∗ �-;4 − 1� = 0,  (24b) 

S;�0� = -;�0� = 0, S;4�0� = -;4 �0� = 0, S;4�∞� = -;4 �∞� = 1.  (24c) 

The above system (24) also captures the structure of three-dimensional viscous boundary layer in a steady flow. Again, we 
use the Keller-box code that has been described earlier for the solution of the nonlinear system (24) for all value of β  and *M . 
The shear stress parameters for 1α≫  for different values of β  and *M are given by 

!0�0� = √1S;44�0�, +0�0� = √1-;44�0�  (25) 

Note that these values increase unboundedly as 1 → ∞. Further, the displacement thicknesses 

��~ ��;√1 , ��~ ��;√1 (26) 

where 

0 0 0 0
0 0

(1 ( )) ,        (1 ( ))x yF d G dδ ξ ξ δ ξ ξ
∞ ∞

′ ′= − = −∫ ∫  (27) 

are leading-order displacement thicknesses and are obtained by a numerical integration. The recent interesting work of 
Weidman [5] also gives equally valid, related displacement thicknesses, yet are derived from different similarity variables, but all 
lead to the same physical mechanisms. These results will be discussed shortly. 
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4.2 Far-field behavior 

In this section, we study the development of the flow far-away from the surface in which the velocity profiles become linear 
as η→∞  i.e., |Z4�I� − [| ≪ [ and |\4�I� − [| ≪ [as I → ∞. We will study the far-field behavior on general three-dimensional 

boundary layer flows possessing similar velocity profiles. Nonetheless, as discussed in the previous section, as such there is no 
condition on the physical parameters (i.e. on , ,Mα β ), we, therefore, seek linearized solutions to the similarity problem by 

defining  

!��� = � + �� + ∫ ]���.�, +��� = � + �� + ∫ ^���.� (28) 

where xδ  and yδ  are integration constants, in this case, obtained by the displacement thicknesses, ( )E η  and ( )H η  and their 

derivatives are assumed small. Substitution of (28) and its derivatives into (18) and upon linearization gives 

2(1 )( ) (2 ) 0,xyE E M Eαβ δ η β′′ ′+ + + − + =  (29a) 

2(1 )( ) (2 ) 0xyH H M Hαβ δ η αβ′′ ′+ + + − + =  (29b) 

and the corresponding boundary conditions then become 

(0) 1,          ( ) 0,E E=− ∞ =  (29c) 

(0) 1,          ( ) 0,H H=− ∞ =  (29d) 

where the three-dimensional displacement thickness xyδ  is given by 

.
1
x y

xy

δ αβδ
δ

αβ

+
=

+
 (30) 

It is worth pointing out that the inclusion of xδ and yδ inevitably results in three-dimensional displacement thickness xyδ . 

Also in the special case of 1α = , again the linearized system becomes identical ( )E H≡ , the flow thereby remains two-

dimensional, and xy yδ δ=  (or xδ ). In the work on two-dimensional boundary layer flow, Kudenatti et al. [24] considered a similar 

form that amounts to the system (29) with ( )xy xδ δ=  replaced by the mass transfer term. Further, a general discussion on the 

other values of α shall be made later. Now note that the sign of α  and β  plays a vital role in (29). Consider the first particular 

case when 1αβ =−
 
for which the linearized system (29) renders a good deal of simplification and hence the solutions of (29) that 

satisfy the boundary conditions in (29c) and (29d) are 

2 22 2( ) ,        ( ) .M ME e H eβ η ηη η− + − − +=− =−  (31) 

The above solutions are such that the arguments under square root should be positive. On the other hand, when 1αβ ≠− , the 

complete solution of the system (29) (partially obtained by Kudenatti et al. [25] for the two dimensional flow when 0α= ) for all 

value of ,α β  and M are expressed in terms of the Kummer function ( , , )η⋅ ⋅M  and note that both solutions are similar except a 

small change in the first argument of the Kummer functions Abramowitz and Stegun [26] and Andrews [27] i.e., 

2 2
1,2 1 1,2 1 1,2 1,2 1

3 3 1
( ) ( ) ( ) , , ( ) 1 , , ( )

2 2 2
  ( )xy xy xyE H C k K k D K kη η η δ η δ η δ

 = = + − − + + − − +   
M M  (32) 

where 

2
1,2 1,2 1,2

1,2 1,2

1 1
,     , ,

k
C D A

A A dr

−
= =− =   

2 2
1 2 1,2 1 1,2 1

3 3 1
, , 1 , , ,

2 2 2xy xydr k k K k K kδ δ
     = − − − − −       

M M   

1,2
1 2

1,2

2 ( )1
,    ,

12 ( )
2

K
k k

K

αβ Γ+
= =

Γ −
 

 

2 2

1 2

1 2 2 2 4
,       .

2(1 ) 2(1 )

M M
K K

β αβ αβ

αβ αβ

+ + + + +
= =

+ +
  

Note that the first and second suffixes in 1,2 1,2 1,2 1,2, , ,A C D K  denote the solution for ( )E η  and ( )H η  respectively. The velocity 

profiles ( )f η′  and \4�I� from (28) with (32) exist for all physical parameters involved in. Also, the asymptotic dependence of the 

solution (32) on parameters can be obtained further by taking η→∞  as 

_�`� = a�`�~`b[,cd[√e[f[,cg±ie�jcdb[,c�
ck�b[,c� + l[,cg±ie�[db[,c�

k�b[,c − [c� ] + gd``[cdb[,c√e m f[,cck�jc − b[,c� + l[,ck�[ − b[,c�n, (33) 
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where 2
1 ( )xyZ k η δ= + .The above equation (33) can be rewritten as 

1,2
1,2

1
12( ) ( ) ~

K KZE Z H Z AZ e BZ
− −−= +  (34) 

where A and B are constants taken appropriately from equation (33). All the computations were performed for values of , ,Mα β  

except for 1αβ =− , and these all ultimately reverted to boundary-layer flow type. Thus, a close inspection of linearized system 

(29) and its solutions (31-32) reveals that an inviscid mechanism is predominant (since η→∞ ), and the solutions are additional 

corrections to the main solutions (28). The simplified form (34) of (32) is always decaying solutions as η→∞ . 

5. Results and Discussion 

In this paper, we have discovered a new class of solutions of three-dimensional boundary-layer flow in the presence of the applied 

magnetic field, and these solutions entirely depend on the pressure gradient and applied the magnetic field. The mainstream flows 
are approximated by the power-law relations (as a power of distance manner) in each direction. When we apply the same magnetic 

force on three-dimensional boundary-layer along with the same pressure gradient, both x- and y- momentum possess a very 
different behavior. Inside the boundary-layer, the governing nonlinear ordinary differential equations have been derived for the first 

time, and are solved numerically using the second order accurate Keller-box method. This method is extensively used to obtain 
similar solutions (velocity profiles, wall shear stresses, etc), in spite of severe numerical difficulties. Although the Keller-box takes a 

considerable finer grid especially for those with reverse flows, it did not encounter numerical instability problems. Particularly, when 
α is decreased marginally from 0, y - momentum has reverse flow, and method took large flow domain to converge into the mainstream 

flow. For certain range of α in which numerical convergence was often slow, an asymptotic analysis for large α is also carried out. 
There is now much evidence that the applied magnetics force can provoke significant responses inside the boundary-layer. 

Also with growing industrial applications of MHD (discussed previously), it is important to consider the effects of the magnetic 
field into the model, and hence the present results also encompass the various effects of magnetic (Hartmann) number on the 

three-dimensional boundary-layer flow. The occurrence of the main solution branch for all values of α  and β  for given M 
includes two special cases (Howarth [22] for 0 1α≤ ≤ ; Davey [3] for 1 α− ≤ , for 1β = and 0M= ) which serve benchmark for our 

all simulations along with a very special case of 0α= permits much simplification in the problem reducing it to two-dimensional 
case. Therefore, our analysis embeds the aforementioned special cases, and indeed gives the solutions for other α , β and M as 

was a key feature of this study. 
The difference between the magnetic and non-magnetic flow illustrates the significant qualitative behaviors on the velocity 

profiles when M is varied from zero. This influence is shown in figure 2 for different M and other parameters are kept constant. The 
numerical simulations of the three-dimensional boundary-layer flow using the Keller-box method yielded a rapid convergence 

and a small computational domain. When the flow starts under the influence of magnetic field, the boundary-layer is formed in both 
the directions and is mainly driven by the viscous effects. Computations at increasing M clearly indicate that the profiles becoming 

confined to the region close to the surface. As M increases, the system acquires more and more magnetization that makes boundary 
layers to confine to the wall surface. As a result, boundary-layer thickness decreases. The reason for this to happen is that when the 

magnetic field is applied, it releases more energy to the system that drives fluid faster. This, in turn, increases the Reynolds number 
and therefore the viscous effects are confined to the wedge surface so that vorticity is convected towards the wall. The prominent 

feature of thickening boundary layer is predominantly due to a viscous mechanism. In any case, the effects of magnetic field on 
the three-dimensional are relatively benign; thereby boundary layer separation is generally avoided. 

On the other hand, figure 3 shows the similar velocity profiles !′��� and +′��� when the pressure gradient β is varied, and other 
parameters are held constant. For β small, both curves are directed towards the wall surface (small distance from the wall), whilst 

β increases further, both flows in the mainstream region just outside the boundary layers become entirely directed towards the wedge 
surface. In either case (figure 2 or 3) there does appear to be some correlation between magnetic field and pressure gradient which 

exhibits the similar velocity profiles and thickening boundary layer. In any case figures 2 and 3 show the velocity curves are well 
within the boundaries, did not show over-or-under shoots (oscillatory type flows). For increasing β or M, the numerical scheme 

converges to the outer flow at the same speed and takes a small distance from the wall surface. 
Additionally, when β  is taken to be negative (the adverse pressure gradient), other similarity solutions exist and are shown in figure 

4. A very clear observation is that velocity profiles are no longer thin in contrast to 0β >  results. These profiles are directed 
predominantly away from the wedge surface for decreasing β. Figure 4b is particularly appealing and rather challenging for two 

reasons: when adverse pressure gradient is negative and increases, the flow starts to show the reverse flow near the wall in y-
momentum; also in the numerical code (the Keller-box), �:is quite large ��: ≃ 25� only at which the final condition is satisfied. In 

the former case, adverse pressure gradient surpasses the viscosity effects, as a result reverse flow occurs, and reattachment takes 
place away from the surface. There is, however, no qualitative change in x-momentum velocity profiles except thinning of the 

wall layers (compared with 0β >  results). 
When the pressure gradient ( 0)β >  and magnetic number M are held constant, figure 5 illustrates the velocity distributions !4��� and +4���for various values of α  in the range (-3,3). About the constraint on the range of α  will be discussed later. These 

profiles explicate that, in contrast to the earlier profiles, numerical scheme converges much faster in the x- momentum (figure 

5a) than the y- momentum (figure 5b). The former results are qualitatively similar to the previous set of profiles (as is for β  and 
M), but the latter results are rather interesting and significantly alters the flow phenomenon. For positive α  the flow is 

accelerated as is the case of 0β >  or M, and for negative α  the flow is inevitably decelerated (like 0β < ). As α  is increased 
towards negative infinity, the model shows the tendency of reverse flow �+4��� < 0), only after 1α ≤− . The reverse flow occurs 

quite regularly in the smaller region close to the wedge surface, but reattachment takes place away from the wall. When reverse 
flow occurs for which the wall shear stress +0�0� changes its sign from positive to negative. In the boundary-layer, the viscous 

effects are convected towards the mainstream, and this alters the outer boundary condition in y-direction clearly indicating a 
predominant inviscid mechanism. This is evident from the Keller-box numerical scheme which inevitably suffers the slow 

convergence and hence takes the large distance from the wedge surface to converge.  
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Fig. 2. Variation of velocity profiles !′��� and +′��� with η for different values of M keeping β = 0.5 and α = 2.0 constant. There is as fast convergence 
of the profiles to their asymptotic condition for all values of M compared to M = 0. 

 

Fig. 3. Variation of velocity profiles !′��� and +′��� with η for different values of pressure gradient β and for M = 1.0 and α = 2.0. These simulations 
have been computed numerically from (18). 

 
 

Fig. 4. Variation of velocity profiles !′��� and +′��� with η for different values of adverse pressure gradient β and for M = 1.0 and α = 2.0. These 

simulations have been computed numerically from (18). 
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Consequently, the code took several number of iterations to finally give the convergent solution although the scheme has 
faster convergence for x- momentum for the same set of parameters. This slow convergence is partly due to scatter of viscous 
effects near the edge of the boundary-layer. When α is decreased beyond -3, no solution exists to the system (31) and (32) 
because the Keller-box code is unable to satisfy the outer boundary condition. Numerical computation corresponding to 3α<− , 
the three-dimensional MHD boundary-layer equations always yielded inconsistent results. Indeed, various techniques were 
performed; giving different initial conditions, small grid size, etc, to overcome this difficulty, but without success, and in all 
cases, the threshold value for not producing the similarity solutions was exactly found to occur at 3α<−  when 0.5β = . When 
the pressure gradient is increased further, ( 1β = ) the range for α  decreases i.e, 1.5 α− ≤ <∞ , this is evident from figure 6, for 
the same M = 1. Note that reverse flow occurs for smaller values of ( 1, 1.5)α ∈ − −  in y- momentum and no solution exists beyond 

1.5α<− . For 1β =  and M=0, the results of Davey [3] who certainly reported three-dimensional solutions in the range 1 0α− ≤ ≤ , 
have been recovered 

Therefore, from our detailed numerical investigation on three-dimensional boundary-layer flow, two points are to be noted. 
First, whenever β values decrease towards negative infinity (from accelerated to decelerated), it was found that the range of α also 
decreases towards negative infinity i.e. α = α(β), and velocity profiles in x-momentum make the boundary layer thicker, whereas for 
y-momentum there is always boundary-layer separation for some α. Secondly, the reverse flow is possible only for the cases M = 0 
(not discussed) and M = 1. We now anticipate that, when the application of magnetic field is increased (for example M ≥ 2), the 
flow is completely under the influence of magnetization, the boundary-layer separation naturally disappears in y-momentum, and 
makes boundary-layer thinner in both directions. In other words, the magnetic field actually controls and suppresses (or delays) the 
development of reverse flow in the boundary-layer. Simultaneously, the slow convergence problems associated with the Keller-
box are also overcome thereby the convergence is achieved at the same speed in both directions, and also takes a smaller 
computational domain. 

We now discuss all further three-dimensional results in terms of wall shear stresses (0)f ′′  and (0)g′′  and displacement 
thicknesses ,x yδ δ  and xyδ . Note that in each case, the velocity profiles exist, and some discussion on class of flow and physical 
dynamics has been given before, but the present discussion does encompass various boundary-layer flows (including the two-
dimensional). In particular, this discussion includes the following: 

 
i) Existence of wall shears (0)f ′′  and (0)g′′ ; 
ii) Range of α  for which solutions exist; 
iii) Causes for limitation on α . 
 
To outline this, the Keller-box numerical solution of the system has been fully utilized, and wall shear stresses (0)f ′′  and 

(0)g′′  are accordingly obtained. To supplement these results the large α  asymptotic has also been performed. For this asymptotic 
computation, the Keller-box code was developed, which is independent of α  to solve the system (24) and the code is less 
stringent compared to the original problem (18). The results of the asymptotic model are quantitatively similar to those obtained 
directly by the full system. To the author's knowledge, the asymptotic (large α ) model has not been reported so far. 

Both wall shear stresses (!44�0� and +′′�0�) results are plotted in figure 7 for various values of pressure gradient β (> 0) and for 
two sets of magnetic number (M = 1 and M = 2). Note that the solid lines represent the solutions obtained numerically by solving 
the full system (18) and the dashed lines are from the asymptotics (24). Both wall stresses are positive and grow unboundedly as α 
increases. For small and negative α the solutions do not exist. It can also be observed that there is a gradual increase in x-
momentum wall stress (may be of the form algebraic) while +44�0� increases rapidly for all β investigated. In all positive β cases 
tested, the system shows a breakdown of the solution is found to occur at negative and small α. In addition, these are validated 
by our large α asymptotics which is shown by dashed lines and are plotted from α ≥ 3. This entire set of wall shear stresses 
(!44�0� and +′′�0�) is further convinced by solving three-dimensional boundary-layer equations for M = 2 (figure 7b) for positive β. 
The system shows a very slight modification of the earlier results; thus we anticipate that the MHD three-dimensional model 
keeps this typical trend for all M. In any case, we did not observe reverse flow in both directions, and also velocity profiles converge to 
the mainstream at equal speed (although there are some exceptions).  

The effects of the magnetic number M and pressure gradient β on the MHD three - dimensional boundary-layer solutions can be 
convincingly illustrated in tables 1 and 2 wherein the range of α is clearly mentioned. For increasing β, the range of α decreases, but 
for all positive α, solutions continue to exist. As discussed in the previous section, when β is negative and increases, the solutions 
do exist and negative range of α increases. However, from table 1, when M is increased predominantly, the solutions exist in the 
range (-∞, ∞). It is important to note that when α = 1, both solutions of the three-dimensional boundary-layer coincide (i.e, f(η) = +(η) in (31)). This drastic modification on α range is plausibly due to the term f + αβ+ in the (31). These results in tables 1 and 2 and 
figures 7 and 8 clearly indicate that the system (31) always keeps the positive sign. That is to say that for both positive α and β, the 
term f + αβ+ becomes positive and there is a restriction on α in negative side, and for both negative α and β, the term f + αβ+ still 
becomes positive and a restriction is on positive side. Another crucial note is that both β and α are either +β and +α or −β and 
−α.  

We now turn our attention to discuss the other solutions obtained for both positive and negative pressure gradient 
parameters. Particularly we discuss the clear restriction on α for both positive and negative values of the pressure gradient. All 
the wall shear stresses (!44�0� and +′′�0�) are calculated exactly as before and are shown in figure 8 as a function of α for various β 
and for M = 2. In this case, asymptotic solutions for large α have not been shown in a figure 8 because there are negative α results 
as well, although wall shear stresses are well comparable for positive α. A close examination reveals that when (β < 0 (or > 0)), the 
solutions to the problem exist for the range of α r ( ∞, α+] ( or α r [α−, ∞ ) ) where α+ and α− are respectively positive and negative 
threshold values of α and are small enough. In fact, these are functions of β and M. For example, for β = −1.5, the threshold value α+ 
of α is +3 and as β increases from −1.5 to 1.5, α+ changes its sign from positive to negative (becomes α−). From our repeated 
calculations we surmise that there exists threshold values α+ and α− of α beyond which the solutions do not occur. In these 
calculations, the outer boundary conditions are never satisfied as viscosity effects may be dissipated towards the mainstream 
flow. Also, for β = 0 in figure 8, surprisingly both solutions are similar and constant for all values of α, and is shown it by thick 
horizontal straight line. The case β = 0 corresponds to the flow over a flat plate. In all these cases, M = 2 was held constant. We 
anticipate that when magnetic field is increased we expect that the solutions to the problem exist over entire range of α i.e. α ∈ (−∞, 
∞), and boundary layer separations, computational challenges, etc., could be avoided. 
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Fig. 5. Variation of velocity profiles !′��� and +′���with η for various values of α for magnetic number M = 1 and pressure gradient β = 0.5. Note that 
we use Keller-box method for their simulations, their asymptotic approach is quite different. The curve for !′��� approach their end-condition quite 

faster while the curve for +4��� converge very slowly. 
 

 
 

Fig. 6. Variation of velocity profiles for different values of α, M = 1 and β = 1.0. These simulations have been performed using the equations (18) by 
Keller-box method. 

 
 

 
Fig. 7. Illustration of how both wall stresses vary with α for different values of favorable pressure gradient β when (a) M = 1 (b) M = 2 are held 

constant. These are (solid lines) computed directly from the system (18), and the dashed lines are from the asymptotic solution (25). 
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Fig. 8. Variation of the wall stresses value with α for the β = -1.5, -1, - 0.5,    0,  0.5,  1,  1.5 and M = 2.

 

Fig. 9. Computation of the displacement thicknesses (solid lines) directly from (18) and asymptotically (dashed) from (25 and 26) for different values of 

M and β (first row for M = 1.0, β = 0.5, second row for M = 1.0, β = 1.0 third row for M = 2.0, β = 0.5, fourth row for M = 2.0, β = 1.0). 
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Table 1. Comparison of the skin-frictions !44�0�and +44�0�in both directions with existing solutions in the absence of magnetic field M = 0 and for 

stagnation point flow β = 1. 

α !44�0� (Present) !44�0� (Davey) !44�0� (Rosen-head) +44�0� (Present) +44�0� (Davey) +44�0� (Rosen-head) 

-1 1.27334821 1.2729 — -0.8026247 -0.8112 — 

-0.75 1.24845705 1.2473 — -0.4830274 -0.4821 — 

-0.5 1.23118058 1.2302 — -0.1118225 -0.1115 — 

-0.25 1.22603121 1.2251 — 0.26803122 0.2680 — 

0 1.23358112 1.2326 1.233 0.57082486 0.5705 0.570 

0.25 1.24875118 — 1.247 0.80582128 — 0.805 

0.5 1.26820802 — 1.267 0.99912268 — 0.998 

0.75 1.29018268 — 1.288 1.16570272 — 1.64 

1 1.31373267 — 1.312 1.31373267 — 1.312 

 
Table 2. The values of wall shear stresses !44�0� and +44�0� obtained by the numerical solutions of the system (18) for various values of α and M when 

the pressure gradient β = 0.5 is held constant. The down-marked arrows show the solutions of the system (18) continue to exist asα increases. 

 M = 0 M = 1 M = 3 M = 5 

α !44�0� +44�0� !44�0� +44�0� !44�0� +44�0� 
!44�0� +44�0� 

 

-15 — — — — — — 4.97979 3.74295 

-12 — — — — — — 4.99499 4.02189 

-9 — — — — — — 5.01345 4.27915 

-6 — — — — 3.07523 2.17847 5.03486 4.54199 

-3 — — 1.39217 -0.42603 3.10066 2.63293 5.05891 4.78522 

-1 1.27334 -0.80262 1.33816 0.72236 3.12441 2.90302 5.07626 4.94199 

0.0 1.23358 0.57082 1.36068 1.10357 3.13796 3.03005 5.08532 5.01872 

1 1.31373 1.31373 1.39668 1.39668 3.15245 3.15245 5.09457 5.09457 

3 1.40564 1.80145 1.48399 1.85753 3.18386 3.38512 5.11378 5.24351 

5 1.52621 2.02874 1.57704 2.22911 3.21791 3.60397 5.33877 5.38897 

10 1.78542 2.52648 1.80522 2.96726 3.31124 4.10402 5.18709 5.73898 

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 

 
At large η (for away from the wedge surface), in addition to direct numerical computations, the three-dimensional model provides 

a reliable means of flow phenomena including pressure gradient and magnetic field effects although it is a mere extension of the two-
dimensional case of Kudenatti et al. [28] to the present analysis. The localized solutions (32) are the solutions of the original system (18) 
in the asymptotic limit of large η and are obviously resemble and interpret very much in the same way as in numerical solutions. 
Therefore, it is not our intention here to discuss the nature of the flow field. Rather we focus mainly on the three-dimensional 
displacement thickness δxy given by (30). Note that, for α = 1, the system (29) becomes E(η) ≡ H(η), and accordingly δx ≡ δy, then (30) 
becomes δxy = δx or δy.  

Some of the displacement thicknesses for two- and three-dimensional flows are plotted in figure 9 for two sets of β and M . The 
numerical integrations to obtain δx and δy are performed and included as a part of the computation. The solid lines are plotted from 
(19) and (30) and dashed lines from asymptotic results (26) and (30) (in (30) δx and δy are replaced by δx0 and δy0). There is an 
excellent agreement between displacement thicknesses obtained from numerical solutions as well as from asymptotic for large α 
and η. These clearly reveal that there is a gradual decrease in δx, δy and δxy as α increases. This means that thickness of the 
boundary- layer becomes thinner as α increases. However, in the case of three-dimensional displacement thickness δxy increases first 
for some values of α (near zero) and starts to decrease for increasing α. These results are further supplemented by asymptotic results. 
Thick circles represent that there is a reverse flow in y- directions for these values of α. The above results are true even for M = 2, 
perhaps reverse flow disappears and flow is ultimately convected towards the wedge surface. Indeed, similar computations were 
done for the higher magnetic field (M ≥ 3) but in all the cases the results were just analogues. 

6. Concluding Remarks 

In this paper, three-dimensional boundary-layer flow of a viscous fluid over an impermeable wedge in the presence of applied 
magnetic field has been studied with aid of Keller-box and asymptotic solution methods. The governing equations of motion are 
carefully solved and a detailed study of the flow parameters is obtained. The numerical solutions are further confirmed by the 
asymptotic results and a comprehensive quantitative analysis between two has been made. It is found that an excellent 
qualitative agreement between two results. It is observed that the wall shear stresses increase unboundedly for increasing α  
from zero for 0β > . It is also noticed that there is a restriction on α according to weather β  is positive or negative. Nevertheless, 
this restriction on α  can be minimized with help of β  and M. Taking appropriate values for β  and M, the range of solution 
space on α  in the three-dimensional boundary-layer flow can be enhanced. The present numerical investigation reveals that 
these results are rather unusual for three-dimensional boundary-layer flow which have been not reported so far. The most 
important conclusion from the present numerical solution is that these flows are always attached to the wedge surface and are 
likely to be stable for accelerated flows and magnetic field. Thus two parameters further make the reverse flow to disappear from 
the boundary-layer flow by eliminating the decelerated fluid particles. Thus, the boundary-layer thickness in both directions 
becomes thinner for increasing β and M. When α is taken to be negative the reverse flow appears quite regularly, however, it can 
be delayed by increasing the magnetic field. The applied magnetic field always stabilizes the flow thereby making the velocity 
profiles benign. 
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Table 3. The values of wall shear stresses !44�0� and +44�0� obtained by the numerical solutions of the system (18) for various values of α and 

pressure gradient β for fixed Hartmann number M = 1. The down-marked arrows show the solutions of the system (18) continue to exist as α 
increases. 

 β = 0.75 β = 1 β = 1.5 β = 2 

Α !44�0� +44�0� !44�0� +44�0� !44�0� +44�0� !44�0� +44�0� 

-2 1.50512 -0.42609 — — — — — — 

-1.5 1.47748 -0.03309 1.61060 -0.42609 — — — — 

-1.0 1.45768 0.47828 1.57669 0.17286 1.80397 -0.42606 — — 

-0.75 1.45759 0.67214 1.56881 0.48625 1.78408 -0.02558 1.97917 -0.42616 

-0.5 1.46167 0.83682 1.56964 0.73648 1.77010 0.49899 1.95585 0.19130 

0.0 1.47781 1.10851 1.58648 1.11285 1.78436 1.12013 1.96264 1.12606 

1.0 1.52709 1.52709 1.64731 1.64731 1.86489 1.86489 2.05992 2.05992 

3.0 1.64997 2.14358 1.80162 2.39655 2.07342 2.83746 2.31487 3.22043 

5.0 1.77894 2.62417 1.96146 2.96868 2.28558 3.56253 2.57143 4.07456 

10.0 2.08566 3.56124 2.33496 4.07336 2.77172 4.95025 3.15348 5.70439 

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 
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Appendix 

We have followed the mathematical derivation given by Rosenhead ([8], pp. 463) for three-dimensional stagnation point flows. 
Accordingly, we define for wedge flows  

� = ��� + 1��2�� �� @, (A1) 

 �� = " #�t&'�()* !���,  (A2) 

 � = " #�$%&'� ()* +���.  (A3) 

Suppose, we rewrite (A2) and (A3) as 

�� = � 2����� + 1� ���� !��� = � 2���� + 1���� �!��� 

� = � 2�uvv��� + 1��u�� +��� = � 2���� + 1���� v+���. 
(A4) 

We now let / ( )  and   / ( ).u U F v V Gη η= =  Letting 

1u
z

ψ∂
=
∂

 (A5) 

where 1ψ  is the stream function. To obtain the stream function 1ψ , we integrate the above equation  

1

2
( ) ( )

( 1)

vx
d udz UF dz UF d

m U
ψ η η η= = =

+∫ ∫ ∫ ∫   

which implies  

1

2 2
( )       ( ) ,

( 1) ( 1)

vx vx
UF d U F d

m U m U
ψ η η η η= =

+ +∫ ∫      1

2
( ).

( 1)

vx
Uf

m U
ψ η=

+
 (A6) 

where ( ) ( )f F dη η η= ∫ . Similarly, for other stream function 

� = � 2���� + 1���� v+���. (A7) 

We thus get the similarity transformations defined in (17) and proceeded to obtain the system of nonlinear ordinary 
differential equations. 
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