
J. Appl. Comput. Mech., 6(SI) (2020) 1324-1334 
DOI: 10.22055/JACM.2020.33464.2230  

ISSN: 2383-4536 
jacm.scu.ac.ir 

 

Published online: August 28 2020 

 

 

Simultaneous Flow of Three Immiscible Fractional Maxwell Fluids 

with the Clear and Hoamogeneous Porous Cylindrical Domain 

Abdul Rauf , Memoona Naz  

  
Department of Computer Science and Engineering, Air University Multan Campus, Multan, 60000, Pakistan 

 

Received May 02 2020; Revised June 18 2020; Accepted for publication June 18 2020. 

Corresponding author: A. Rauf (abdul.rauf@aumc.edu.pk) 

© 2020 Published by Shahid Chamran University of Ahvaz 

Abstract. One-dimensional transient flows of three layers immiscible fractional Maxwell fluids in a cylindrical domain have been 
investigated in the presence of a porous medium. In the flow, the domain is considered the concentric regions namely one clear 
region and other two annular regions are filled with a homogeneous porous medium saturated by a generalized Maxwell fluid. 
The studied problem is based on a mathematical model focused on the fluids with memory described by a constitutive equation 
with time-fractional Caputo derivative. Analytical solutions to the problem with initial-boundary conditions and interface fluid-
fluid conditions are determined by employing the integral transform method (the Laplace transform, the finite Hankel transform 
and the finite Weber transform). The memory effects and the influence of the porosity coefficient on the fluid motion have been 
studied. Numerical results and graphical illustrations, obtained with the Mathcad software, have been used to analyze the fluid 
behavior. The influence of the memory on the fluid motion is significant at the beginning of motion and it is attenuated in time. 

Keywords: 3-layered immiscible fluids; Fractional Maxwell fluids; Porous medium; Memory effects; Analytical solutions. 

1. Introduction 

The study of simultaneous flow of two or more immiscible fluids in porous as well as in clear medium is significant due to its 
wide applications in science, medical, geophysics, industry, petroleum engineering and hydrogeology [1,49-51]. Various 
applications include oil recovery, blood flow through capillary vessels, equipment cleaning, biofilms and mucus flow in living cells, 
removal of carbon dioxide from the atmosphere, groundwater management, crude oil flow through pipelines, bubble generation 
in microfluidics and bubble trains flow in various complex porous systems. 
The flow of two immiscible fluids have many configurations: layers, fingers, encapsulated regimes and drops [40, 52, 53]. One 
unfavorable thing is that an unknown interface occurs in the domain of our interest while studying of flows of two immiscible 
fluid like the movement of the interface from one place to another place and even though it may observe sometimes severe 
deformations, just like a breakup. The linear stability of the viscoelastic two-layered plane Poiseuille and Couette flows have been 
first studied by Yih [6] with the help of long-wave approach. He observed that both density and viscosity stratification can cause 
interfacial Kelvin-Helmholtz instability. Later, several researchers have studied the stability/instability of two-layer or multi-layer 
immiscible fluids flow [2, 4-5]. Herve Le Meur [7] has studied the uniqueness and the existence of the multi-layered Poiseuille/ 
Couette fluid flow in pipes/channel and observed that interpolated Oldroyd derivative parameter and the viscosity ratios are 
significant for a unique solution. Kalogirou and Blyth [8] have considered the Couette–Poiseuille flow of the two-layered 
superposed fluids to discuss stability. The fluid at the lower layer is populated with surfactants and these surfactants get 
adsorbed on the interface. It has been observed that if the thickness ratio is much higher than the fluid viscosity ratio and if the 
surfactant is sufficiently soluble, the flow is stable. 

The study of the viscoelastic fluid flows in the porous medium is of great interest for many industrial and engineering 
complex processes such as manufacturing processes of the composite materials, paper and textile coating, optimization of the oil 
recovery, etc. In [18], authors have worked on incompressible and simultaneous two-layered flow in a porous medium and have 
derived a set of equations which relates the seepage velocities of the fluid components on continuum level where differentiation 

make sense. In [19], authors have considered the three-layer simultaneous flow of fully developed fluid in porous media and 
discussed the characteristics of fluid flow. It has been seen that Darcy’s number and the Reynolds number exhibit an important 
role in the flow velocity. 

In [9], Kim et al. have worked on the two-layered immiscible Couette flow with the help of a hybrid method. The flow is 
between two parallel planes in which the upper plane is moving while the lower plane is kept stationary. It has been found that 
the viscosity ratio has strong effects on the fluid velocity than the surface energy. In [10], Khan et al have investigated the heat 
transfer and the fluid velocity of the two-layer immiscible fluid in the presence of pressure type die. The first layer is filled with 
the inelastic fluid, namely, power-law fluid and the second layer is filled with the viscoelastic liquid (Phan-Thien–Tanner fluids). It 
has been seen that the fluid velocity and the fluid temperature increase with the increase in the Deborah number. Other 
interesting results relating to single layer fluid flow [41-48] and the simultaneous flow two or more fluids can be seen in [11–17]. 
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Modelling of complex systems with the fractional order differential and integral operators have applications in many fields of 
science such as geophysics, biology, demography, bioengineering, physics and mathematics; see [20] and the references therein. 
There exists many fractional differential operators in literature such as Caputo-Fabrizio fractional derivative [20], Riemann-
Liouville fractional integral/derivative [21], Caputo fractional derivative [22], and Yang-Srivastava-Machado fractional derivative 
[23], are some of the examples of the fractional-order differential operators used in viscoelasticity, mass and heat transport 
processes. Hristov [24] studied the transient space-fractional diffusion with power-law superdiffusivity modelled by the Riemann-
Liouville fractional derivative. Ahmad et al. have applied the time-fractional Caputo–Fabrizio derivative to study the two-
dimensional advective diffusion process with concentrated source and the short-range memory [25]. 

In this paper, we have studied the simultaneous flow of the three immiscible fractional Maxwell fluids inside the cylindrical 
domain. We have divided the cylindrical domain into three concentric simultaneous cylindrical layers. The outer two layers are 
porous whereas the central layer is clear with no porosity effect. We have considered an unsteady, incompressible and one 
dimensional fully developed flow which is generated by the movement of the boundary wall. 

Moreover, we have considered the linear interfacial fluid-fluid condition between two consecutive layers. To find analytical 
solutions for velocities we have used the finite Hankel transform and the finite Weber transform in conjunction with the Laplace 
transformation. The memory effects and the influence of the porosity coefficient on the fluid motion have been studied using 
numerical simulation and graphical illustrations. The Mathcad software has been employed for this purpose. 

2. Basic Constitutive Equations for the Problem 

The fundamental expression for the upper convected Maxwell fluid is [29, 41-42] 

,p σ τ− + =I  (1) 

with σ being the extra-stress tensor is defined by the relation 

( ) ( ) ( ), .·
T T

v v v A A v v
t

σ
σ λ σ σ σ µ

 ∂ + + ∇ − ∇ − ∇ = = ∇ + ∇  ∂
 (2) 

In Eqs. (1) and (2) p, I , τ, v, λ, µ, / ,d dt ∇v, and the T index are the pressure, the unit tensor, the Cauchy stress tensor, the velocity 

field, the relaxation time, the fluid viscosity, the material derivative, the velocity gradient tensor, and the transposition operation, 
respectively. 
For the Maxwell fluid upper convected model, the generalized model with time-fractional Caputo derivative is [30,31] 

( ) ( )· , 0 1
Tc

tD v v v Aα ασ λ σ λ σ σ σ µ α + − ∇ − ∇ + ∇ = < ≤  
 (3) 

where the Caputo derivative operator ( , , , ),0 1c
tD x y z tασ α< ≤ is defined as [32] 
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δ-being Dirac’s distribution. It is clear from Eqs. (4) and (5) that, for α = 1, the fractional constitutive equation (3) leads to the 
classical constitutive equation (2) and for λ = 0, Eq. (3) leads to the Newtonian fluid. For the one-dimensional flow with the extra-
stress tensor and the velocity field given by 

( , ), ( , , , ) ( , ) ( ,0) 0, ( ,0) 0

 

, ,

       
zr t r z t u r t r u rσ σ θ σ= = = =v e

 (6) 

where ze  represents the unit vector, we get the fractional constitutive relation as 

(1 ) ,c
t rz

u
D

r
α αλ δ µ

∂
+ =

∂
 (7) 

Let’s consider a porous medium of permeability K saturated by a Maxwell fluid. By analogy with the constitutive equation (7), we 
can write the following filtration law as [33–35] 

K P
(1 ) .u

t r
λ

µφ

∂ ∂
= − +

∂ ∂
 (8) 

In Eq. (8), the velocity u, averaged over the pore space, is related to Darcy’s velocity by 

,Du uφ=  (9) 

where ϕ represents the porosity of the porous medium. In this work, we will consider a generalized form of the filtration law (8), 
namely [27] 

P
(1 ) .

K
c

tD u
r

α α µφ
λ

∂
+ = −

∂
 (10) 

The local volume-average balance of linear momentum equation is given by [36, 37] 



 Abdul Rauf and Memoona Naz, Vol. 6, No. SI, 2020 
 

Journal of Applied and Computational Mechanics, Vol. 6, No. SI, (2020), 1324-1334   

1326

P 1
( ) ,rz

u
r R

t r r r
ρ δ

∂ ∂ ∂
= − + +

∂ ∂ ∂
 (11) 

where R represents the Darcy’s resistance. 

It is significant to note that the pressure gradient /p r∂ ∂  given by Eq. (10) can be considered as a measure of the same flow 

resistance in the porous medium bulk [34]. Moreover, Darcy’s resistance r in (11) is as well in effect a flow resistance measure 

caused by the solid matrix, from (10) we have 

.
K

c
tR D R uα α µϕ

λ+ = −  (12) 

Neglecting the pressure gradient /p r∂ ∂ , Eqs. (7), (11) and (12) lead to the following equation of the linear momentum: 

(1 ) ( ) .
K

c
t

u u
D r u

t r r r
α α υ υφ
λ

∂ ∂ ∂
+ = −

∂ ∂ ∂
 (13) 

For a clear fluid (R=0) and in the absence of the pressure gradient /p r∂ ∂ , Eq. (14) leads to the flow equation 

(1 ) ( )c
t

u u
D r

t r r r
α α υ
λ

∂ ∂ ∂
+ =

∂ ∂ ∂
 (14) 

3. Mathematical Modeling 

The flow region is cylindrical 

{( , , ) | [0, ], [0,2 ], ( , )},r z r h zθ θ π= ∈ ∈ ∈ −∞ ∞D   

with z-axis as a flow direction. At the instance t = 0, the boundary cylinder and the fluids inside are at rest. After this instant, the 

cylinder has motion with velocity 03 1( , ) ( )u d t U f t=  along the z-axis (Fig.1). The function 1( )f t  is a piece-wise continuous function 

and 1( )f t = 0. We considered the flow of 3-layered upper convected Maxwell immiscible fluids with generalized constitutive 

equations in a domain 1 1 2 2 3[0, ] [0, ] [ , [ , ],]r h h h h h h∪ ∪∈ = inside the cylinder of radius 3h : h .=  In the domain 1[0, ],r h∈  Maxwell 

fluid flows with the density 1 ,ρ  viscosity 1,µ relaxation time 1 1 1/ Gλ µ= , 1G  the elastic modulus, and the velocity 1( , ).u r t  

In the porous annular domains 1 1[ , ] : , 2,3,i i i ir h h h h i− −∈ < =  flows a Maxwell fluid with the homogeneous porosity ,ϒ  the density 

,iρ the viscosity ,iµ the relaxation time ,/i i iGλ µ=  iG the elastic modulus and the velocity ( , ).iu r t  
The considered fluids are incompressible and immiscible and the stream is unsteady, one dimensional and completely developed. 
The fluids flow is caused by the movement of the cylinder in the direction of the flow. In view of the suspicions about velocity 

fields, the continuity equation is indistinguishably fulfilled by all velocities ( , ), 1,2,3iu r t i =  and the equations of the motion take 

the form [26], 

• For clear fluid region, 1[0, ]y h∈  

1 1 1 1 1
1(1 ) ( ),c

t
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D r

t r r r
α α υ
λ
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• For the porous second and third annular regions, 1[ , ], 2,3,i iy h h i−∈ =  

(1 ) ( ) , 2,3,
K

i ic i i i i
ti i

u u
D r u i

t r r t
α α υ υϕ
λ
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+ = − =
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Along with Eqs. (15) and (16), the following initial and boundary conditions are considered: 
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i
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∂
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1
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2 2
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(19) 

Consider the following dimensionless parameters 

* * *0
2
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i

uU tr p
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[ ]* 0
1 3 1
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(20) 
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Fig. 1. Geometry of the problem 

Eq. (15)-(19) become (neglecting the notation ”*”) 
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where 2 /h Kφϒ = . 

4. Analytical Solution  

4.1 The clear layer 1[0, ]r d∈  

For the instance i = 1, the fractional governing equation relating the fluid flow in the circular cylinder 1[0, ]r d∈ along with the 

suitable initial and boundary conditions can be described as 

[ ]1 1 1 1 1
1 1(1 ) , 0, ,c

t

u u
D r r d

t r r r
α α ε
λ

 ∂ ∂ ∂ + = ∈  ∂ ∂ ∂
 (26) 

( )
( )1

1 0

,
,0 0, | 0t

u r t
u r

t
=

∂
= =

∂
 (27) 

( )1
0

,
| 0r

u r t

r
=

∂
=

∂
 (28) 

To find analytical results from the Eq. (26) with conditions (27), (28) we have applied the Laplace in combination with the finite 
Hankel transform, namely, 

1

1 1 1 0 1
0

( , ) ( , ) ( ) , 1,2, ,
d

n nu r t u r t rJ rr dr n= =∫ɶ ⋯  (29) 

the Hankel inverse formulae 

0 1
1 1 12 2

11 1 1 1

( )2
( , ) ( , ),

( )
n

n
n n

J rr
u r t u r t

d J d r

∞

=

= ∑ ɶ  (30) 

where 1 , 1,0 2, ,nr n≥ = ⋯ satisfy the relation 0 1( ) 0.J d x =  Applying the Laplace transform to Eqs. (26) and (28) and utilizing the 

initial condition (27), we can write 
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1 1 1 1
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∂
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Now apply the finite Hankel transform (29) to Eq. (31), we get 

( )1 1

21
11 1 1 1 1 1 1 1 1

1

( ( ) , )
1

( , ) n n nqu d u d r J d r r
q

q u
α α
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−
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Reorganize the Eq. (33) we get 
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d u d q
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≃
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To apply the Hankel inverse formulae (30) to Eq. (34), its equivalent form can be written as 

( )( )1 1 2 2
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where 
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Inverse application of Hankel transform (30) to Eq. (35), we obtain: 
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In order to obtained the inverse Laplace transforms of the Eq. (37) we write the following supplementary functions for i 1,2,3,=  
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and 
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Since the generalized G-Lorenzo-Hartley and the Mittag-Leffler functions are defined by [38] 

2 11

1 2 2

( ) 1
1 2

, ,
0 2 1 2

( )
( , ) ,

( ) ! (( ) ) ( )
[ ]

j j a a aa

a a a a a
j

j a d tq
G t d

q d j j a a a a

+ − −∞
−

=

Γ +
= =

− Γ + − Γ∑L  (40) 

2 1( ) 0, ( ) 0, | | 1,
a

d
q aa a

q
> − > <Re Re  

11
, ( ), , 0,[ ]

i

i

i

i

i ii

b

ba i
a

i

a
b

a

q
t E dt a b

q d

−
−− = >

−
L  

(41) 

we have 
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Applying inverse Laplace transform to Eq. (37), we get the required velocity  
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For the special case, when we consider the single layer case (i.e. 1 3 1d d= = ), our results obtained in Eq. (44) with the condition 

1(1, )u t Vt= , are equivalent with the results obtained in ([42]; Eq. (24) with 0rλ → ). 

4.2 For a porous medium (Second and third layers 1[ , ], 2,3)i ir d d i−∈ =  

The fractional form of constitutive equations for the simultaneous fluid flow of two immiscible Maxwell fluids in the porous 

cylindrical annular regions 1[ , ], 2,3i ir d d i−∈ =  can be written as 

(1 ) , 2,3.i ic i i i
ti i i

u u
D r u i

t r r r
α α ε
λ ε

 ∂ ∂∂ + = − ϒ =  ∂ ∂ ∂
 (45) 

the dimensionless initial conditions 
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( )
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r
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∂
= = =

∂
 (46) 

the non-dimensional boundary conditions 

( ) ( )3  1, ,u t f t=  (47) 

the dimensionless interface conditions 
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To find analytical results of the Eq. (45) with conditions (46), (47) and (48) we have applied the Laplace in combination with the 
finite Weber transform, namely, 
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with the inverse Weber transform 
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where 

( ) ( ) ( ) ( ) ( )0 0 0 0 01 1, .in in i in i in inB r r J rr Y d r J d r Y rr− −= −  (51) 

Applying the Laplace transform to Eqs. (45), (47), (48) and utilizing the initial condition (46), we can write 
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Now applying the finite Weber transform (49) to Eq. (52), we can write 
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( )1
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J d r
L n q L n q i

π π
ε ε

− − −
−

−= − +ϒ ϒ =  (55) 

where the function 0( , , )iL n q ϒ  is given by the (38) and with the support of basic properties of Bessel functions and Bessel 

Wronskian’s relation 0 1 1 0( ) ( ) ( ) ( ) 2 / ,J Y J Yζ ζ ζ ζ πζ− = − we can write, 

1

*

2 0 1
0 1

0

( , ) ( )2 2
( ) ( , ) ( , ) ( , ) ( , ),

( )

i

i

d
i i in

in in i in i i i i
d

i in

u r q J d r
r B r r dr r u r q u d q u d q

r r J d rπ π−

−
−

−

∂∂
= − + −

∂ ∂∫  1,2, .n = ⋯  (56) 



 Abdul Rauf and Memoona Naz, Vol. 6, No. SI, 2020 
 

Journal of Applied and Computational Mechanics, Vol. 6, No. SI, (2020), 1324-1334   

1330

To apply the inverse Weber transform (50) to Eq. (55), its equivalent form can be written as 

(2)
1 21 1

* * *

( , ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , ), ,mi in in i i in i i in i i in i iu r q F r u d q F r u d q S q u d q Q q u d q i J− −= + + + ∈  (57) 

where 

2 2 2
0 1 1

1 2 2 4 4
01

* 8 ( ) 2 ( ) 81
( ) ,

( )
[ ]i in in i i

in

i i in i in in

J d r r d d
F r

d d r J d r rπ π
− −

−

− +
= −

−
 

2 2 2
01 1

2 2 2 4 4
0

*

1

(2 ( ) 8) ( )1 8
( ) ,

( )
[ ]in i i i in

in

i i in i in in

r d d J d r
F r

d d r J d r rπ π
− −

−

− −
= +

−
 

12

*2
( ) ( )

[ (1 ) ]i i

i
in in

i i in i

S q F r
q q rα α

ε

π λ ε ε
= − −

+ + + ϒ 1

*

0

2
( , , ) ( ),i

i inL n q F r
ε

π
= − ϒ −  

0 1
2

*

2
0

( )2
( ) ( )

(1 ) ( )i i

i i in
in in

i i in i i in

J d r
Q q F r

q q r J d rα α

ε

λ ε ε π
−= −

+ + + ϒ
1

*
0

20
0

2 ( )
( , , ) ( ),

( )
i i in

i in

i in

J d r
L n q F r

J d r

ε

π
−= ϒ −  

 

Applying the inverse Weber transform to Eq. (57) we have 

2 2 2 2
1

12 2 2 2
1 1

( , ) ( , ) ( , )i i
i i i i i

i i i i

d r r d
u r q u d q u d q

d d d d
−

−
− −

− −
= +

− −

2 22
0

01 2 2
1 0 01

( ) ( )
( , ) ( , )

2 ( ) ( )
in i in in

i i in
n i in i in

r J d r S q
u d q B r r

J d r J d r

π ∞

−
= −

+
−∑

2 22
0

02 2
1 0 01

( ) ( )
( , ) ( , )

2 ( ) ( )
in i in in

i i in
n i in i in

r J d r Q q
u d q B r r

J d r J d r

π ∞

= −

+
−∑  (58) 

Applying inverse Laplace transform to Eq. (58) we get the velocities ( , ), 2,3,iu r t i= as 

2 2 2 2 2 2 2 22 2
0 0 0 01

1 12 2 2 2 2 2 2 2
1 10 0 0 01 1 1 1

( ) ( , ) ( ) ( , )
( , ) ( , ) ( , ) ( , ) * ( ) ( , ) * (

2 ( ) ( ) 2 ( ) ( )
i i in i in in in i in in

i i i i i i i in i i in
n ni i i i i in i in i in i in

d r r d r J d r B r r r J d r B r r
u r t u d t u d t u d t S t u d t Q t

d d d d J d r J d r J d r J d r

π π∞ ∞
−

− −
= =− − − −

− −
= + + +

− − − −∑ ∑ ), 2,3,i=  (59) 

where 

10

*2
( ) ( , , ) ( ) ( ),i

in i inS t L n t F r t
ε

γ δ
π

= − −  

1
20

0

*
02 ( )

( ) ( , , ) ( ) ( ).
( )

i i in
in i in

i in

J d r
Q t L n t F r t

J d r

ε
γ δ

π
−= −  

 

4.3 Interface fluid-fluid velocities 

Notice that 

0
1 0 0 1 101 1

( , )
( ( ) ( ) ( ) ( )) : ( , )

in

in
rrin in i in i in in in

dB r r
r J rr Y d r J d r Y rr r B r r

dr − −= − − = −  (60) 

Using the interface conditions (54) in Eqs. (37) and (58) and with the help of Eq. (60), we obtained the following algebraic    
system 

( ) ( ) ( ),A q V q b q=  (61) 

where  

11 12

21 22

( ) ( )
( )

( ) ( )

a q a q
A q

a q a q

 
 =   

, 1 1

2 2

,  
0( , )

( ) ( ) ,
( )( , )

u d q
V q b q

a qu d q

      = =       
 (62) 

11 12 1 21 1 12 22 1( , ) ( , ), ( , ),a T h q T h q a T h q= − =  (63) 

21 12 2 22 22 2 13 2( , ), ( , ) ( , ),a T d q a T d q T h q= = −  (64) 

23 2( ) ( , ) ( ),a q T d q f q=  (65) 

1 1
21 1 12

11 1 1 1

( )2
( , ) ( ) ,

( )
[ ]n n

n
n n

B q r
T r q r J rr

d J d r

∞

=

= −∑  (66a) 

3 22
0

101 2 2 2 2
1 0 01 1

( ) ( )2
( , ) ( , ) ,

2 ( ) ( )
[ ]in i in in

i in
ni i i in i in

r J d r S qr
T r q B r r

d d J d r J d r

π ∞

=− −

= − +
− −∑

3 22
0

102 2 2 2 2
1 0 01 1

( ) ( )2
( , ) ( , )

2 ( ) ( )
[ ]in i in in

i in
ni i i in i in

r J d r Q qr
T r q B r r

d d J d r J d r

π ∞

=− −

= −
− −∑   2,3.i=  (66b) 

Solving the linear system (61) we get 

12
1 1

11 22 12 21

( ) ( )
( , )

( ) ( ) ( ) ( )

a q a q
u d q

a q a q a q a q
= −

−
 

11
2 2

11 22 12 21

  
( ) ( )

( , )
( ) ( ) ( ) ( )

a q a q
u d q

a q a q a q a q
=

−
 

(67) 
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Applying the inverse Laplace transform to Eq. (67), we get the interface fluid-fluid velocities 1 1 2 2( , ), ( , )u d t u d t as 

( )1 1 12u (d ,t)  ( ) * ( ) * B ta t a t= −  

( )2 2 11u (d ,t)  ( ) * ( ) * B ta t a t= −  
(68) 

where B(t) is an auxiliary function such that ( ) ( ) ( ) ( )11 22 12 21t * t t * t * ( ) ( )a a a a B t tδ − =  , ( )tδ is the Dirac delta function, and 

( )( ) ( )11 12 1 21 1 12 22 1t (h ,t) (h ,t), t  T (h ,t),a T T a= − =  

21 12 2 22 22 2 13 2( ) ( , ), ( ) ( , ) ( , ),a t T d t a t T d t T h t= = −  
(69) 

( ) ( )23 2t  T (d ,t) *  f t ,a =  (70) 

2 2
1 1

21 1 10 122 2
11 1 1

( 4)2 2
( , ) ( ) 4 ( , ,0) ( 0  , , ) ,( )n

i
n n

d r
T d t t L n t L n t

d d r
δ ε

∞

=

 −  = + −   
∑  (71) 

3 22
0

101 2 2 2 2
1 0 01 1

2 ( ) ( )
( , ) ( , ) ,

2 ( ) ( )
[ ]j in i in in

i j j in
ni i i in i in

d r J d r S t
T d t B d r

d d J d r J d r

π ∞

=− −

= − +
− −∑  

3 22
0

102 2 2 2 2
1 0 01 1

2 ( ) ( )
( , ) ( , ) ,

2 ( ) ( )
[ ]j in i in in

i j j in
ni i i in i in

d r J d r Q t
T d t B d r

d d J d r J d r

π ∞

=− −

= −
− −∑  i 2,3, j 1,2.= =  

(72) 

5. Numerical Results and Discussions 

Simultaneous one-dimensional flow of three layers unsteady immiscible generalized Maxwell fluids between the cylindrical 

domain have been investigated. In a rectangular coordinate system, we consider a cylinder of radius r = h and at r = 0 the axis of 

the cylinder is along y-axis. The surface of the cylindrical wall at r=h has a translatory motion with velocity 0 1 0( , ) ( ), 0u h t U f t U= >  

being a continuum function of exponential order to infinity and ( )1f 0 0.=  
In this problem, the generalization consists into consideration of the fractional constitutive equation of Maxwell fluids based on 
Caputo time-fractional derivative. It is clear from the constitutive Eq. (7) that the shear stress rzσ is given by 

1
,

0

( , )
( , ) ( ) ( ) ,( )

t

rz

u r
r t t E t dα α α

α α

α

ςµ
σ ς λ ς ς

λ ς

− − ∂
= − − −

∂∫  (73) 

therefore, the history of the velocity gradient influences the shear stress. Such type of flow is the so-called flow with memory. 

In the flow channel have been considered three regions, namely the clean region 1[0, ],r h∈ in which flows a fractional Maxwell 

fluid and the two regions 1[ , ], 2,3i ir h h i−∈ =  filled with a porous medium saturated by two different fractional Maxwell fluids. On 

the solid boundary, the no-slip condition is considered, while at the fluid-fluid interfaces 1r h=  and 2r h=  the velocities and 

shear stresses are considered continuous. Using the finite Hankel transform, the finite Weber transform and Laplace transform, 

the analytical solutions of the problem with initial, boundary and interface conditions have been determined. The flows regions 

are determined by 1d 0.1= , 2d 0.4= and 3d 1.=  

Numerical results presented in Figs. 2-11 are obtained with the Mathcad software. To study physical features of the fluids motion, 

it has been considered that in the central core 1 1[0, ], 0.1r d d∈ = flows a fractional Maxwell fluid with 
3 2 2

1 1 11000[ / ], 0.05[ / ], 1.2[ / ],kg m Ns m G N mρ µ= = =  in the annular section 1 2 2[ , ], 0.4r d d d∈ =  flows a fractional Maxwell fluid 

categorized by 3 2 2
2 2 21300[ / ], 0.2[ / ], 2.4[ / ]kg m Ns m G N mρ µ= = =  and, in the external layer 2 3 3[ , ], 1r d d d∈ =   flows a fractional 

Maxwell fluid with 3 2 2
3 3 31500[ / ], 0.6[ / ], 5.0[ / ].kg m Ns m G N mρ µ= = =  

To study the influence of shear stress dumping and the porous medium on the fluid velocity we have analyzed the particular case 

in which the motion of the cylinder is an oscillation motion with the dimensionless velocity ( ) ( )u 1,t 5-5cos t .=  It is observed 

from Figs. 2 to 10 that the memory effects on the motion of the fluids in the central core is insignificant. The velocity of the fluid 

from the second layer and the third layer are strongly affected by the memory effects, porosity and due to the interface’s 

interactions. It is observed from Figs. 2 to 10 that the impact of memory effects on the fluids motion in the central core is 

insignificant. Memory effects, porosity and interfaces connections cause strong influence on the fluid velocities from the second 

layer and the third layer. The weigh-function 1 1
,( )) /(i i

i i i i iG t t E tα α

α α α λ λ− −= −  in Eq. (73) with the increase in the parameter [0,0.7]iα ∈  

(see Fig., 11), consequently. When the fractional parameters values rise the shear stress values falls and it influences strongly the 

fluid velocities in second and third layer with porous medium.  

Figures 2-10 were illustrated to see the dimensionless variables , 1,2,3i iε =  effect on the motion of the fluid. For the numerical 

computation with characteristic velocities 0 {0.100,0.106,0.108}U ∈ , we have used the following parameters, 

3 3
1 2 3 = 1.684×10 ,  = 6.734×10 ,  = 0.020 − −∈ ∈ ∈ for the Fig. 2-4, 

3 3
1 2 3 = 1.572×10 ,  = 6.289×10 ,  = 0.019 − −∈ ∈ ∈ for the Fig. 5-7, 

3 3
1 2 3 =1.543×10  ,  = 6.173×10 ,  = 0.019 − −∈ ∈ ∈  for the Fig. 8-10, separately. 
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Fig. 2. Velocity profile ( , )
i
u r t versus r for fractional multi-layers Maxwell 

fluid at t = 0.14, 10.14, 0.2, 0.3t α= = ϒ = and different values of 
2 3

.α α=  

Fig. 3. Velocity profile ( , )
i
u r t versus r for fractional multi-layers Maxwell 

fluid at t = 0.125, 2  = 0.875, = 0.3α  and different values of
1 3
 and .α α  

  

Fig. 4. Velocity profile ( , )
i
u r t versus r for fractional multi-layers Maxwell 

fluid at t = 0.14,
1 2 3
 = 0.2, =  = 0.89α α α and different values of  . 

Fig. 5. Velocity profile ( , )
i
u r t versus r for fractional multi-layers Maxwell 

fluid at t = 0.14, 1  = 0.2, =0.3α  and different values of
2 3

.α α=  

  

Fig. 6. Velocity profile ( , )
i
u r t versus r for fractional multi-layers Maxwell 

fluid at t = 0.125, 2  = 0.875,  = 0.3α  and different values of 1α and
3
α . 

Fig. 7. Velocity profile ( , )
i
u r t versus r for fractional multi-layers Maxwell 

fluid at t = 0.14,
1 2 3

0.2, 0.89α α α= = = and different values of  . 

From these figures, it can be perceived that the memory effects have a more durable impact when the parameter values 

, i = 1,2,3 i∈  are low. This behavior is more evident for the velocities 2u (r,t)  and 3 u (r,t)  as can been seen in Figs 2-10. 

6. Conclusion 

Time-dependent simultaneous three-layer of Maxwell fluids immiscible flow in a cylindrical domain have been studied with 
generic constitutive equations for the shear stress in the presence of porous medium. The mathematical model focused on the 
fluids with memory specified by a constitutive time-fractional equation with Caputo derivative. An analytic solution have been 
determined with the help of the finite Hankel transform and the finite Weber transform coupled with the Laplace transformation. 
The Mathcad software have been used for the graphical representations of the obtained results. The memory effects and the 
impact of the porosity coefficient on the fluid motion have been considered using numerical simulation and graphical 
illustrations. It has been observed that the memory effects due to fractional parameters are significant on the fluid motion. 
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Fig. 8. Velocity profile ( , )
i
u r t vs. r for fractional multi-layers Maxwell fluid 

at t = 0.14, 1 0.2,α =  = 0.3 and different values of
2 3
α α= . 

Fig. 9. Velocity profile ( , )
i
u r t versus r for fractional multi-layers Maxwell 

fluid at t = 0.125, 2 0.875,  = 0.3α =  and different values of 2α and
3
α . 

  

Fig. 10. Velocity profile ( , )
i
u r t versus r for fractional multi-layers Maxwell 

fluid at t = 0.14,
1 2 3
 = 0.2,  =  = 0.89α α α and different values of  . 

Fig. 11. Profile of the kernel ( , )G t α . 
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