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Abstract. In the present paper we develop a novel method for structural health monitoring of multi-storey frame
structures with the capability to detect and localise local damage. The method uses so-called spatial incompatibility
filters, which are continuously distributed strain-type sensors only sensitive to incompatibilities. In the first part of
the paper the concept of incompatibility filters is introduced for multi-storey frame structures and it is shown how
these filters can be used to detect and localise local cracks in frame structures. In the second part of the paperwe study
the use of incompatibility filters put into practice by piezoelectric sensor networks for structural health monitoring
of a three-storey frame structure. The design of the piezoelectric sensor network is based on an analytical analysis
of the frame structure within the framework of the method developed in the first part of the paper and a numerical
verification using three-dimensional Finite Elements completes the paper.
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1. Introduction

Smart structure technology has been considered a key technology for the design of so-called intelligent, civil, mechanical and
aerospace structures since the end of the lastmillennium. For early reviews see [1, 2] and challenges and opportunities as envisioned
at the beginning of this millennium were discussed in [3, 4]. The field of smart structures requires a multi-disciplinary approach,
which involves coupled multi-field modeling of the structure, the communication between the structure and a controller (enabled
by means of suitable sensor and actuator systems), the structural integration of the smart system and its practical implementation.
A key aspect within these topics is the proper functioning of the communication between the structure and the controller; this
communication has been denoted as control-structure interaction in the literature, see [5]. In particular, sensors are responsible for
converting mechanical entities into information about the state of the structure, which must be interpreted and processed by the
controller to control the structure. Strategic issues concerning sensor design were discussed in [3] and frontiers in sensors/sensor
systems were pointed out in [6]. Particular fields of application of smart structures that have always gained high attention by
numerous researchers are vibration monitoring, active vibration control and noise reduction; see e.g. [7, 8, 9, 10] among many
others.

One crucial point in the design of a smart structure is the spatial distribution of sensors to obtain relevant information, both for
monitoring and control, as the structures under consideration are typically continuous structures [5]. Hence, the spatial distribution
of the smart sensing system ideally is continuous as well, resulting into so-called continuously distributed sensors. A prominent
example are continuously distributed strain-type sensors, which produce a signal that represents a weighted integral over the strain
a body is suffering. Such distributed sensor systems have been studied for some time and are also known under the notion of a
spatial filter as they filter certain spatial information; e.g. the celebrated concept of modal filters, which filter the modal content
of only one vibration mode of a structure [11], displacement filters, which filter the displacement of a specific point in a specific
direction [12] or volume displacement filters [13]. Besides modal, displacement and volume filters, the concept of incompatibility
filters, which filter the incompatible part of the strain tensor has been introduced in [14]. In earlier works such filters have also been
denoted as nilpotent sensors [15]; their signal is trivial as long as the strain is compatible. In general, spatial filters are widely used
in structural control [16] and vibration based structural health monitoring and damage detection [17, 18, 19, 20, 21]. Concerning our
own previous work on the use of continuously distributed strain-type sensors in structural mechanics we refer to [22].

It has been mentioned in the literature that spatial filters can be put into practice either by continuously distributed sensors or
by arrays/networks of dense sensors; in both cases the use of piezoelectric sensors is a popular choice. On the one hand, because
piezoelectric sensors can actually be put into practice as continuously distributed sensors [23], and on the other hand, because sensor
networks can be easily implemented by means of piezoelectric patches (see e.g. [24] for the application of piezoelectric transducers
for structural health monitoring). In the latter case of sensor networks the distribution is achieved by a proper placement and
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weight (intensity) assignment to the individual members of the network in order to approximate the spatially distributed sensor. In
[25] a review on corresponding opportunities and challenges in smart sensor technology was presented; in particular with respect
to densely instrumented arrays of sensors that will be required for the next generation of health monitoring and control systems.
One of the critical issues mentioned in [25] is the lack of a computational framework on which to build new strategies for realizing
massively distributed smart sensors. We seek to answer this question by designing a network of piezoelectric sensors approximating
a corresponding continuously distributed strain-type sensor using a simple method based on statically equivalent force systems.
For a review on alternative methods to optimally place piezoelectric sensors and actuators see [26] and for a level set based method
to design distributed modal sensors we refer to [27].

In the present paper, we study a three-story frame structure with attached piezoelectric patches; a sensor network constituted
by these individual patches is designed to monitor the structural health of the frame structure. In particular, we focus on incompat-
ibility filters as a novel concept in structural health monitoring, by means of which we combine the advantages of spatial filtering
techniques for structural health monitoring with nondestructive defect detection techniques based on the principle of strain com-
patibility, see [28, 29]. Concerning our own previous work on this subject we refer to [30] for the monitoring of the relative horizontal
floor displacements using displacement filters and to [31, 32] for health monitoring using incompatibility filters. The novelty of this
contribution is that we use the piezoelectric sensor network as a healthmonitoring system, which can detect and localise local dam-
age, but is also capable of directly monitoring the damage of a damaged frame structure. Moreover, the results, which are based on
beam theory are numerically verified using three-dimensional Finite Elements. Concerning health monitoring we focus on damage,
which can be modeled as an intermediate hinge with a residual stiffness in case beam theory is used. Such a modeling is known to
mimic a crack with a certain relative depth; see e.g. [33] for a discussion of different approaches concerning the computation of the
residual stiffness. In the Finite Element verification the crack is simply modeled as an imperfect connection between two surfaces,
which both represent the same cross section.

2. Design of nilpotent strain-type sensors in multi-storey frame structures

In this section we discuss the design of continuously distributed strain-type sensors for the monitoring of multi-storey frame
structures; hence, the design of spatial filters for frame structures. For the sake of brevity, we restrict to two-dimensional frame
structures that deform in their own plane; our subsequent formulations however can be extended to more complex structural
systems with relative ease. In particular, we are interested in designing spatial filters, which measure a trivial signal independent
from the actual motion of the structure. We study multi-storey frame structures made of flexible vertical sidewalls that undergo a
plane bendingmotion, where the horizontal floors are assumed to be rigid. The sidewalls, whichwemodel as Bernoulli-Euler beams,
are rigidly connected to the floors; the motion of the latter we assume to be only horizontal. At the lowest storey the sidewalls are
clamped to the ground. A sketch of a three-storey frame structure is shown in Fig. 1, in which a front view is shown in the left
figure and a side view in the right figure; in the latter side view, we also show piezoelectric patches attached to the flexible sidewalls,
which will be used later on to put spatial filters into practice in a case study concerned with such a three-storey frame structure.
Mathematically, we introduce a spatial filter as a continuously distributed strain-type sensor, the signal of which can be computed
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Figure 1: Sketch of a three-storey frame structure: Front view (left) and side view (right)
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Fig. 1. Sketch of a three-storey frame structure: Front view (left) and side view (right)

from the strain the structure suffers in all its flexible parts. In our case this means within the flexible sidewalls. Assuming the
structure to have n storeys, the signal of such a sensor is

y(t) = −
n∑

i=1

 hi∫
0

SiL(xiL)
∂2wiL(xiL)

∂x2
iL

dxiL +

hi∫
0

SiR(xiR)
∂2wiR(xiR)

∂x2
iR

dxiR

. (1)

Journal of Applied and Computational Mechanics, Vol. 7, No. SI, (2021), 1138-1157



In Eq. (1) the subscripts L and R refer to the left and right sidewalls, hi is the height of the i-th storey, xi(L,R) are local axial coordi-
nates, wi(L,R) is the horizontal displacement / deflection of the flexible sidewalls and Si(L,R) the so-called sensor shape functions,
which define the continuous distribution of the spatial filter. To obtain a non-dimensional sensor signal, the sensor shape functions
are assumed to be non-dimensional

[
Si(L,R)

]
= 1. As we are within the Bernoulli-Euler beam theory, strain refers to the negative

linearized curvature in each sidewall, κi(L,R) = −∂2wi(L,R)(xi(L,R))/∂x
2
i(L,R)

. The sensor design problem we wish to solve can be
stated as follows:

Find nontrivial SiL(xiL) and SiR(xiR) for all sidewalls such that the combined sensor output in Eq. (1) measures a trivial signal.

The nontrivial sensor shape functions SiL(xiL) and SiR(xiR) are denoted as nilpotent; they exist in redundant structures only. In
this paper we will discuss the use of nilpotent sensor shape functions for damage detection and localisation in detail.

2.1 Solution of the sensor design problem

In order to find exact solutions of the sensor design problem stated above we apply the principle of virtual work [34] to an
auxiliary quasi-static frame structure. The latter is constructed from the original frame structure by using the forcemethod [35] that
is frequently used to analyze redundant frame structures, for which the first step is to introduce an auxiliary statically determinate
frame structure by releasing kinematical constraints. E.g. clamped conditions are replaced by simply supported ones or intermediate
hinges are introduced.

In the principle of virtual work, δW (i),aux + δW (e),aux = 0, we have the virtual work of the internal forces as

δW (i),aux =
n∑

i=1

 hi∫
0

M
(qs)
iL

∂2δwiL

∂x2
iL

dxiL +

hi∫
0

M
(qs)
iR

∂2δwiR

∂x2
iR

dxiR

, (2)

in which M
(qs)
i(L,R)

(xi(L,R)) is the unique quasi-static bending moment in the statically determinate auxiliary structure due to exter-
nally applied auxiliary static forces. δwi(L,R) is any kinematically admissible virtual deflection, which in general must satisfy the
kinematical boundary conditions and intermediate kinematical constraints of the auxiliary problem. Hence, the deflection of the
original problem can be used as the virtual deflection, δwi(L,R) = wi(L,R)(xi(L,R), t). Furthermore, we use the quasi-static bending

moments in the auxiliary problem as the sensor shape functions in the original problem, Si(L,R)(xi(L,R)) = 1M
(qs)
i(L,R)

(xi(L,R)); the

factor 1 with dimension [1] = N−1m−1 ensuring a non-dimensional sensor signal will be omitted in the following. Comparing the
resulting form of the virtual work of the internal forces, Eq. (2), with the sensor signal, Eq. (1), we conclude that the sensor signal
of a spatial filter measures the work of the external auxiliary static forces applied to the auxiliary quasi-static frame structure on
the original deflections; hence, it filters the specific kinematical entity of the original problem, which is the work conjugate of the
external forces applied in the auxiliary problem,

y(t) = δW (e),aux
∣∣∣
δwi(L,R)=wi(L,R)(xi(L,R),t)

. (3)

In particular, we use unit auxiliary external forces or moments in the auxiliary problem, which are statically indeterminate entities
for the original redundant frame structure. Then their work conjugate deformations (e.g. displacements, jumps in slope) in the
original redundant frame structure are trivial (they do vanish), and the sensor signal vanishes as well, y(t) = 0; a corresponding
sensor design thus is called nilpotent. The quasi-static bending moments resulting from the unit auxiliary external forces or mo-
ments constitute a basis by means of which any statically indeterminate bending moment in the original frame structure can be
represented.

We like to point out that our solution for the sensor design problem has been derived from the principle of virtual work applied
to an auxiliary statically determinate problem, but it holds for the original redundant problem under dynamic conditions as well,
because we use the original deformations, which are kinematically admissible, as virtual ones in the principle of virtual work. Like-
wise, the solution does hold as well, when the virtual deformations belong to a structure that follows from the original structure
after some selective damage, the reduced structure having a decreased degree of redundancy or being statically determinate. More-
over, the solution can be computed without the need for a full model of the original frame structure, because the auxiliary problem
is statically determinate and hence, bending moments can be computed without having to assign any specific material law to the
flexible sidewalls. The only model information that is required is purely kinematical; e.g. kinematical boundary conditions as well
as intermediate kinematical constraints.

Example problem - a one-storey frame structure As a simple example to illustrate the design method we study a one-storey frame
structure made of two flexible sidewalls, which are clamped at their lower side and which are rigidly connected to each other by
a rigid floor at their upper side. For the sake of simplicity, the height of the structure and the distance between the sidewalls are
1m. A sketch of this redundant structure is shown in the left figure of Fig. 2. The right figure of Fig. 2 is the corresponding statically
determinate auxiliary problem. The latter is used for computing the quasi-static bending moments, which are then used as sensor
shape functions for the original one-storey frame structure. For the sake of computing nilpotent sensor shape functions, either
single unit moments at the simply supported lower ends of the sidewalls or a unit bi-moment at the center of the floor are applied
in the auxiliary problem. As the corresponding work conjugates are zero in the original frame structure such sensors measure a
trivial signal. The resulting bending moments (nilpotent sensor shape functions) are presented in Fig. 3. The corresponding spatial
filters, which filter a trivial kinematical entity are also denoted as Incompatibility Filters, a notion we will explain in detail in the next
section.

3. Structural Health Monitoring using Incompatibility Filters

3.1 Incompatibility filters

In this section we will discuss the notion of a spatial filter put into practice by using nilpotent sensor shape functions as an
Incompatibility Filter. In order to introduce this notion we start with a simple straight beam of length L, which is clamped at both
sides. We apply the principle of virtual work to a quasi-static auxiliary beam. In case the virtual work of the external forces vanishes
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Figure 3: Nilpotent shape functions for the one-storey frame structure

straight beam of length L, which is clamped at both sides. We apply the principle of virtual work to a

quasi-static auxiliary beam. In case the virtual work of the external forces vanishes as no external forces

are applied in the auxiliary problem, the virtual work of the internal forces must vanish too,

�W (i),aux = �
LZ

0

M (sa)
y (x)�dx = 0; (4)

as it was the case for the frame structure the beam is assumed inextensible (EA) ! 1 and rigid in

shear (GA) ! 1, such that no virtual work from shear forces and normal forces must be accounted

for. In contrast to our former derivation for the frame structure, the auxiliary beam is identical to

the original one; hence, it is statically indeterminate. Then, M (sa)
y is any statically admissible bending

moment, which satisfies M (sa)00

y = 0 and � is any kinematically admissible linearized curvature, see [36]

for the three-dimensional formulation. (%)0 stands for the partial derivative with respect to the axial

coordinate x. Accordingly, the statically admissible bending moment and the kinematically admissible

linearized curvature are orthogonal in case no external forces are applied in the auxiliary beam. The

notion of a statically admissible bending moment refers to a bending moment, which satisfies the local

equilibrium conditions and the dynamical boundary conditions, see [37] for the three-dimensional case.

If no external forces are applied this statically admissible bending moment is self-equilibrating. The

notion of a kinematically admissible curvature refers to a curvature, which is compatible, and for which

the corresponding deflection satisfies the kinematical boundary conditions. One can conclude that, if

the virtual curvature � does not satisfy the compatibility conditions, the above orthogonality relation

does no longer hold and the virtual work of the internal forces is not trivial any longer, but it is related

to the incompatible part of the virtual curvature �. This fact also explains our previous notion of an

Incompatibility Filter for the frame structure; for a more detailed discussion of incompatibility filters in

a 3D setting we refer to [14, 38].

We proceed with deriving the local form of the compatibility conditions. Therefore, we integrate the

virtual work of the internal forces twice by parts using the actual linearized curvature of the clamped

beam as the virtual curvature, � = �w00. This results into

�W (i),aux =

LZ

0

M (sa)
y w00dx = �

⇣
M (sa)0

y w
⌘���

L

0
+

⇣
M (sa)

y w0
⌘���

L

0
� [[M (sa)0

y w]]x̄ + [[M (sa)
y w0]]x̄ = 0. (5)

Here we have used M (sa)00

y = 0. Furthermore, we introduce the statically admissible transverse shear

force Q(sa)
z = M (sa)0

y and account for the continuity of both, the statically admissible shear force and

bending moment, which finds the orthogonality relation

0 = �
⇣
Q(sa)

z w
⌘���

L

0
+

⇣
M (sa)

y w0
⌘���

L

0
�Q(sa)

z (x̄)[[w]]x̄ +M (sa)
y (x̄)[[w0]]x̄. (6)
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δW (i),aux = −
L∫

0

M
(sa)
y (x)δκdx = 0; (4)

the beam is assumed inextensible (EA) → ∞ and rigid in shear (GA) → ∞, such that no virtual work from shear forces and
normal forces must be accounted for. In contrast to our former derivation for the frame structure, the auxiliary beam is identical
to the original one; hence, it is statically indeterminate. Then, M(sa)

y is any statically admissible bending moment, which satisfies

M
(sa)′′
y = 0 and δκ is any kinematically admissible linearized curvature, see [36] for the three-dimensional formulation. (%)′ stands

for the partial derivative with respect to the axial coordinate x. Accordingly, the statically admissible bending moment and the
kinematically admissible linearized curvature are orthogonal in case no external forces are applied in the auxiliary beam. The
notion of a statically admissible bending moment refers to a bending moment, which satisfies the local equilibrium conditions
and the dynamical boundary conditions, see [37] for the three-dimensional case. If no external forces are applied this statically
admissible bending moment is self-equilibrating. The notion of a kinematically admissible curvature refers to a curvature, which
is compatible, and for which the corresponding deflection satisfies the kinematical boundary conditions. One can conclude that,
if the virtual curvature δκ does not satisfy the compatibility conditions, the above orthogonality relation does no longer hold and
the virtual work of the internal forces is not trivial any longer, but it is related to the incompatible part of the virtual curvature
δκ. This fact also explains our previous notion of an Incompatibility Filter for the frame structure; for a more detailed discussion of
incompatibility filters in a 3D setting we refer to [14, 38].

We proceed with deriving the local form of the compatibility conditions. Therefore, we integrate the virtual work of the internal
forces twice by parts using the actual linearized curvature of the clamped beam as the virtual curvature, δκ = −w′′. This results into

δW (i),aux =

L∫
0

M
(sa)
y w′′dx = −

(
M

(sa)′
y w

)∣∣∣L
0
+
(
M

(sa)
y w′

)∣∣∣L
0
− [[M

(sa)′
y w]]x̄ + [[M

(sa)
y w′]]x̄ = 0. (5)

Here we have used M
(sa)′′
y = 0. Furthermore, we introduce the statically admissible transverse shear force Q

(sa)
z = M

(sa)′
y and

account for the continuity of both, the statically admissible shear force and bendingmoment, which finds the orthogonality relation

0 = −
(
Q

(sa)
z w

)∣∣∣L
0
+
(
M

(sa)
y w′

)∣∣∣L
0
−Q

(sa)
z (x̄)[[w]]x̄ +M

(sa)
y (x̄)[[w′]]x̄. (6)

We introduce the bending moment at the clamped ends as M
(sa)
y(0)

in the left clamp and M
(sa)
y(L)

in the right clamp; then, the second
term in the above equation becomes (

M
(sa)
y w′

)∣∣∣L
0
= −M

(sa)
y(0)

w′
0 +M

(sa)
y(L)

w′
L, (7)

and, as the statically admissible transverse shear force is constant we have

−
(
Q

(sa)
z w

)∣∣∣L
0
= Q

(sa)
z (w0 − wL) . (8)
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Eventually, this results into the final form of the orthogonality relation

0 = M
(sa)
y (x̄)[[w′]]x̄ −M

(sa)
y(0)

w′
0 +M

(sa)
y(L)

w′
L −Q

(sa)
z (x̄)[[w]]x̄ +Q

(sa)
z w0 −Q

(sa)
z wL, (9)

which holds as long as the kinematically admissible deflection, which in our case is the actual deflection, satisfies the kinematical
boundary conditions at the clamped ends, w0 = 0, wL = 0, w′

0 = 0 and w′
L = 0 and the local continuity conditions [[w′]]x̄ = 0 and

[[w]]x̄ = 0 within the span of the beam.
From this simple examplewe can easily identify possible damage scenarios, for which spatial filters put into practice by nilpotent

sensor shape functions represented by statically admissible bendingmoments, result into a non-trivial sensor signal; these scenarios
are e.g.:

• The homogenous kinematical boundary conditions are not satisfied; e.g. a clamped support is not ideal, but rather replaced
by a hinged one with a rotational spring.

• The continuity conditions for the deflection and the slope are not satisfied; e.g. an intermediate hinge is introduced with a
rotational spring modeling the residual stiffness.

• The beam is extensible or not rigid in shear.

Each of these scenarios represents a possible damage scenario, or, in the last case, at least a failure in sufficient modeling, under
the occurrence of which an Incompatibility Filter will render a non-trivial sensor signal. Analogous conditions and damage scenarios
can be established for multi-storey frame structures.

3.2 Damage modeling

In the following we will consider only the damage scenario of a hinge with a residual stiffness, because the effect of a crack on
the stiffness of a beam can be approximated by a reduction of the stiffness in the vicinity of the crack. A fully local formulation
models this stiffness reduction as an intermediate hinge with a rotational spring; the residual spring stiffness K is related to the
crack depth d characterized by the non-dimensional ratio β = d/t (with the thickness t of the rectangular cross section of the beam)
by means of

K =
(EJ)

t

1

C(β)
. (10)

Here, (EJ) is the nominal bending stiffness of the beam cross section. Different methods to compute the non-dimensional local
compliance C(β) have been reported in the literature; we use the one proposed by [39],

C(β) = 6πβ2(0.6384− 1.035β + 3.7201β2 − 5.1773β3 + 7.553β4 − 7.332β5 + 2.4909β6). (11)

Although the response of the structure will be affected using othermethods to compute the local complianceC(β), themethodology
for damage detection and localisation, which will be developed in the following, is independent from the specific form of C(β).

Example problem We consider the simple one-storey frame structure of height h = 1m, which we have used before. The bending
stiffness (EJ), the linear inertia P and the mass m of the floor are (EJ) = 1Nm2, P = 1kgm−1 and m = 1kg. We study only
harmonic vibrations, which are excited by a harmonic ground motion of amplitude W0 = 0.01m with an excitation frequency ω,
which runs from ωs = 1s−1 to ωe = 100s−1. Three cases are considered - the original undamaged frame structure, a damaged frame
structure with one hinge located in the left sidewall at height xL(hinge) = h/3 with β = 0.3, and a damaged frame structure with
one hinge located in the left sidewall at height xL(hinge) = h/3 with βL = 0.3 and a second hinge in the right sidewall at height
xR(hinge) = 2h/3 with βR = 0.1. Now, we use the nilpotent sensor shape functions from Fig. 3 for monitoring the frame structure.
As the floor is assumed rigid only contributions to the signals from the flexible sidewalls must be accounted for and no spatial filter
must be put into practice for the rigid floor. For the original frame the corresponding signals from the three incompatibility filters are
trivial, for the frame with the single hinge in the left sidewall and for the frame with two hinges the three signals are not zero; these
signals are shown in Fig. 4 as functions of the excitation frequency ω. Indeed, due to the damage the signals of the incompatibility
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Fig. 4. Signals of the spatial incompatibility filters for the one-storey frame structure: Single hinge (left) and two hinges (right)

filters are not zero and we seek to use the information contained in these signals for structural health monitoring in the following.
For that sake, we will introduce a general method for the detection and localisation of local damage put into practice by means of
such hinges with residual stiffness for the case of an n-storey frame structure, and show its validity for the damaged one-storey
structure, the signals of which are shown in Fig. 4. In order to a-priori quantify the damage in terms of the harmonic response we
present the first five natural frequencies in Tab. 1. Note that for the undamaged case, the second and the fourth natural frequency
are the first two natural frequencies of a clamped-clamped beam with the bending stiffness and the linear inertia of the flexible
sidewalls of the frame structure. We also note that the change in the natural frequencies due to the damage is very small and is
therefore not a reliable measure for the detection of damage, as has been pointed out in the literature [40].
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ω1/s−1 ω2/s−1 ω3/s−1 ω4/s−1 ω5/s−1

no damage 3.700 22.373 25.000 61.672 64.801

single damage 3.697 22.344 24.957 61.411 64.578

deviation −0.069% −0.133% −0.171% −0.425% −0.345%
double damage 3.697 22.340 24.954 61.387 64.543

deviation −0.080% −0.147% −0.182% −0.463% −0.399%

Table 1. First five natural frequencies for the one-storey frame structure

3.3 Damage Detection & Localisation

For an n-storey frame structure of the type we are discussing in this paper the grade of redundancy is 3n; hence, 3n nilpotent
sensor shape functions can be computed as the 3n self-equilibrating statically admissible bending moments of the frame structure.
Each of these nilpotent sensor shape functions Snil,i can be used to put 1 incompatibility filter into practice. The corresponding
signals are denoted as ynil,i(t), i = 1, ..., 3n. In case of an undamaged frame structure these signals are all trivial. For the damaged
frame structure this is not true any more, but some or all of the nilpotent sensor signals render a non-trivial signal. In order to
introduce a damage detection and localisation method we define a scalar product for the signals,

Aij =
〈
ynil,i(t), ynil,j(t)

〉
, (12)

the particular form of which will be specified in detail later. In any case this scalar product is zero, if the frame structure is undam-
aged, because the signals themselves are zero; likewise, any linear combination of these signals

ȳnil(t) =
3n∑
i=1

αiynil,i(t) (13)

is zero as well. Applying the same linear combination as for the signals to the nilpotent sensor shape functions,

S̄nil =

3n∑
i=1

αiSnil,i (14)

results into a nilpotent sensor shape function. In the damaged framewith intermediate hinges with a rotational spring representing
a local damage in terms of a crack some (or all) of the signals from the nilpotent sensors will be non-zero, such that the linear
combinations

ȳ(t) =
3n∑
i=1

αiynil,i(t) and S̄ =
3n∑
i=1

αiSnil,i (15)

may no longer be a trivial signal nor a nilpotent sensor shape function. However, if the damaged structure with the intermediate
hinges is still redundant, there must still existm nilpotent sensor shape functions, if the remaining degree of redundancy ism. Note
that for the damaged structure the notion degree of redundancy refers to the situation, for which the residual spring stiffness is
assumed to be zero. E.g., assume that the frame shown in Fig. 2 (right) represents a damaged case of the frame in Fig. 2 (left), then
m = 0 holds. In the example problems treated in 3.2, but assuming no residual rotational spring stiffnesses to be present, there is
m = 2 in the first case (one hinge in the left column, single damage case), andm = 1 in the second case (one hinge in each of the two
columns, double damage). Them nilpotent sensor shape functions for the damaged frame structuremust be a linear combination of
the original 3n nilpotent sensor shape functions and the signalsmeasured form the correspondingm nilpotent sensorsmust vanish.
Therefore, we ask for the linear combination ȳ(t) =

∑3n
i=1 αiynil,i(t) to be zero for non-trivial coefficients αi; the latter constraint is

accounted for as

1 =

3n∑
i=1

α2
i . (16)

We find these coefficients by minimizing the functional

J =
〈
ȳ(t), ȳ(t)

〉
− λ

(
3n∑
i=1

α2
i − 1

)
, (17)

for which we compute the derivative of the functional with respect to the coefficients of the linear combination and find

(A− λI)α = 0 (18)

from ∂J/∂αi = 0. The components of the 3n × 3n matrix A are the scalar products Aij defined in Eq. (12) and the components of
α are the coefficients αi. The eigenvalue problem of Eq. (18) has m zero eigenvalues λj = 0, j = 1, ...,m and the corresponding
m eigenvectors αj contain the coefficients αi, which can be used in the linear combination of the original nilpotent sensor shape
functions to compute themnilpotent sensor shape functions for the damaged frame structure. From the procedurewe just discussed
a novel method for the detection and localisation of local damage in frame structures can be derived. Indeed, the information
contained in the matrix A - in particular, the eigenvalues and the eigenvectors - is sufficient for this purpose.
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Example problem We compute the matrix A for our two example problems treated in 3.2. As we are dealing with a problem in the
frequency domain, we introduce

Aij =

∫ ωe

ωs

ynil,i(ω)ynil,j(ω)dω , i, j = 1, 2, 3 (19)

as a specific inner product of two signals. In the computations the integral is replaced by a sum, for which we compute 200 values
in the considered frequency range ω = [0.5, ..., 100]s−1; hence,

Aij =
200∑
k=1

ynil,i(0.5k)ynil,j(0.5k) , i, j = 1, 2, 3, (20)

with non-dimensional components Aij of A. Then, we compute the eigenvalues λi, i = 1, 2, 3, and the corresponding eigenvectors
αi of A for the two damage scenarios. The results are

A =

 0.207 0.083 0.041

0.083 0.033 0.017

0.041 0.017 0.0083

 ,

 λ1

λ2

λ3

 =

 0.248

0

0

 , α1 =

 −0.913

−0.365

−0.183

 , α2 =

 −0.170

−0.068

0.983

 , α3 =

 0.371

−0.928

0

 (21)

for the single damage case, and

A =

 0.217 0.114 0.026

0.114 0.060 0.012

0.026 0.012 0.0030

 ,

 λ1

λ2

λ3

 =

 0.279

0.00109

0

 , α1 =

 −0.882

−0.462

−0.094

 , α2 =

 0.291

−0.690

0.663

 , α3 =

 −0.371

0.557

0.743

 (22)

for the case with two hinges. Note, that the number of non-zero eigenvalues corresponds to the number of local damages, and the
eigenvectors with zero eigenvalues are the null space of A. Also, we mention that units are omitted in the numerical examples.

3.3.1 Damage detection

Damage detection or level 1 structural health monitoring (see [41] for the different levels of structural health monitoring) uses
the eigenvalues of the matrix A to define damage indices Di,

Di = λi , i = 1, ..., 3n. (23)

Zero damage indices for all i = 1, ..., 3n indicate no damage. In the case of damage on the other hand side, some of the damage
indiceswill be non-trivial, fromwhichwe conclude on the presence of damage; in particular, the number of non-zero damage indices
corresponds to the number of local damages in terms of intermediate hinges.

Example problem For the specific example problem under consideration the damage indices are presented in Tab. 2. If damage is
present, we proceed with the further analysis of the measured signals.

D1 D2 D3

single damage 0.284 0 0

double damage 0.279 0.00109 0

Table 2. Damage indices for the one-story frame structure

3.3.2 Damage localisation

Damage localisation or level 2 structural health monitoring uses the eigenvectors αi (with dimension 3n) of the matrix A. We
arrange these eigenvectors into a matrix T as

T =
[

α1 ... α3n−m α3n−m+1 ... α3n

]
=
[

Tstruct Tnil

]
. (24)

The first 3n − m eigenvectors (Tstruct) belong to the non-zero eigenvalues and the remaining m eigenvectors (Tnil) to the zero
eigenvalues. Introducing the vector of original nilpotent sensor shape functions Snil as

Snil =
[

Snil,1 ... Snil,3n

]T
, (25)

we compute the nilpotent sensor shape functions for the damaged frame structure from

S̄nil = TT
nilSnil =

[
S̄nil,1 ... S̄nil,m

]T
. (26)

As these m nilpotent shape functions correspond to incompatibility filters for the damaged structure, they must be insensitive to
the 3n−m local hinges, which is possible in general only if there are 3n−m common zero values of them nilpotent shape functions.
The zero values of the nilpotent shape functions can then be used to localize the position of the 3n−m hinges.
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Example problem We show the result for the nilpotent shape functions for the example problem of the one-storey frame structure
in Fig. 5. As one can see m = 2 nilpotent sensor shape functions exist for the frame structure with one hinge; moreover these two
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Figure 5: Nilpotent shape functions for one-storey frame structure with intermediate hinges:

Hinge in left sidewall with residual redundancy m = 2 and two nilpotent shape functions (left) and hinge

in left and right sidewall with residual redundancy m = 1 and one nilpotent shape function (right)

sake we use the transformation with Tstruct, which is composed of the eigenvectors of A with non-zero

eigenvalues; hence, we compute 3n�m structural shape functions for the damaged frame by means of

Sstruct = TT
structSnil =

h
Sstruct,1 ... Sstruct,3n�m

iT
. (27)

Example problem For the example problem the result is shown in Fig. 6. For the single damage

only 3n�m = 1 such shape functions exist, whereas for the double damage we have 3n�m = 2 structural

shape functions.

Putting spatial filters into practice using such structural shape functions results into sensors, for which

the signal is proportional to a linear combination of the resulting kinks at the locations of the hinges. This
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follows from the fact that the intensity of the structural shape functions at the locations of the hinges is

not one, and that each of the structural functions has non-zero values at all, or at least at more than one,

locations of the hinges. In order to design spatial damage filters, we further apply the transformation

Sdam = TdSstruct =
h
Sdam,1 ... Sdam,3n�m

iT

or equivalently Sdam,i =
3n�mX

j=1

tijSstuct,j , i = 1, ..., 3n�m (28)

to the structural shape functions resulting into 3n � m damage shape functions, which can be used to

put spatial damage filters into practice. Here, the (3n � m) ⇥ (3n � m) transformation matrix Td is
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Fig. 5. Nilpotent shape functions for one-storey frame structure with intermediate hinges: Hinge in left sidewall with residual redundancy m = 2 and
two nilpotent shape functions (left) and hinge in left and right sidewall with residual redundancy m = 1 and one nilpotent shape function (right)

shape functions have one common zero value at the location of the hinge in the left sidewall. For the case of two hinges we have
only one (m = 1) nilpotent sensor shape function with two zero values at the locations of the two hinges. Obviously, the locations of
the zero values of the nilpotent sensor shape functions for the damaged frame structure enable the localization of the intermediate
hinges; hence, of the local damage.

3.3.3 Monitoring of the damaged frame structure

Besides using the incompatibility filters with the nilpotent shape functions S̄nil (see also Fig. 5 for the example problem) to
further conduct structural healthmonitoring of the already damaged frame structures, we are also interested tomonitor the existing
damage in the damaged frames. For that sake we use the transformation with Tstruct, which is composed of the eigenvectors of A
with non-zero eigenvalues; hence, we compute 3n−m structural shape functions for the damaged frame by means of

Sstruct = TT
structSnil =

[
Sstruct,1 ... Sstruct,3n−m

]T
. (27)

Example problem For the example problem the result is shown in Fig. 6. For the single damage only 3n−m = 1 such shape func-
tions exist, whereas for the double damage we have 3n−m = 2 structural shape functions.
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3n�mX

j=1
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Fig. 6. Structural shape functions for one-storey frame structure with intermediate hinges: Hinge in left sidewall with residual redundancy m = 2,
3n−m = 1 and one structural shape function (left) and hinge in left and right sidewall with residual redundancym = 1, 3n−m = 2 and two structural
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Putting spatial filters into practice using such structural shape functions results into sensors, for which the signal is proportional
to a linear combination of the resulting kinks at the locations of the hinges. This follows from the fact that the intensity of the
structural shape functions at the locations of the hinges is not one, and that each of the structural functions has non-zero values at
all, or at least atmore than one, locations of the hinges. In order to design spatial damage filters, we further apply the transformation

Sdam = TdSstruct =
[

Sdam,1 ... Sdam,3n−m

]T
or equivalently Sdam,i =

3n−m∑
j=1

tijSstuct,j , i = 1, ..., 3n−m (28)

to the structural shape functions resulting into 3n−m damage shape functions, which can be used to put spatial damage filters into
practice. Here, the (3n−m)× (3n−m) transformation matrix Td is computed from the 3n−m× 3n−m conditions

Sdam,i(di) = 1 and Sdam,i(dj) = 0 , j ̸= i and i, j = 1..., 3n−m, (29)

in which di represents the position of the i-th damage with i = 1..., 3n−m and 3n−m as the number of individual local damages.

Example problem For the example problem, we have 3n − m = 1 for the single damage and, accordingly the matrix Td has only
one component, which is

t11 = −1.095. (30)
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For the double damage with 3n−m = 2 the matrix Td has four components, which are

t11 = −1.113 , t12 = −0.054

t21 = 0.137 , t22 = 1.008. (31)

Using the transformation with the computed matrices Td for the example problem results into damage shape functions for the
spatial damage filters shown in Fig. 7. One can see that in contrast to the shape functions shown in Fig. 6, the shape functions have
the intensity one at the location of only one hinge, and the intensity zero at the location of the other hinges.
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Figure 7: Damage shape functions for one-storey frame structure with intermediate hinges:

Hinge in left sidewall with residual redundancy m = 2, 3n�m = 1 and one damage shape function (left)

and hinge in left and right sidewall with residual redundancy m = 1, 3n�m = 2 and two damage shape

functions (right)

We further note that the damage shape functions follow from

Sdam = TdSstruct = TdT
T
structSnil = TT

damSnil with Tdam = TstructT
T
d , (32)

in which we have introduced the transformation matrix Tdam = TstructTT
d , by means of which the

nilpotent sensor shape functions from the undamaged structure are transformed to the damage shape

functions for the damaged frame structure. Finally, we introduce the transformation matrix T̄

T̄ =
h
Tdam Tnil

i
, (33)

by means of which the nilpotent sensor shape functions from the undamaged structure are transformed to

both, the damage shape functions and the nilpotent sensor shape functions from the damaged structure.

Hence,

Snew = T̄TSnil =
h
ST
dam S̄T
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iT
(34)
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Fig. 7. Damage shape functions for one-storey frame structure with intermediate hinges: Hinge in left sidewall with residual redundancy m = 2,
3n − m = 1 and one damage shape function (left) and hinge in left and right sidewall with residual redundancy m = 1, 3n − m = 2 and two damage
shape functions (right)

We further note that the damage shape functions follow from

Sdam = TdSstruct = TdTT
structSnil = TT

damSnil with Tdam = TstructTT
d , (32)

in which we have introduced the transformation matrix Tdam = TstructTT
d , by means of which the nilpotent sensor shape func-

tions from the undamaged structure are transformed to the damage shape functions for the damaged frame structure. Finally, we
introduce the transformation matrix T̄

T̄ =
[

Tdam Tnil

]
, (33)

by means of which the nilpotent sensor shape functions from the undamaged structure are transformed to both, the damage shape
functions and the nilpotent sensor shape functions from the damaged structure. Hence,

Snew = T̄T Snil =
[

ST
dam S̄T

nil

]T
(34)

holds. Moreover, the transformation with T̄ can also be applied to the signals of the original incompatibility filters,

ynew = T̄T ynil =
[

yTdam ȳTnil

]T
. (35)

with ynil = [ ynil,1 ... ynil,3n ]T being a column matrix with the signals of the original incompatibility filters as components.
The 3n−m signals ydam = TT

damynil from the damage spatial filters are used tomonitor the damage, and them signals ȳnil = TT
nilynil

from the incompatibility filters for the damaged structure can be used to further detect additional damage. Moreover, we compute
a transformed matrix Ā from the inner product of the transformed signals ynew,

Ā =
〈
ynewyTnew

〉
= T̄T

〈
ynilyTnil

〉
T̄ = T̄TAT̄

=

[
TT
dam

TT
nil

]
A
[

Tdam Tnil

]
=

[
Adam 0

0 0

]
with Adam = TT

damATdam, (36)

which can alternatively be computed by a transformation of the original matrix A by means of Adam = TT
damATdam, in which Adam

is a (3n−m)× (3n−m) square matrix. The diagonal elements of Ā can be used as alternative damage indices D̄i with i = 1, ..., 3n.

Example problem For the example problem the non-trivial components of the vector of the transformed signals ynew - hence, the
components of ydam - are shown in Fig. 8. For the single damage in the left figure, one damage filter (3n−m = 1) measures the kink
at the location of the local hinge in the left sidewall, and the two incompatibility filters (m = 2) have a trivial signal. For the double
damage in the right figure, the two damage filters (3n−m = 2) measure the two kinks in the two sidewalls and the one incompatibility
filter (m = 1) has a trivial signal. Therefore, the resulting spatial damage filters represent sensors, which measure the kinks at the
location of the local damage; hence, at the location of the intermediate hinges with residual stiffnesses. The matrices Ā are

Ā =

 0.298 0 0

0 0 0

0 0 0

 , Ā =

 0.346 −0.0426 0

−0.0426 0.00633 0

0 0 0

 , (37)

and the alternative damage indices D̄i are presented in Tab. 3 together with the original damage indices Di. The physical inter-
pretation of the non-zero alternative damage indices D̄i is strongly related to the measured resulting kinks ynew,i = [[w′]]di at the
location of the hinges; in particular, we have

D̄i =
〈
[[w′]]di [[w

′]]di
〉
. (38)
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Fig. 8. Signals of the spatial damage filters for the damaged one-storey frame structure: Single hinge (left) and two hinges (right)

D1 D2 D3 D̄1 D̄2 D̄3

single damage 0.284 0 0 0.298 0 0

double damage 0.279 0.00109 0 0.346 0.00633 0

Table 3. Alternative damage indicis for the simple one-story frame structure

3.3.4 Remark on the example problem

In our example problem concerned with the one-storey frame structure three incompatibility filters were put into practice by
means of the three nilpotent shape functions shown in Fig. 3. These shape functions represent statically indeterminate bending
moment distributions for the undamaged structure. Hence, any linear combination of the three shape functions results into a
nilpotent shape function as well. Keeping in mind the fact that the floor is assumed rigid three such linear combinations are shown
in Fig. 9. A design using these three nilpotent sensor shape functions for the incompatibility filters from the very beginning is fully
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single damage 0.284 0 0 0.298 0 0
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Figure 9: Alternative nilpotent shape functions for the one-storey frame structure

the very beginning is fully equivalent to using the original design. Running through the structural health

monitoring method introduced above, we will end up with the identical conclusions as before with respect

to damage detection, localistion and monitoring. Yet, the design according to Fig. 9 enables a significant

simplification of the method. In particular the following points apply.

1. Damage detection: We compute the matrix A for the two damage scenarios; the result is

A =

2

64
0.298 �0.199 0

�0.199 0.133 0

0 0 0

3

75 and A =

2

64
0.298 �0.19 �0.023

�0.196 0.136 0.016

�0.023 0.016 0.00269

3

75 . (39)

As nilpotent sensor 1 and nilpotent sensor 3 are already damage / kink sensors for the damaged

structure with a hinge in a sidewall the diagonal elements A11 and A33 of A are the alternative

damage indices D̄i = Aii; hence, due to the design of the nilpotent sensors, it is su�cient to use

only two damage indices D̄1 = A11 and D̄2 = A33, which are

D̄1 = 0.298 , D̄2 = 0 and D̄1 = 0.283 , D̄2 = 0.00269, (40)

see also Tab. 3. We conclude from the damage indices that in the single damage scenario only

the left sidewall is damaged (D̄2 = 0), whereas in the double damage scenario both sidewalls are

damaged.

2. Damage localization: To localize damage we exclude information from sensors, for which the cor-
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equivalent to using the original design. Running through the structural health monitoring method introduced above, we will end
up with the identical conclusions as before with respect to damage detection, localistion and monitoring. Yet, the design according
to Fig. 9 enables a significant simplification of the method. In particular the following points apply.

1. Damage detection: We compute the matrix A for the two damage scenarios; the result is

A =

 0.298 −0.199 0

−0.199 0.133 0

0 0 0

 and A =

 0.346 −0.245 −0.0426

−0.245 0.173 0.0305

−0.0426 0.0305 0.00633

 . (39)

As nilpotent sensor 1 and nilpotent sensor 3 are already damage / kink sensors for the damaged structure with a hinge in a
sidewall the diagonal elements A11 and A33 of A are the alternative damage indices D̄i = Aii; hence, due to the design of the
nilpotent sensors, it is sufficient to use only two damage indices D̄1 = A11 and D̄2 = A33, which are

D̄1 = 0.298 , D̄2 = 0 and D̄1 = 0.346 , D̄2 = 0.00633, (40)

see also Tab. 3. We conclude from the damage indices that in the single damage scenario only the left sidewall is damaged
(D̄2 = 0), whereas in the double damage scenario both sidewalls are damaged.

2. Damage localization: To localize damagewe exclude information from sensors, for which the corresponding diagonal element
in the matrix A is zero. Therefore, we use only

A =

[
0.298 −0.199

−0.199 0.133

]
and A =

 0.346 −0.245 −0.0426

−0.245 0.173 0.0305

−0.0426 0.0305 0.00633

 (41)
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for localisation. In the single damage scenario two nilpotent sensors must still exist for the damaged structure; one of them
is the original nilpotent sensor 3, the other one is a linear combination of nilpotent sensor 1 and nilpotent sensor 2

ȳnil = α1ynil,1 + α2ynil,2, (42)

the signal of which must vanish. To compute non-trivial solutions for α1 and α2, we could solve the eigenvalue problem;
yet, we seek a minimum for ⟨ȳnil, ȳnil⟩ with the constraint α2 = 1 instead of the original constraint α2

1 + α2
2 = 1; hence, we

minimize the cost function

J =
〈
ȳnil, ȳnil

〉
+ λ(α2 − 1). (43)

The result is

α =
[

0.666 1
]T

, (44)

from which a new nipotent sensor is found as Snil,new = 0.666Snil,1 + Snil,2 replacing the original nilpotent sensor 2. The
adjusted sensor design for the single damage scenario is shown in the top of Fig. 10. From the zero of Snil,new (denoted as
nilpotent sensor 1 in the figure), which is located at xL = 1/3we conclude on the location of the hinge. For the double damage
scenario we seek a linear combination

ȳnil = α1ynil,1 + α2ynil,2 + α3ynil,3 (45)

with α2 = 1 by minimizing ⟨ȳnil, ȳnil⟩ with the constraint α2 = 1; we find

α =
[

0.666 1 −0.333
]T

, (46)

such that Snil,new = 0.666Snil,1 + Snil,2 − 0.333Snil,3 replaces the original nilpotent sensor 2. The adjusted sensor design is
shown in the bottom of Fig. 10. The zeros of the new nilpotent sensor shape function at x̄L = 1/3 and x̄R = 2/3 constitute the
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linearized curvature) in every point of the flexible sidewalls, and furthermore to assign an arbitrary shape

function to these measurements resulting into nilpotent sensors used for structural health and damage

monitoring.

In this section we consider the problem of putting approximate spatial filters into practice by means

of sensor networks. A sensor network is constituted by individual strain-type sensors with constant sensor

shape functions located in certain domains of the structure, to which proper constant weights are assigned

such that the combined output approximates continuously distributed strain-type sensors. First, each

flexible sidewall of the multi-storey frame structure is subdivided into j = 1, ..., k sub-sections covering

the total height of the sidewall. The sub-sections are defined as:

xi,j
(L,R)  xi(L,R)  xi,j

(L,R) +�xi,j
(L,R) = xi,j+1

(L,R),

xi,1
(L,R) = 0 , xi,k

(L,R) +�xi,k
(L,R) = xi,k+1

(L,R) = hi. (47)

Next, we assume one strain-type sensor with a constant sensor shape function to be located within each

sub-section defined in Eq. (47). Each of these individual sensor patches has the same dimensions covering

the total width of the sidewall and its length is �x  �xi,j
(L,R). Hence, the sections of the patches are:

xi,j(L,R)  xi(L,R)  xi,j(L,R) +�x, with j = 1, ..., k. To each patch we assign a constant sensor shape

function Si,j(L,R) as a weight such that the sensor signal ȳ(t) of the sensor network is

ȳ(t) = �
nX

i=1

kX

j=1

0

B@Si,jL

xi,jL+�xZ

xi,jL

@2wiL

@x2
iL

dxiL + Si,jR

xi,jR+�xZ

xi,jR

@2wiR

@x2
iR

dxiR

1

CA. (48)

The signal of the original spatial filter with the shape functions Si(L,R)(xi(L,R)) can be reformulated as

y(t) = �
nX

i=1

kX

j=1

0

B@

xi,j
L +�xi,j

LZ

xi,j
L

SiL(xiL)
@2wiL

@x2
iL

dxiL +

xi,j
R +�xi,j

RZ

xi,j
R

SiR(xiR)
@2wiR

@x2
iR

dxiR

1

CA. (49)

We define the error signal, which results from approximating the spatial filter by the sensor network as

e(t) = ȳ(t)� y(t); the latter must be minimized. In the present paper we are not in particular interested
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position of the two hinges.

3. Damage monitoring: The new nilpotent sensor shape functions put incompatibility filters for the damaged frame structures
into practice, which are used for structural health monitoring of the already damaged frames. To monitor the damage / kinks
no further transformations are needed in this design, as the shape functions with constant intensity in one sidewall only
directly result into spatial damage filters monitoring kinks in sidewalls with hinges. Hence, the final adjusted design for the
monitoring system for the damaged frame structures is shown in Fig. 10.

Besides the simplification of the method for the one-storey frame structure due to the alternative initial design, this design (Fig. 9)
can be used independently for each storey of a multi-storey frame structure. Hence, we will be using this design and the simplified
method for structural health monitoring of a three-storey frame structure in the following.

4. Sensor network design

In the previous section we have discussed spatial filters implemented by means of continuously distributed strain-type sensors
based on the assumption that we are able to measure the strain (in our case the linearized curvature) in every point of the flexible
sidewalls, and furthermore to assign an arbitrary shape function to these measurements resulting into nilpotent sensors used for
structural health and damage monitoring.
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In this section we consider the problem of putting approximate spatial filters into practice by means of sensor networks. A
sensor network is constituted by individual strain-type sensors with constant sensor shape functions located in certain domains of
the structure, to which proper constant weights are assigned such that the combined output approximates continuously distributed
strain-type sensors. First, each flexible sidewall of the multi-storey frame structure is subdivided into j = 1, ..., k sub-sections
covering the total height of the sidewall. The sub-sections are defined as:

xi,j
(L,R)

≤ xi(L,R) ≤ xi,j
(L,R)

+∆xi,j
(L,R)

= xi,j+1
(L,R)

,

xi,1
(L,R)

= 0 , xi,k
(L,R)

+∆xi,k
(L,R)

= xi,k+1
(L,R)

= hi. (47)

Next, we assume one strain-type sensor with a constant sensor shape function to be located within each sub-section defined in
Eq. (47). Each of these individual sensor patches has the same dimensions covering the total width of the sidewall and its length is
∆x ≤ ∆xi,j

(L,R)
. Hence, the sections of the patches are: xi,j(L,R) ≤ xi(L,R) ≤ xi,j(L,R) +∆x, with j = 1, ..., k. To each patch we assign

a constant sensor shape function Si,j(L,R) as a weight such that the sensor signal ȳ(t) of the sensor network is

ȳ(t) = −
n∑

i=1

k∑
j=1

Si,jL

xi,jL+∆x∫
xi,jL

∂2wiL

∂x2
iL

dxiL + Si,jR

xi,jR+∆x∫
xi,jR

∂2wiR

∂x2
iR

dxiR

. (48)

The signal of the original spatial filter with the shape functions Si(L,R)(xi(L,R)) can be reformulated as

y(t) = −
n∑

i=1

k∑
j=1


x
i,j
L

+∆x
i,j
L∫

x
i,j
L

SiL(xiL)
∂2wiL

∂x2
iL

dxiL +

x
i,j
R

+∆x
i,j
R∫

x
i,j
R

SiR(xiR)
∂2wiR

∂x2
iR

dxiR

. (49)

We define the error signal, which results from approximating the spatial filter by the sensor network as e(t) = ȳ(t)− y(t); the latter
must be minimized. In the present paper we are not in particular interested in an optimal solution of this minimization problem,
but we rather present a simple solution based on statically equivalent force systems introduced in [42], which works quite well in
the low frequency regime even for a small number of sensor patches in each sidewall; see also [10] for an application of this method
to active noise control of plates. In order to put the solution into practice in the following, we consider the bending stiffness in the
sections with sensor patches different from the ones without. Furthermore, the bending moment in each sub-section is assumed to
be linear Mi,j(L,R)(xi(L,R)) = ai,j(L,R) + bi,j(L,R)xi(L,R), which means that only single forces and moments are applied statically to
the frame structure at the interfaces between the sub-sections. Due to the change of the bending stiffness the resulting curvature
depends on this bending stiffness

κi(L,R) = −
∂2wi(L,R)

∂x2
iL

= (EJ)−1Mi,j(L,R) = (EJ)−1ai,j(L,R) + (EJ)−1bi,j(L,R)xi,(L,R), (50)

where (EJ) is section-wise constant. Inserting the curvature into Eqs. (48) and (49) finds a solution, for which the error e(t) is zero,
if the weights Si,j(L,R) and the sensor locations xi,j(L,R) are computed from 2n times 2k equations, which are

Si,j(L,R)(EJ)−1

∫ xi,j(L,R)+∆x

xi,j(L,R)

xi(L,R)dxi(L,R) =

∫ x
i,j
(L,R)

+∆x
i,j
(L,R)

x
i,j
(L,R)

Si(L,R)(EJ)−1xi(L,R)dxi(L,R),

Si,j(L,R)(EJ)−1∆x =

∫ x
i,j
(L,R)

+∆x
i,j
(L,R)

x
i,j
(L,R)

Si(L,R)(EJ)−1dxi(L,R). (51)

Again note that (EJ) is included as it is different for different sub-sections. From these equations the locations of the patches
xi,j(L,R) and the individual patch weights Si,j(L,R) can be computed. If the patch locations are fixed we use a least square method
to solve the 2n times 2k equations for only 2n times k unknowns, which are the individual patch weights Si,j(L,R).

We apply the method to the previously studied example of a one-storey frame structure. For each sidewall three sections of
equal length are taken into account and one patch is placed in each of these sections, which has a length of 1/3 of the section length
and which is located in the center of the section. Computing a least square solution for the weights, we can approximate the three
sensor shape functions from our previous example shown in Fig. 9; the result is shown in Fig. 11. One can see the effect of the

in an optimal solution of this minimization problem, but we rather present a simple solution based on
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Figure 11: Approximations of spatial filters by sensor networks for the one-storey frame structure

the di↵erent bending sti↵ness in the result for the approximation of the constant shape functions. For

a constant bending sti↵ness one would expect the weights for the approximation of the constant sensor

shape functions to be 3; yet, we have the value 3.2 due to the increased sti↵ness (EJ) = 1.1(EJ)0 in the

sections with patches with the bending sti↵ness (EJ)0 in the sections without patches. In the following

we will be using an analogous design for sensor networks for the monitoring of a realistic laboratory

three-storey frame structure.

18

Fig. 11. Approximations of spatial filters by sensor networks for the one-storey frame structure

different bending stiffness in the result for the approximation of the constant shape functions. For a constant bending stiffness one
would expect the weights for the approximation of the constant sensor shape functions to be 3; yet, we have the value 3.2 due to the
increased stiffness (EJ) = 1.1(EJ)0 in the sections with patches with the bending stiffness (EJ)0 in the sections without patches.
In the following we will be using an analogous design for sensor networks for the monitoring of a realistic laboratory three-storey
frame structure.
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5. Case study: Three-storey frame structure

In order to validate our method for structural health monitoring and damage detection and localisation by piezoelectric sensor
networks we consider a three-storey frame structure with three identical storyes and with a harmonic ground excitation. The
sidewalls are made of aluminum and three groups of piezoelectric patches (PZT-5A) are mounted to each of the six sidewalls; by
group we mean a pair of patches mounted at one position, but on opposite sides of the sidewall in order to remain within the pure
bending assumption of the Bernoulli-Euler beam theory. The dimensions of the sidewalls are 0.5m × 0.04m × 0.004m (height L×
width d× thickness h) and the ones of the piezoelectric patches are 0.0555m×0.04m×0.0005m (length∆x×width dp × thickness hp).
The floor ismade of steel with dimensions 0.3m×0.04m×0.01m (lenghtLf ×width df × thickness hf ); here, the lengthLf represents
the horizontal distance between the sidewalls. The locations of the three groups of piezoelectric patches xi,1 = L/6−∆x/2, xi,2 =
L/2 − ∆x/2 and xi,3 = 5L/6 − ∆x/2 are identical for the left and the right sidewall and for each individual storey, i = 1, 2, 3. With
the material parameters of aluminum and of PZT-5A (see appendix) the bending stiffness (EJ)0 for sections without patches, the
corresponding one for sectionswith patches (EJ), themass of the rigid floorsM (the floors are assumed rigid in the beammodel) and
the linear inertia of the sidewalls P0 and P are given in Tab. 4. Given the bending stiffnesses, we can proceed with the design of the

(EJ)0 (EJ) M P0 P

13.824Nm2 26.223Nm2 0.942kg 0.4432kgm−1 0.7532kgm−1

Table 4. Parameters for the beam model of the three-storey frame structure

piezoelectric sensor network. We design three nilpotent sensor networks for each storey. The network design follows directly from
the previous design of the three nilpotent sensors used for the one-storey frame accounting for different dimensions and bending
stiffnesses. The six weights for the three sensor networks (which are identical for each storey) are given in Tab. 5. Numerical results

Si,1L Si,2L Si,3L Si,1R Si,2R Si,3R

nilpotent 1 4.7938 4.7938 4.7938 0 0 0

nilpotent 2 −3.9926 −2.3908 −0.7896 −3.9926 −2.3908 −0.7896

nilpotent 3 0 0 0 −4.7938 −4.7938 −4.7938

Table 5. Weights of the sensor network

are computed using either a transfer matrix formulation within the framework of an electro-mechanically coupled Bernoulli-Euler
beam theory [43] or three-dimensional Finite Elements in ANSYS©. For the FE computations 3D 8-node brick elastic elements are
used for the sidewalls made of aluminum, 3D 8-node brick piezoelastic elements are used for the 36 piezoelectric patches and
the steel floors are also modeled with 3D 8-node brick elastic elements, for which Young’s modulus has been assumed sufficiently
large to mimic the rigidity of the floors in the beam model. The FE mesh has been chosen to result in a converged solution. In
both computations the same sensor weights (see Tab. 5) are used for the sensor networks. A harmonic ground excitation with
amplitude w0 = 0.001m is imposed and - in order to avoid large amplitudes in the vicinity of the natural frequencies - damping
is included into the models as one discrete horizontal damper element for each of the three horizontal floor displacements; the
damping constant is d = 10Nsm−1. As the Finite Element computations render voltages at the piezoelectric patches (open circuit
conditions are implemented), we also have to account for a constant factor of proportionality, which depends on the geometry and
material parameters, to relate these voltages with the weights given in Tab. 5. For that sake we compute the voltage at an individual
patch group (x̄ ≤ x ≤ x̄+∆x) for the case of an open circuit (for details concerning the sensor equation for piezoelectric patches we
refer to Krommer [43]) as

V (t) = −
h+ hp

C
dpe

x̄+∆x∫
x̄

∂2w

∂x2
dx, (52)

in which C = ηdp∆x̄h−1
p is the capacity of a piezoelectric patch and e and η are a piezoelectric coefficient and a permittivity defined

in the appendix. On the other hand, we have the sensor signal from this patch group with the corresponding weight S as

y(t) = −S

x̄+∆x∫
x̄

∂2w

∂x2
dx. (53)

From a comparison of these two formulations we find a factor κV

κV = S
C

(h+ hp)dpe
, (54)

which we can use as weights for the individual voltages yFE = κV V FE computed from the three-dimensional Finite Elements and
compare the results to the beam solution. In Fig. 12 we show the dynamic magnification factor of the three nilpotent sensor signals
for each of the three storeys for the undamaged case. In all results we refer to the transfer matrix formulation as analytical and to the
three-dimensional Finite Elements as FEM. Concerning the results, we note that - due to the symmetry of the problem - nilpotent
sensor 2 has a trivial signal and the signals from nilpotent sensor 1 and from nilpotent sensor 3 are identical; hence, there is only one
independent signal for each floor. One can observe a very good agreement between the analytical results and the ones computed
from the three-dimensional Finite Element computations. Moreover, the signal levels are very small for the nilpotent sensors, if
they are compared to signals measured in a damaged frame structure; see the following sections.
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Fig. 12. Nilpotent sensor signals from the incompatibility filters for the three storeys - undamaged frame: First storey (top), second storey (bottom left)
and third storey (bottom right)

5.1 Monitoring of a damaged three-storey frame structure

We introduce damage into the frame structure by means of cracks, which are modeled as intermediate hinges with a residual
stiffness in the beam model. Hence, we use the damage model of our previous example of the one-storey frame structure. We
introduce one intermediate hinge in each storey with a crack depth of d = 2h/3. The location of the cracks / hinges are x1,L =
L/6 + ∆x/2 in the left sidewall of the first storey, x2,L = L/6 + ∆x in the left sidewall of the second storey and x3,R = 5L/6 + ∆x/2
in the right sidewall of the third storey. We model the damage in the Finite Element model simply by rigidly connecting only those

Fig. 13. Detail of a cross section with a crack in the FE model

nodes within the damaged cross section, which have not been reached by the crack, see Fig. 13 for d = 2h/3; the rigidly connected
part of the cross section is located in the center of the cross section actually modeling two cracks - one on the top and one at the
bottom of the cross section. We use the design of the sensor networks from Tab. 5 for each of the three floors and we show the
corresponding 9 nilpotent sensor signals from the incompatibility filters in Fig. 14.

One can see thatwe have a good agreement between the analytical results and the Finite Element ones inmost cases. Concerning
the results, we note the following:

• The signal level for the nilpotent sensors is much higher than for the original undamaged frame structure. Concerning the
first storey this is in particular true for nilpotent sensor 1 and nilpotent sensor 2, because the corresponding sensor shape
functions for these two sensors are not trivial in the left sidewall, in which the damage occurs. In contrast, the signal level
from nilpotent sensor 3 is still very small and similar to the one for the undamaged frame. From the results for the first storey,
we can conclude on the presence of damage in the left sidewall of the first storey and, hence, detect the damage. Concerning
the third storey similar arguments lead to the conclusion that the damage must be in the right sidewall. The results for the
second storey are not so clear, but still allow to conclude on damage in the left sidewall, because of a comparably small signal
level for nilpotent sensor 3.

Finally, we show the signal from nilpotent sensor 1 for the first storey again in Fig. 15 together with the actual kink at the location
of the intermediate hinge computed with the transfer matrix formulation. We can see that the signals and the kink are very close.
Hence, the originally nilpotent sensor becomes a kink sensor for the damaged structure, which additionally adds to the superiority
of nilpotent sensors for structural health monitoring over e.g. displacement sensors, as the signal from the damaged frame has a
clear mechanical interpretation. Rather than to further discuss the signals, we now proceed to using themethod we have developed
in this paper.
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Fig. 14. Nilpotent sensor signals from the incompatibility filters for the three storeys - damaged frame: First storey (top), second storey (bottom left)
and third storey (bottom right)
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Fig. 15. Signals from nilpotent sensor 1 and kink in the left sidewall of the first storey - damaged frame

Damage detection We use the diagonal elements Aj
ii of the matrix Aj as damage indices for each floor with j = 1, 2, 3; yet, in this

example, we introduce a relative damage index as

D̄j
i =

Aj
ii,damaged

Aj
ii,undamaged

, (55)

because the damage indices are not zero in the undamaged structure. Due to the symmetry in the present problem of a three-storey
frame structure, the indices D̄j

2 are infinitely large, because Aj
22,undamaged is zero; hence, we only use two damage indices for each

floor. The results for the six damage indices are presented in Tab. 6 using either the data from the beam model or from the Finite
Element one; the computation of the components of the matrices Aj uses a total of 120 measurement points in the frequency range
f = [0, ..., 20]Hz.

Damage indices D̄1(L) D̄1(R) D̄2(L) D̄2(R) D̄3(L) D̄3(R)

analytical 88.3 0.97 42.8 0.92 0.97 231.4
Finite Elements 83.3 0.86 20.4 1.68 1.31 313.5

Table 6. Damage indices for three-story frame structure

Damage localisation and monitoring As we have discussed in detail our method is also capable to proceed from a level 1 SHM sys-
tem for damage detection to a level 2 system, which also allows the localisation of damage. This step was based on the computation
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Location x1(L)/m x2(L)/m x3(R)/m
Error e1(L) e2(L) e3(R)

actual 0.111 - 0.139 - 0.444 -
identified analytical 0.129 3.6% 0.153 2.8% 0.424 -4.0%

identified Finite Elements 0.126 3.0% 0.177 7.6% 0.401 -8.6%

Table 7. Actual and identified damage location with relative errors

of the matrix A. For the three-story frame structure the specific design of nilpotent sensors results into three matrices Aj with the
dimension 3× 3 and j = 1, 2, 3; one for each floor of the structure.

For localisation we are using the simplified method discussed above. In any of the three storeys one sidewall is undamaged as
indicated by the those damage indices in Tab. 6, which are close to 1. The corresponding signals are excluded in the computation
of Aj , such that we have matrices with only 2 × 2 components for each storey. Following the simplified method finds vectors αj

with the coefficients of the proper linear combinations of the sensor signals to produce minimized signals. The identical linear
combinations applied to the underlying sensor shape functions finds new nilpotent sensor shape functions, the zeros of which are
the location of the damage / hinge. In Tab. 7 the identified damage locations are presented in comparison to the actual ones. One
can see that the location of the three local damages / hinges are accurately identified by both the beam model and the FEM model.
The error we present is defined as ei = (xi,identified − xi,actual)/L.

Damage monitoring is done using the original design for the two sensors with a constant sensor shape function in one sidewall
andwith a new adjusted sensor network that follows fromusing the components ofαj also as coefficients for a linear combination of
the original networks. For the first storey we show the signals of the adjustedmonitoring system that are computed for the damaged
frame in Fig. 16. Clearly, nilpotent sensor 1 becomes a kink sensor, nilpotent sensor 3 remains a nilpotent sensor and the adjusted
nilpotent sensor 2 is a new nilpotent sensor to monitor the residual structural health of the damaged structure. Similar results
are obtained for the other two storeys. It is worth noting that these results clearly show the ability of the proposed methodology
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Fig. 16. Signals from adjusted sensor network for the first storey - damaged frame

not only to detect and locate damage, but also to adjust the monitoring system for a damaged structure, for which - besides further
healthmonitoring - one can evenmonitor the already existing damage. Although themonitoring system itself is designedwithin the
framework of Bernoulli-Euler beam theory, it can be used for the more complex three-dimensional Finite Element model, in which
no assumptions on the specific kinematic approximation nor on the local compliance, see eq. (11), to approximate the residual
stiffness in a cracked cross section are imposed.

Parameter variation As we already mentioned the non-dimensional crack depth-to-thickness ratio is β = 2/3 in this example and
damage is introduced in the left sidewall of the first and the second storey as well as in the right sidewall of the third storey. This
damage scenario is easily detected from the numerical values of the damage indices in Tab. 6. To further study the suitability of
the damage index to detect damage, the influence of the variation of β on the sensitivity of the damage index is studied next using
the beam model. Therefore, β is varied by steps of 0.1 within the range of [0.1, ..., 0.9]. Fig. 17 shows the damage indices for a single
damage in the left sidewall of the first storey for different values of β; no damage is present in the other two storeys. An exponential
sensitivity of the damage index can be seen; nonetheless, a certain damage level is needed to detect the damage. In this example
the damage level should at least be β = 0.2. Next, we also use damage in the other two storeys; in particular in the left sidewall of the
second storey and the right sidewall of the third storey. The damage level is simultaneously varied for all three damaged sidewalls.
The results for the damage indices are shown in Fig. 18. One can see that the additional damage has no effect on the damage indices
of the first storey, but only on the corresponding ones in the second and third storeys; again an exponential sensitivity is observed
and a certain minimum damage level is needed for damage detection.

Besides changing the level of damage, we also study the effect of damage position. In the first and second storey the damage
location remains fixed, but the location of the simulated damage in the third storey is varied from a location at the lower end of the
sidewall to a location at the upper end of the sidewall; the damage level is β = 2/3 for all three damages. The identified locations
using the transfer matrix formulation are shown in Fig. 19 together with the simulated locations at x = iL/9 with i = [0, 1, ..., 9],
which are the corresponding points at the dashed line. The error of the identified damage location has a minimum in the middle
of the sidewall, and a maximum at the two ends of the sidewalls. In contrast, the corresponding damage indices are largest for
the damage located at the two ends and smallest for the middle of the sidewall, see Fig. 20. However, for any damage location the
damage index is sufficiently large to detect and locate the damage.
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Fig. 17. Damage indices during variation of β = [0.1, ..., 0.9] for damage in the first storey only: First storey (top), second storey (bottom left) and third
storey (bottom right)
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Fig. 18. Damage indices during simultaneous variation of β = [0.1, ..., 0.9] for damage in each storey: First storey (top), second storey (bottom left) and
third storey (bottom right)

6. Conclusions

In the present paper we have developed a novel method for structural health monitoring of multi-storey frame structures using
so-called incompatibility filters. It has been shown that the method is able to detect and locate local damage in multi-storey frame
structures with sufficient accuracy. Moreover, the design of incompatibility filters put into practice by piezoelectric sensor networks,
whichwas based on the Bernoulli-Euler beam theory, was also tested on a three-dimensional Finite Elementmodel for a three-storey
frame structure; here, we were able to numerically proof the concept of incompatibility filters for structural health monitoring.
Although this proof of concept only considered the case of a harmonic ground excitation, the developed methodology is actually
independent from the specific type of excitation, and it works for both, static and dynamic excitations.

Moreover, the developed methodology does not require a full mechanical model of the actual structure in the sense that con-
stitutive relations are needed, but only a kinematic model in the sense that such a model enables us to introduce the notion of
a self-equilibrating bending moment. A forthcoming extension towards the more realistic case of three-dimensional frame struc-
tures with possibly flexible floors is expected to be straightforward as long as the concept of self-equilibrating forces and moments
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Out[!]=

Fig. 19. Localisation of varying damage position in the third floor
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Left sidewall Right sidewall

Fig. 20. Damage index during variation of the damage position in the third floor

is applicable. We are positive that the method itself is even applicable to real engineering systems as self-equilibrating forces and
moments / stresses exist also in such systems, which is imperative to put incompatibility filters into practice. Also, we wish to point
out that within this paper we have developed the methodology without any further processing of the signals from the incompatibil-
ity filters, which is left for future research with respect to our method working under realistic operating conditions as well. Besides
these aspects, which encourage us to proceed our research, a main issue that must be addressed in the future is the need for a
spatial filtering system put into practice either continuously distributed or as a dense sensor network.
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Appendix A

For a transversally isotropic piezoelectric material with the remanent polarization in the 3-direction (such as PZT-5A) the
linearized three dimensional constitutive relations can be written in matrix form as

σ11

σ22

σ33

σ23

σ13

σ12

D1

D2

D3


=



Q11 Q12 Q13 0 0 0 0 0 −e31

Q12 Q11 Q13 0 0 0 0 0 −e31

Q13 Q13 Q33 0 0 0 0 0 −e33

0 0 0 Q44 0 0 0 −e15 0

0 0 0 0 Q44 0 −e15 0 0

0 0 0 0 0 Q66 0 0 0

0 0 0 0 e15 0 ∈11 0 0

0 0 0 e15 0 0 0 ∈11 0

e31 e31 e33 0 0 0 0 0 ∈33





ε11

ε22

ε33

γ23

γ13

γ12

E1

E2

E3


; (56)

here, the (1,2)-plane is the isotropic plane, and Q66 = (Q11 −Q12)/2 holds. The specific material parameters for PZT-5A are given in
Tab. 8.

Elasticity moduli [109Nm−2] Q11 Q12 Q13 Q33 Q44

121 75.4 75.2 111 21.1
Piezoelectric coefficients [Cm−2] e31 e33 e15

- 5.46 15.8 12.32
Permittivities ∈11 ∈33

1730ε0 1700ε0

Table 8. Material parameters for PZT-5A (ε0 = 8.854 × 10−12AsV−1m−1)

For a uni-axial stress in the 1-direction and for D1 = 0 and D2 = 0, we have E1 = 0, E2 = 0, γ12 = 0, γ23 = 0 and γ13 = 0; moreover,
from σ22 = σ33 = 0 we find the effective constitutive relation as[

σ11

D3

]
=

[
E −e

e η

][
ε11

E3

]
, (57)

with
E = Y (1− ν2) , e = ē(1− ν) , η = η̄ +

ēē

Y
(58)

and Y , ν, ē and η̄ from

Y = Q11 −
Q13Q13

Q33
, Y ν = Q12 −

Q13Q13

Q33
, ē = e31 −

e33Q13

Q33
, η̄ = ∈33 +

e33e33

Q33
. (59)

The density of PZT-5A is ϱ = 7750kgm−3. For isotropic aluminum we have Eal = 71× 109Nm−2, νal = 0.33 and ϱal = 2700kgm−3.
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