
تعداد نشریات | 31 |
تعداد شمارهها | 1,032 |
تعداد مقالات | 9,144 |
تعداد مشاهده مقاله | 10,479,270 |
تعداد دریافت فایل اصل مقاله | 8,647,211 |
ساخت و مشخصهیابی خواص بلوری نانوساختارهای هیدروکسید آلومینیوم و بررسی کاربرد آنها | ||
پژوهش سیستم های بس ذره ای | ||
مقاله 6، دوره 10، شماره 2 - شماره پیاپی 25، شهریور 1399، صفحه 67-83 اصل مقاله (973.27 K) | ||
نوع مقاله: مقاله پژوهشی کامل | ||
شناسه دیجیتال (DOI): 10.22055/jrmbs.2020.15570 | ||
نویسندگان | ||
منوچهر آدمی؛ صبا موسیوند* | ||
گروه فیزیک، دانشکده علوم پایه، دانشگاه لرستان، خرم آباد، ایران | ||
چکیده | ||
نانوذرات هیدروکسید آلومینیوم در یک سلول حاوی محلول الکترولیت تترامتیلآمونیومکلراید و دو ورقه آلومینیومی بهعنوان آند و کاتد با موفقیت ساخته شدند. بهمنظور بررسی اثر ولتاژ بر خواص بلوری ذرات، پنج نمونه با اعمال ولتاژهای 7 ولت، 9 ولت، 12 ولت، 15 ولت و 18 ولت رشد داده شدند. ذرات با استفاده از دستگاههای پراش پرتوایکس (XRD)و میکروسکوپ الکترونی روبشی (SEM)مشخصهیابی شدند. الگوهایXRD تشکیل هیدروکسید آلومینیوم با ساختار مکعبی ساده را به خوبی نشان داد و هیچ پیکی که نشاندهنده ناخالصی باشد مشاهده نشد. طبق این الگوها نمونه ساخته شده تحت ولتاژ 7 ولت آمورف بود و با افزایش ولتاژ ساختار بلوری نمونه بهبود یافت. تصاویر SEMذرات شبهکروی با اندازه نانومتری را نشان داد. با توجه به این تصاویر کوچکترین ذرات با اندازه میانگین 9 نانومتر تحت ولتاژ 18ولت ساخته شدند. در بخش کاربردی این پژوهش حذف آلایندههای کادمیوم و نیکل از آب آلوده آزمایشگاهی تحت ولتاژهای 7 ولت تا 18 ولت و آب سه رودخانه خرمرود، کشکان و سیمره با اعمال ولتاژ بهینه 15 ولت بررسی شد. نتایج جذب اتمی (AAS) قابلیت این روش در جداسازی آلایندههای آب را نشان داد. | ||
کلیدواژهها | ||
نانوذرات هیدروکسیدآلومینیوم؛ الکتروکریستالیزاسیون؛ خواص بلوری؛ آب آلوده؛ کادمیوم؛ نیکل | ||
مراجع | ||
[1] D. Mishra, S. Anand, R.K. Panda, R.P. Das, Effect of anions during hydrothermal preparation of boehmites, Materials Letters 53(3) (2002) 133-137. DOI:10.1016/S0167-577X(01)00461-X [2] G. Scholz, S. Brehme, M. Balski, R. König, E. Kemnitz, Structure and properties of mechanochemically synthesised aluminium hydroxide fluoride phases AlFx(OH)3-x nH2O, Solid State Sciences 12 (2010) 1500-1506. https://doi.org/10.1016/j.solidstatesciences.2010.06.017 [3] O.V. Bakina,, E.A. Glazkova, N.V. Svarovskaya, A.S. Lozhkomoev, E.G. Khorobraya, S.G. Psakhie, Synthesis of low-size flower-like AlOOH structures, AIP Conference Proceedings 1623 (2014) 35-38. https://doi.org/10.1063/1.4901476 [4] M. Reches, E. Gazit, Casting metal nanowires within discrete self-assembled peptide nanotubes, Science 300(5619) (2003) 625-627. [5] X.S. Fang, C.H. Ye, L.D. Zhang, T. Xie, Twinning-Mediated Growth of Al2O3 Nanobelts and Their Enhanced Dielectric Responses, Advanced Materials 17(13) (2005) 1661-1665. https://doi.org/10.1002/adma.200401921 [6] B.E. Yoldas, Alumina gels that form porous transparent Al2O3, Journal of Materials Science 10(11) (1975) 1856-1860. https://doi.org/10.1007/BF00754473 [7] B.E. Yoldas, Hydrolysis of aluminium alkoxides and bayerite conversion, Journal of applied chemistry and biotechnology 23(11) (1973) 803-809. https://doi.org/10.1002/jctb.5020231103 [8] S. Musić, Đ. Dragčević, S. Popović, Hydrothermal crystallization of boehmite from freshly precipitated aluminium hydroxide, Materials Letters 40(6) (1999) 269-274. https://doi.org/10.1016/S0167-577X(99)00088-9 [9] A.F. Dresvyannikov, E.V. Petrova, M.A. Tsyganova, Physical and chemical properties of nano-sized aluminum hydroxide and oxide particles obtained by the electrochemical method, Russian Journal of Physical Chemistry A 84(4) (2010) 642-647. https://doi.org/10.1134/S0036024410040217 [10] R. Rogojan, E. Andronescu, C. Ghitulica, B.S. Vasile, Synthesis and characterization of alumina nano-powder obtained by sol-gel method, UPB Scientific Bulletin, Series B: Chemistry and Materials Science 73(2) (2011) 67-76. [11] G. Costa Cunha, L.P.C. Romão, Z.S. Macedo, Production of alpha-alumina nanoparticles using aquatic humic substances, Powder technology 254 (2014) 344-351. https://doi.org/10.1016/j.powtec.2014.01.008 [12] G.R. Karagedov, N.Z. Lyakhov, Preparation and sintering of nanosized α-Al2O3 powder, Nanostructured materials 11(5) (1999) 559-572. https://doi.org/10.1016/S0965-9773(99)00331-1 [13] L.M.A. Monzon, K. Ackland, S. Mosivand, M. Venkatesan, J.M.D. Coey, The role of Polyaniline in the Formation of Iron-containing Nanocomposites, Journal of Nanoparticle Research 15 (2013) 1-11. [14] S. Mosivand, L.M.A. Monzon, I. Kazeminezhad, J.M.D. Coey, The Effect of Organics on the Structure and Magnetization of Electro-synthesised Magnetite Nanoparticles, Journal of Nanoparticle Research 15 (2013) 1-11. [15] S. Mosivand, L.M.A. Monzon, K. Ackland, I.Kazeminezhad, J.M.D. Coey, Structural and Magnetic Properties of Sonoelectrocrystallized Magnetite Nanoparticles, Journal of Physics D: Applied Physics 47 (2014) 1-13. DOI:10.1088/0022-3727/47/5/055001 [16] S. Mosivand, I. Kazeminezhad, Structural and Magnetic Characterization of Electro-crystallized Magnetite Nanoparticles under Constant Current, Materials Research Bulletin 70 (2015) 328–335. http://dx.doi.org/10.1016/j.materresbull.2015.04.053 [17] S. Mosivand, I. Kazeminezhad, Functionalization and Characterization of Electrocrystallized Iron Oxide Nanoparticles in the Presence of b-cyclodextrine, CrystEngComm18 (2016) 417-426. [18] I. Kazeminezhad, S. Mosivand, Phase Transition of Electrooxidized Fe3O4 to γ and α-Fe2O3 Nanoparticles Using Sintering Treatment, Acta Phys. Pol. A 125 (2014) 1210-1214. DOI:10.12693/APhysPolA.125.1210 [19] S. Mosivand, L.M.A. Monzon, I. Kazeminezhad, J.M.D. Coey, Influence of Growth Conditions on Magnetic and Structural Properties of Magnetite Nanoparticles Electro-crystallized in the Presence of Organic Molecules, International Journal of Molecular Sciences 14 (2013) 10383-10396. [20] I. Kazeminezhad, A. Sadollakhani, Electrooxidized ZnO nanoparticles, Current Nanoscience 9 (2013) 35-38. DOI:10.2174/1573413711309010008 [21] Zh. Boroun, M.R. Vaezi, G. Kavei, A.A. Youzbashi, I. Kazeminezhad, Electrochemical synthesis of nanostructured nickel oxide powder using nickel as anode, Materials Letters 106 (2013) 175-177. http://dx.doi.org/10.1016/j.matlet.2013.05.022 [22] M. Kardanzadeh, I. Kazeminezhad, S. Mosivand, Electro-synthesis and characterization of TiO2 nanoparticles and their application in removal of congo red from water without UV radiation, Ceramics International 44 (2018) 5652–5659. https://doi.org/10.1016/j.ceramint.2017.12.214 [23] S.Z. Shahanshahi, S. Mosivand, Electro‑crystallized SnO2 nanoparticles for river‑water heavy‑metal ion pollutant removal process, Applied Physics A 125 (2019) 1-11. https://doi.org/10.1007/s00339-019-2949-2 [24] S. Mosivand, I. Kazeminezhad, A Novel Synthesis Method for Manganese Ferrite Nanopowders: The Effect of Manganese Salt as Inorganic Additive in Electrosynthesis Cell, Ceramics International 41 (2015) 8637–8642. http://dx.doi.org/10.1016/j.ceramint.2015.03.074 [25] S. Mosivand, I. Kazeminezhad, Synthesis of Electrocrystallized Cobalt Ferrite Nanopowders by Tuning the Cobalt Salt Concentration, RSC Advances 5 (2015) 14796-14803. [26] E. Chibowski, A. Szcześ, Magnetic water treatment–A review of the latest approaches, Chemosphere 203 (2018) 54-67. https://doi.org/10.1016/j.chemosphere.2018.03.160 [27] P. Rajasulochana, V. Preethy, Comparison on efficiency of various techniques in treatment of waste and sewage water – A comprehensive review, Resource-Efficient Technologies2 (2016) 175-184. https://doi.org/10.1016/j.reffit.2016.09.004 [28] L. Joseph, B.M. Jun, J.R.V. Flora, C.M. Park, Y. Yoon, Removal of heavy metals from water sources in the developing world using low-cost materials: A review, Chemosphere229 (2019) 142-159. https://doi.org/10.1016/j.chemosphere.2019.04.198 [29] Y. Zhu, W. Fan, T. Zhou, X. Li, Removal of chelated heavy metals from aqueous solution: A review of current methods and mechanisms, Science of The Total Environment678 (2019) 253-266. https://doi.org/10.1016/j.scitotenv.2019.04.416 [30] A. Chisvert, J.L. Benedé, A. Salvador, Current trends on the determination of organic UV filters in environmental water samples based on microextraction techniques – A review, Analytica Chimica Acta1034 (2018) 22-38. https://doi.org/10.1016/j.aca.2018.05.059 [31] G. Socrates, Infrared and Raman characteristic group frequencies, 3rd edn. Wiley, United Kingdom, (2001). [32] P. Cubillas, M.W. Anderson, Synthesis Mechanism: Crystal Growth and Nucleation, in book: Zeolites and Catalysis, Synthesis, Reactions and Applications. Vol. 1. Edited by Jiří Čejka, Avelino Corma, Stacey Zones, Copyright 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. https://doi.org/10.1002/9783527630295.ch1
[33] P.G. Vekilov, The two-step mechanism of nucleation of crystals in solution, Nanoscale 2 (2010) 2346–2357. https://doi.org/10.1039/C0NR00628A
[34] J.J. De Yoreo, P.G. Vekilov, Principles of Crystal Nucleation and Growth, Reviews in Mineralogy and Geochemistry 54(1) (2003) 57-93. https://doi.org/10.2113/0540057.
[35] F.C. Meldrum, H. Colfen, Crystallization and formation mechanisms of nanostructures, Nanoscale 2 11 (2010) 2326-7.
[36] S. Mosivand, I. Kazeminezhad, The Effect of Current on Structural and Magnetic Properties of Electrocrystalized Magnetite Nanoparticles in The Presence of Ultrasound Waves, Journal of Physics on Many-body Systems 9 (2015) 41-51. DOI:10.22055/jrmbs.2015.11385
[37] S. Mosivand, I. Kazeminezhad, S. Piri Fathabad, Easy, fast, and efficient removal of heavy metals from laboratory and real wastewater using electrocrystalized iron nanostructures, Microchemical Journal 146 (2019) 534–543. https://doi.org/10.1016/j.microc.2019.01.052
[38] S. Mosivand, L.M.A. Monzon, I. Kazeminezhad, A. Kumar, J.M.D. Coey, Pulsed electrochemical and electroless techniques for efficient removal of Sb and Pb from water, Environmental Science Water Research & Technology 4 (2018) 2179–2190.
[39] S. Mosivand, I. Kazeminezhad, Magnetite nanoparticles functionalized with polypyrrole by pulsed sono-electrocrystallization and their applications for water treatment, Journal of Materials Science: Materials in Electronics 29 (2018) 12466–12476.
[40] I. Kazeminezhad, S. Mosivand, Elimination of copper and nickel from wastewater by electrooxidation method, Journal of Magnetism and Magnetic Materials 422 (2017) 84–92. http://dx.doi.org/10.1016/j.jmmm.2016.08.049
[41] P. Xu, G. M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M. H. Zhao, C. Lai, Z. Wei, C. Huang, G. X. Xie and Z.F. Liu, Use of iron oxide nanomaterials in wastewater treatment: A review, Science of The Total Environment 424 (2012) 1-10. https://doi.org/10.1016/j.scitotenv.2012.02.023
[42] K. Yogesh Kumar, T.N. Vinuth Raj, S. Archana, S.B. Benaka Prasad, Sharon Olivera, H.B. Muralidhara, SnO2 nanoparticles as effective adsorbents for the removal of cadmium and lead from aqueous solution: Adsorption mechanism and kinetic studies, Journal of Water Process Engineering 13 (2016) 44–52. https://doi.org/10.1016/j.jwpe.2016.07.007
[43] G. Gangadhar, U. Maheshwari, S. Gupta, Application of Nanomaterials for the Removal of Pollutants from Effluent Streams, Nanoscience & Nanotechnology-Asia 2 (2012) 140-150. DOI:10.2174/2210681211202020140
[44] K. Garavand, S. Mosivand, The Effect of Electro-crystallizationVoltage on Structural and Optical Properties of Nickel Oxide Nanoparticles, 15th Conference on Condensed Matter, The physics Society of Iran (2019) 455-458. https://www.psi.ir/farsi.asp?page=cmc14
[45] F. Bagheri, S. Mosivand, The effect of electrocrystallization voltage on the structural properties of nickel hydroxide nanoparticles, 3rd National Conference on Nanostructures Nanoscience and Nanoengineering (2019) 1-8. www.kashannanoconf.ir | ||
آمار تعداد مشاهده مقاله: 680 تعداد دریافت فایل اصل مقاله: 404 |