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Abstract. This article proposes a refined higher order nonlocal strain gradient theory for stresses and deflections of new model of 
functionally graded (FG) sandwich nanoplates resting on Pasternak elastic foundation. Material properties of the FG layers are 
supposed to vary continuously through-the-thickness according to a power function or a sigmoid function in terms of the volume 
fractions of the constituents. The face layers are made of FG material while the core layer is homogeneous and made of ceramic. In 
this study, an analytical approach is proposed using the higher-order shear deformation plate theory and nonlocal strain gradient 
theory with combination of various boundary conditions. Numerical outcomes are reported to display the impact of the material 
distribution, boundary conditions, elastic foundation parameters and the sandwich nanoplate geometry on the deflections and 
stresses of FG sandwich nanoplates. The exactness of this theory is determined by comparing it to other published outcomes. 

Keywords: P-FGM, S-FGM, Sandwich nanoplates, Elastic foundation, Various boundary conditions. 

1. Introduction 

The functionally graded material (FGM) is a new class of advanced composite materials. The FGM is made of two mixed 
materials to obtain a synergistic combination of its mechanical and thermal properties [1]. These new materials are anticipated to 
decrease the local stress concentrations encouraged by abrupt transitions in material properties across the interface between 
separate materials [2]. Classically, FGMs are made of a ceramic and a metal for the resolution of thermal protection against large 
temperature gradients. Due to its low thermal conductivity, the ceramic has excellent characteristics in heat resistance. On the 
other hand, the ductile metal constituent avoids fracture due to its greater toughness. The synthesis of FGMs has been successfully 
demonstrated through a variety of methods, including thermal spray, powder metallurgy, physical and chemical vapor deposition 
and self-propagating high-temperature synthesis or combustion synthesis. High-temperature synthesis is particularly well suited 
to fabricating FGMs, because of the rapidity of the combustion reaction. 

Sandwich structures have been widely used to solve several engineering problems such in areas of aircraft, automobile, 
aerospace, and shipbuilding due to their high strength and durability. To increase the material properties of sandwich structures, 
the FGMs are taken into account. In general, the unexpected variation in the material properties of the sandwich structures from 
one layer to another can result in stress concentrations that often result in delamination. To overcome this issue, the three-layer 
FG sandwich structure is anticipated due to the gradual distinction of material properties at the interfaces between its core and 
face layers. 

Due to the importance and broad technical applications of smart composite pates, several researches are conducted on the 
mechanical response of FG sandwich plates. The stress distribution and deflection of simply supported FG sandwich plates are 
analyzed by Zenkour [3] using the third-order shear deformation plate theory (TSDT), the sinusoidal shear deformation plate theory 
(SSDT), the first-order shear deformation plate theory (FSDT) and the classical plate theory (CPT). In addition, by using a refined 
SSDT, he analyzed the effect of transverse mechanical and thermal load on the bending behavior of FG sandwich plates [4]. Wang 
and Shen [5] analyzed a nonlinear bending of FG sandwich plate resting on elastic foundations using a two-step perturbation 
method. Zenkour and Alghamdi [6-8] considered the thermoelastic bending of FG sandwich plates based on the higher-order shear 
deformation theories (HSDT). Two refined plate theories with four unknown variables are developed by Merdaci et al. [9] for static 
of FG sandwich plates. Natarajan and Ganapathi [10] examined the vibration and bending behavior of FG sandwich plates by 
employing QUAD-8 shear flexible element and in the context of HSDT. Iurlaro et al. [11] carried out bending and free vibration FG 
sandwich plates using a refined zigzag theory and finite element method. Thai et al. [12] examined bending, buckling and vibration 
of FG sandwich plates with various boundary conditions using a new FSDT. Mahi et al. [13] proposed a new hyperbolic shear 
deformation theory for the bending of FG sandwich plates. Using a new FSDT, Mantari and Granados [14] analyzed static bending 
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of sandwich plates with FG core and homogeneous face layers. Nguyen et al. [15] discussed the static and vibration of isotropic and 
FG sandwich plates by means of smooth finite element method and the HSDT with various boundary conditions. Mantari and 
Monge [16] carried out bending, buckling, and vibration of FG sandwich plates by employing an optimized hyperbolic unified 
formulation. Xiang and Liu [17] applied the nth-order shear deformation theory and meshless global collocation method for the 
bending analysis of FG sandwich plates with simply supported boundary conditions. Kashtalyan and co-workers [18, 19] 
investigated bending behavior of FG sandwich plates with FG core based on a three-dimensional elasticity solution. Abdelaziz et al. 
[20] analyzed the bending behavior of two types of FG sandwich plates based on four-variable refined plate theory. Using different 
four-variable refined plate theories, Li et al. [21] carried out bending of sandwich plates with both FG face layers and FG hard core 
subjected to thermomechanical loading.  

Thanh et al. [22] examined static and dynamic behavior of laminated composite micro-plates using isogeometric analysis and 
a refined modified couple stress theory and considering account the small-scale effect. Phung-Van et al. [23] presented a generalized 
shear deformation theory in combination with isogeometric (IGA) approach for nonlinear transient analysis of smart piezoelectric 
FG plates subjected to thermoelectro-mechanical loads. Effect of porosities on static and free vibration response for FG nanoplates 
is studied by Phung-Van et al. [24] using the Eringen’s nonlocal elasticity. The same authors [25] analyzed nonlinear transient 
responses of porous FG nanoplates using isogeometric analysis. Thai et al. [26] presented a size-dependent computational approach 
to analyze static bending and free vibration analyses of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) 
plate based on the modified strain gradient theory and the HSDT. Thanh et al. [27] proposed a size-dependent model based on the 
modified couple stress theory and isogeometric analysis for static and free vibration behaviors of FG-CNTRC nanoplates using the 
higher order shear deformation theory. Neves et al. [28] investigated the bending behavior of a sandwich plate with FG core using a 
meshless technique and quasi-3D HSDT. Demirhan and Taskin [29] carried out bending of FG sandwich plates by employing Levy-
type solution with state-space concept and four-variable refined plate theory. Applying the mesh-free method and FSDT, Moradi-
Dastjerdi and Aghadavoudi [30] studied the bending response of sandwich plates with FG nanocomposite face layers reinforced by 
three types of defected carbon nanotubes and resting on elastic foundation. Li et al. [31] examined a novel type of FG plates under 
transverse distributed loadings. Thai et al. [32] used a four-unknown shear deformable model for static bending, free vibration and 
buckling behavior of isotropic and sandwich FG microplates based on the modified strain gradient theory. Phung-Van et al. [33] 
investigated nonlinear transient dynamic of FG-CNTRC nanoplates subjected to a transverse uniform load in thermal environments. 
Size-dependent impact on thermal buckling and post-buckling response of imperfect FG micro-plates is examined by Thanh et al. 
[34] using seventh-order shear deformation plate theory associated with the modified couple stress theory. The porosity impact on 
bending response of two types of FG sandwich plates is analyzed by Daikh and Zenkour [35] using a new higher shear deformation 
theory. 

Numerous researches are performed for FGM plates with complex geometries. For example, Cao et al. [36] proposed a semi-
analytical graded FEM to analyze FGM plates with complex shapes and holes. The effect of elliptic Hole geometry and thermal Loads 
on buckling of FG plates subjected to various boundary conditions is carried out by Rezaei et al. [37]. Yang et al. [38] employed 3D 
elasticity solutions to study equilibrium problems of transversely isotropic FGM plates with holes. They have also used the same 
solutions for isotropic FGM plates with an elliptical hole [39]. Several researchers studied deflection of FGM nanoplates [40-45], but 
there are no research papers examined the effect of size dependent on the axial and shear stresses.  

The main purpose of this article is to examine the deflection and stresses of FG nanoplates using a refined fifth-order shear 
deformation theory with combination of the nonlocal strain gradient theory. A new model of FG sandwich plates based on sigmoid 
function is presented and analyzed. The equilibrium and stability equations for FG plates are gained in the context of the refined 
HSDT. Governing equations are analyzed for the presented sandwich plate under various boundary conditions. The effect of 
nonlocal parameters on the axial and shear stresses of FG sandwich plates is analyzed here for the first time. 

2. FG Sandwich Plates 

In this research, we proposed the sandwich nanoplate as composed of two FG face layers (metal-ceramic) and isotropic 
homogeneous core (ceramic) as shown in Fig. 1. The vertical positions of the bottom face of the sandwich, the two interfaces, and 
the top face are ℎ� = −ℎ/2, ℎ�, ℎ� and ℎ	 = ℎ/2, respectively. Two models of sandwich nanoplates are used: power-law functionally 
graded sandwich plates P-FGSP and sigmoid functionally graded sandwich plates S-FGSP. 

2.1 Power-law functionally graded sandwich plate (P-FGSP) 

The sandwich plate is composed of two power-law FG face layers that are graded from metal to ceramic while the core layer is 
made of ceramic. The volume fraction 
(�) of layer � (� = 1,2,3), varies through-the-thickness of the sandwich according to power-
law function as follows 

 


(�)(�) = � ����������� ,     ℎ� ≤ � ≤ ℎ�,
(�)(�) = 1,     ℎ� ≤ � ≤ ℎ�,
(	)(�) = � ����������� ,     ℎ� ≤ � ≤ ℎ	, (1) 

where parameter � ≥ 0 denotes volume fraction index. 

 

Fig. 1. Coordinate system and geometry of the FG sandwich plate 
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2.2 Sigmoid functionally graded sandwich plate (S-FGSP) 

The volume fraction of this sandwich model varies according to a sigmoid function through-the-thickness as follows 

 


�(�)(�) = �� � �����"����� ,     ℎ� ≤ � ≤ ℎ#,

�(�)(�) = 1 − �� � �����"����� ,     ℎ# ≤ � ≤ ℎ�,
(�)(�) = 1,     ℎ� ≤ � ≤ ℎ�,
�(	)(�) = 1 − �� � �����$����� ,     ℎ� ≤ � ≤ ℎ� ,


�(	)(�) = �� � �����$����� ,     ℎ� ≤ � ≤ ℎ	,
 (2) 

where ℎ# = (ℎ� + ℎ�)/2 and ℎ� = (ℎ� + ℎ	)/2 represents the mid-surface positions of the bottom and the top layers, respectively. 

3. Kinematics and constitutive equations 

3.1 Nonlocal strain gradient elasticity theory 

By the coupling physical influences of the strain gradient stress and nonlocal elastic stress fields, the stress proposed by Lim et 
al. [46] can be written as: 

 &'( = &'((�) − )*+,(�)
)-  (3) 

where &'((�)
 and &'((�)

 are the classical stress corresponds to strain ./0   and the higher-order stress &'((�)
 corresponds to strain 

gradient ./0,- respectively, and can be expressed as  

 &'((�) = 1 2'(/03�(4, 45, 6�7)./0,-(45)d459�  (4) 

 &'((�) = :� 1 2'(/03�(4, 45, 6�7)./0,-(45)d459�  (5) 

where 2'(/0 are elastic constants and : is the material length scale parameter presented to reflect the significance of the strain 
gradient stress field. 6�7 and 6�7 are the nonlocal parameters presented to reflect the significance of the nonlocal elastic stress 
field. 

The nonlocal kernel functions 3�(4, 45, 6�7) and 3�(4, 45, 6�7) gratify the developed conditions by Eringen [47]. The general 
constitutive relation become as 

 ;1 − (6�7)�∇�=;1 − (6�7)�∇�=&'( = 2'(/0;1 − (6�7)�∇�=./0 − 2'(/0:�;1 − (6�7)�∇�=∇�./0 (6) 

where ∇� denotes the Laplacian operator. In the current analysis, we assume the coefficient 6 = 6� = 6�. The total nonlocal strain 
gradient constitutive relations can be stated as [48] 

 ;1 − >∇�=&'( = 2'(/0;1 − ?∇�=./0 (7) 

where > = (67)� and ? = :�. 

3.2 Higher-order plate theory 

Let us consider a rectangular sandwich nanoplate of length 7, width @, and thickness ℎ. The displacement components of the 
HSDT are 

 

A(4, B, �) = A� − � CD�C- + Ψ(�)F�,G(4, B, �) = G� − � CD�CH + Ψ(�)F�,I(4, B, �) = I�,
 (9) 

where (A�, G�, I�) and (F�, F�) refer to the displacement and rotation of transverse normal on the plane � = 0, respectively. Ψ(�) 
represents the function in a way that regulates the distribution of the transverse shear strains and stresses across the thickness of 

the nanoplate. For example, Reddy [49] attained the displacements by putting Ψ(�) = � �1 − J��
	���, and Touratier [50] anticipated the 

SSDT by putting Ψ(�) = �K sin ����. The displacements for the CPT is gained by setting Ψ(�) = 0, and Ψ(�) = � for the FSDT. 

3.3 Refined plate theory 

Based on the assumptions given by Senthilnathan et al. [51], the displacement fields of four variable shear deformation plate 
theories are given as 

 

A(4, B, �) = A� − � CDOC- − P(�) CDQC- ,G(4, B, �) = G� − � CDOCH − P(�) CDQCH ,I(4, B, �) = IR + IS.
 (10) 

where IR denotes the bending component of the transverse displacement I and IS is the shear component. The displacement 
of the new refined plate theory is obtained by setting 

 P(�) = 	��
��� − ��U

V�W. (11) 

The strains associated with the displacements can be given as 
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X.--.HHY-HZ = [.--�.HH�Y-H� \ + � [.--�.HH�Y-H� \ + P(�) [.--�.HH�Y-H� \ ,
.�� = 0,     ]YH�Y-�^ = _1 − `a(�)`� b cYH��Y-�� d ,

 (12) 

where 

 

[.--�.HH�Y-H� \ =
⎩⎪⎨
⎪⎧ Ci�C-Cj�CHCj�C- + Ci�CH ⎭⎪⎬

⎪⎫,      [.--�.HH�Y-H� \ = −
⎩⎪⎨
⎪⎧ C�DOC-�C�DOCH�2 C�DOC-CH⎭⎪⎬

⎪⎫ ,

[.--�.HH�Y-H� \ = −
⎩⎪⎨
⎪⎧ C�DQC-�C�DQCH�2 C�DQC-CH⎭⎪⎬

⎪⎫,      cYH��Y-�� d = [CDQC-CDQCH
\ .

 (13) 

Now, the constitutive equations of the FG sandwich nanoplate can be expressed as 

 ;1 − >∇�=
⎩⎪⎨
⎪⎧&--&HH&H�&-�&-H⎭⎪⎬

⎪⎫(�)
= ;1 − ?∇�=

⎣⎢⎢
⎢⎡q�� q�� 0q�� q�� 0000

000
qJJ00

000qVV0
0000qrr⎦⎥⎥

⎥⎤
(�)

⎩⎪⎨
⎪⎧.--.HHYH�Y-�Y-H⎭⎪⎬

⎪⎫, (14) 

where 

 q��(�) = q��(�) = v($)(�)��w($)� ,     q��(�) = xq��(�),      qJJ(�) = qVV(�) = qrr(�) = v($)(�)�y�zw($){. (15) 

4. Governing Equations 

By applying the principle of virtual work, equilibrium equations associated with the present problem will be obtained as 

 

C|}}C- + C|}~CH = 0,
C|}~C- + C|~~CH = 0,

C��}}O
C-� + 2 C��}~O

C-CH + C��~~O
CH� + � − � = 0,

C��}}Q
C-� + 2 C��}~Q

C-CH + C��~~Q
CH� + C�}�Q

C- + C�~�Q
CH + � − ℜ = 0.

 (16) 

The density of reaction of the foundation ℜ and the transverse displacement I relationship is given by 

 ℜ = �DI − ����I  (17) 

�D and �� are the Winkler’s (normal) and Pasternak’s (shear) foundation stiffnesses and �� is the Laplace operator in 4 and B. 
Also, the stress resultants �, � and � are defined as 

 

[�--�HH�-H
\ = ∑ 1 X&--&HH&-HZ(�) d��$�$��	��� ,      [�--R�HHR�-HR \ = ∑ 1 X&--&HH&-HZ(�) �d��$�$��	��� ,

[�--S�HHS�-HS \ = ∑ 1 X&--&HH&-HZ(�) P(�)d��$�$��	��� ,     ��H�S�-�S � = ∑ 1 ]&H�&-�^(�) `a(�)`��$�$�� d�	��� .
 (18) 

The stress resultants of the nanoplate can be connected to the total strains by 

 

;1 − >∇�= [ �����R���S�\ = ;1 − ?∇�= � ;�= ;�= ;�S=;�= ;�= ;�S=;�S= ;�S= ;�S=� [�.���.���.��\ ,
;1 − >∇�= ��H�S�-�S � = ;1 − ?∇�= ��JJ 00 �VV� cYH��Y-�� d ,

 (19) 

where 

 

  ��� = ��-- �HH �-H��,     ��R� = ��--R , �HHR , �-HR ��,��S� = ��--S , �HHS , �-HS ��,   (20) 

 

  �.�� = �.--� .HH� Y-H� ��,     �.�� = �.--� .HH� Y-H� ��,�.�� = �.--� .HH� Y-H� ��,  (21) 
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� = ���� ��� 0��� ��� 00 0 �rr
� ,     � = ���� ��� 0��� ��� 00 0 �rr

� ,     � = ���� ��� 0��� ��� 00 0 �rr
� ,

�S = ����S ���S 0���S ���S 00 0 �rrS �,     �S = ����S ���S 0���S ���S 00 0 �rrS �,     �S = ����S ���S 0���S ���S 00 0 �rrS � . (22) 

Here �'(, �'(,..., �'( are the nanoplate stiffness, defined by 

 

��'( , �'( , �'( , �'(S , �'(S , �'(S � = ∑ 1 q'((�)�1, �, ��, P(�), �P(�), P(�)��d��$�$�� ,	���
�// = ∑ 1 q//(�) _`a(�)`� b� d��$�$�� ,	���      (�,   = 1,2,6, ¢ = 4,5).  (23) 

5. Exact Solutions for FG Sandwich Plates 

The analytical solution of the governing equations for bending of sandwich nanoplate with simply-supported (S) or clamped (C) 
edges or combinations of them is presented. The boundary conditions are given as: 

 Simply supported: 

 
G� = IR = IS = CDQCH = CDOCH = 0   at   4 = 0, 7,
A� = IR = IS = CDQC- = CDOC- = 0    at   B = 0, @. (24) 

 Clamped: 

 A� = G� = IR = IS = CDQC- = CDQCH = CDOC- = CDOCH = 0   at   4 = 0, 7 and B = 0, @. (25) 

The displacement field satisfying the above boundary conditions can be assumed as 

 

A� = ∑ ∑ §#� C¨"(-)C-©���©#�� ª�(B),G� = ∑ ∑ 
#�«#(4) C¬$(H)CH©���©#�� ,IR = ∑ ∑ R#�«#(4)ª�(B)©���©#�� ,IS = ∑ ∑ S#�«#(4)ª�(B)©���©#�� ,
 (26) 

Here, §#�, 
#�, #�R  and #�S  are arbitrary parameters. �� denotes the intensity of the load at the nanoplate center. ® and � are 
mode numbers. The functions «#(4) and ª�(B) which satisfy the above boundary conditions are given as 

 SSSS: 

 «#(4) = sin(34),     ª�(B) = sin(¯B). (27) 

 CCCC: 

 «#(4) = sin�(34),     ª�(B) = sin�(¯B). (28) 

 CCSS: 

 «#(4) = sin�(34),     ª�(B) = sin(¯B). (29) 

 CSCS: 

 «#(4) = sin(34);cos(34) − 1=,     ª�(B) = sin(¯B);cos(¯B) − 1=. (30) 

where ? = ®² 7⁄ , > = �² @⁄ . By substituting eqs. (27-30) in eq. (16), one obtains 

 ;´=�µ� = �¶�, (31) 

where �µ� and �¶� denotes the columns and [L] is a matrix 

 �µ� = �§ , 
 , R  , S��, (32) 

 �¶� = �0 ,0 ,0 , P·��, (33) 

where the sinusoidal applied load can be written as [52] 

 P· = −�� 1 1 sin�(34) sin�(¯B) d4dBR��̧ − >�� _1 1 3�¹��	(34) sin�(¯B) d4dBR��̧   

 + 1 1 ¯� sin�(34) sin�(¯B) d4dBR��̧ b. (34) 

The elements ´'( of the matrix [L] are given by 

 ´�� = ���3�� + �rr3º − ?;���3�J + (�rr + ���)3�V + �rr3�r=,  

 ´�� = 3º(��� + �rr) − ?;(3�V + 3�r)(��� + �rr)=,  

 ´�	 = −���3�� − 3º(��� + 2�rr) + ?;���3�J + 3�V(��� + 2�rr + ���) + 3�r(��� + 2�rr)=,  

 ´�J = −���S 3�� − 3º(���S + 2�rrS ) + ?;���S 3�J + 3�V(���S + 2�rrS + ���S ) + 3�r(���S + 2�rrS )=,  

 ´�� = 3��(��� + �rr) − ?;(3�» + 3�º)(��� + �rr)=,  

 ´�� = �rr3J + ���3�� − ?;(��� + �rr)3�º + ���3�» + �rr3�¼=,  



1250 Ahmed Amine Daikh and Ashraf M. Zenkour, Vol. 6, No. SI, 2020 
 

Journal of Applied and Computational Mechanics, Vol. 6, No. SI, (2020), 1245-1259   

 ´�	 = −���3J − 3��(��� + 2�rr) + ?;3�»(��� + 2�rr) + 3�º(��� + 2�rr + ���) + ���3�¼=,  

 ´�J = −���S 3J − 3��(���S + 2�rrS ) + ?;3�»(���S + 2�rrS ) + 3�º(���S + 2�rrS + ���S ) + ���S 3�¼=,  

 ´	� = −���3�	 − 3��(��� + 2�rr) + ?;���3�� + 3��(��� + 2�rr + ���) + 3��(��� + 2�rr)=,  

 ´	� = −���3V − 3��(��� + 2�rr) + ?;3��(��� + 2�rr) + 3��(��� + 2�rr + ���) + ���3�	=,  

 ´		 = ���3�	 + (2��� + 4�rr)3�� + ���3V  

 −?;���3�� + (2��� + 4�rr+���)3�� + (2��� + 4�rr + ���)3�� + ���3�	=  

 −�D3� + ��(3	 + 3¼) − >½−�D3¼ + ��(3�� + 3�	) − �D3	 + ��(3V + 3��)¾,  

 ´	J = ���S 3�	 + (2���S + 4�rrS )3�� + ���S 3V  

 −?;���S 3�� + (2���S + 4�rrS + ���S )3�� + (2���S + 4�rrS + ���S )3�� + ���S 3�	=  

 −�D3� + ��(3	 + 3¼) − >½−�D3¼ + ��(3�� + 3�	) − �D3	 + ��(3V + 3��)¾,  

 ´J� = −���S 3�	 − 3��(���S + 2�rrS ) + ?;���S 3�� + 3��(���S + 2�rrS + ���S ) + 3��(���S + 2�rrS )=,  

 ´J� = −���S 3V − 3��(���S + 2�rrS ) + ?;3��(���S + 2�rrS ) + 3��(���S + 2�rrS + ���S ) + ���S 3�	=,  

 ´	J = ���S 3�	 + (2���S + 4�rrS )3�� + ���S 3V  

 −?;���S 3�� + (2���S + 4�rrS + ���S )3�� + (2���S + 4�rrS + ���S )3�� + ���S 3�	=  

 −�D3� + ��(3	 + 3¼) − >½−�D3¼ + ��(3�� + 3�	) − �D3	 + ��(3V + 3��)¾,  

 ´JJ = ���S 3�	 + (2���S + 4�rrS )3�� + ���S 3V + �JJ3¼ + �VV3	  

 −?;���S 3�� + (2���S + 4�rrS + ���S )3�� + �JJ3�	 + (�VV + �JJ)3��  

 +(2���S + 4�rrS + ���S )3�� + ���S 3�	 + �VV3V= − �D3� + ��(3	 + 3¼)  

 −>½−�D3¼ + ��(3�� + 3�	) − �D3	 + ��(3V + 3��)¾, (35) 

 

(3�, 3	, 3V, 3», 3¼) = 1 1 («#ª�, «#ª�55, «#ª�5555, «#5 ª�5, «#55 ª�)�̧R� «#ª�d4dB(3�, 3J, 3��, 3�», 3�º, 3�¼) = 1 1 («#ª�5, «#ª�555, «#55 ª�5, «#5555ª�5, «#55 ª�555, «#ª�55555)�̧R� «#ª�5d4dB(3r, 3º, 3��, 3�J, 3�V, 3�r) = 1 1 («#5 ª�, «#5 ª�55, «#555ª� , «#55555ª� , «#555ª�55, «#5 ª�5555)�̧R� «#5 ª�d4dB(3��, 3�	, 3��, 3��, 3��, 3�	) = 1 1 («#55 ª�55, «#5555ª� , «#5555ª�55, «#55 ª�5555, «#555555ª� , «#ª�555555)�̧R� «#ª�d4dB
 (36) 

6. Numerical Results 

In this section, the numerical outcomes are existing to demonstrate the static response of two models of FG sandwich 
nanoplates with simply supported boundary condision using the new higher-order shear deformation plate theory. The material 
selected for simulation is a mixture of aluminum (Al) and zirconia (ZrO2). Young’s modulus for aluminum are ¿# = 70 GPa, and for 
zirconia are ¿Ã = 151 GPa . Poisson’s ratio is chosen as constant (xÃ = 0.3) . Numerical outcomes are offered in terms of non-
dimensional stresses and deflection. The non-dimensional parameters are defined as 

Dimensionless center deflection: 

 IÄ = ���v�¸�·� I ��̧ , R��, (37) 

Dimensionless axial stress: 

 &Å-- = ����
¸�·� &-- ��̧ , R� , ���, (38) 

Dimensionless shear stress: 

 Æ̅-� = �¸·� Æ-� �0, R� , 0�, (39) 

Foundation parameters: 

 ¢D = ¸W
È �D ,     ¢� = ¸�

È ��, (40) 

where � = ��vÉ��(��w�), and ¿� = 1 GPa is the reference value. Different types of symmetric and non-symmetric FG sandwich plates are 

used [53, 54]: 

The (1-1-1) FG sandwich plate: The plate is made of three equal-thickness layers: 

 ℎ� = − �r ,     ℎ� = �r. (41) 

The (2-1-2) FG sandwich plate: The upper layer thickness is twice the core layer while it is the same as the lower one:  

 ℎ� = − ��� ,     ℎ� = ���. (42) 

The (2-2-1) FG sandwich plate: The core thickness is twice the upper face while it is the same as the lower one: 

 ℎ� = − ��� ,     ℎ� = 	���.              (43) 
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Table 1. Effects of volume fraction index on the dimensionless deflection, dimensionless axial stress and dimensionless shear stress of simply 
supported P-FGSP sandwich plates. 

Theory � 
1-1-1  2-1-2  2-2-1 IÄ  &Å-- Æ̅-� IÄ  &Å-- Æ̅-� IÄ  &Å-- Æ̅-� 

SSDT [3] 0 0.19605 2.05452 0.24618  0.19605 2.05452 0.24618  0.19605 2.05452 0.24618 

TSDT [3] 0.19606 2.04985 0.23857  0.19606 2.04985 0.23857  0.19606 2.04985 0.23857 
5SDT 0.19456 1.98728 0.20180  0.19456 1.98728 0.20180  0.19456 1.98728 0.20180 
7SDT 0.19572 2.05355 0.28134  0.19572 2.05355 0.28134  0.19572 2.05355 0.28134 

Present 0.19605 2.04610 0.23252  0.19606 2.04610 0.23252  0.19605 2.04610 0.23252 

SSDT [3] 1 0.29194 1.42892 0.26809  0.30624 1.49859 0.27774  0.28082 1.32342 0.26680 
TSDT [3] 0.29199 1.42617 0.26117  0.30632 1.49587 0.27104  0.28085 1.32062 0.25951 

5SDT 0.29111 1.39225 0.24121  0.30539 1.46096 0.24968  0.27991 1.28648 0.24968 
7SDT 0.29157 1.42937 0.30402  0.30574 1.49856 0.31196  0.28046 1.32370 0.31196 

Present 0.29201 1.42396 0.25565  0.30635 1.49368 0.26566  0.28085 1.31838 0.25371 

SSDT [3] 2 0.33280 1.63025 0.27807  0.35218 1.72412 0.29422  0.31611 1.47387 0.27627 
TSDT [3] 0.33289 1.62748 0.27188  0.35231 1.72144 0.28838  0.31617 1.47095 0.26939 

5SDT 0.33213 1.59267 0.25416  0.35144 1.68504 0.26740  0.31534 1.43551 0.25064 
7SDT 0.33232 1.63083 0.31227  0.35147 1.72368 0.32518  0.31569 1.47437 0.31212 

Present 0.33293 1.62525 0.26690  0.35239 1.71926 0.28361  0.31619 1.46860 0.26390 

SSDT [3] 5 0.37128 1.81838 0.29150  0.39160 1.91547 0.31930  0.34950 1.61477 0.28895 
TSDT [3] 0.37145 1.81580 0.28643  0.39183 1.91302 0.31454  0.34960 1.61181 0.28265 

5SDT 0.37069 1.78025 0.26752  0.39081 1.87455 0.28869  0.34880 1.57515 0.26366 
7SDT 0.37056 1.81826 0.32096  0.39047 1.91346 0.34357  0.34892 1.61514 0.32262 

Present 0.37155 1.81370 0.28226  0.39197 1.91099 0.31050  0.34966 1.60943 0.27757 

SSDT [3] 10 0.38490 1.88147 0.29529  0.40376 1.97313 0.33644  0.34916 1.61979 0.29671 
TSDT [3] 0.38551 1.88376 0.29566  0.40407 1.97126 0.33242  0.36215 1.66660 0.29080 

5SDT 0.38469 1.84756 0.27460  0.40287 1.93099 0.30181  0.36129 1.62737 0.27061 
7SDT 0.38439 1.88529 0.32614  0.40241 1.97042 0.35759  0.36132 1.66795 0.32936 

Present 0.38565 1.88177 0.29188  0.40425 1.96929 0.32849  0.36220 1.66240 0.28588 

Table 2. Effects of nonlocal and length scale parameters on dimensionless deflection, dimensionless axial stress and dimensionless shear stress of 
P-FGSP sandwich nanoplates. 

BC μ λ 
1-1-1  2-1-2  2-2-1 

IÄ  &Å-- Æ̅-� IÄ  &Å-- Æ̅-� IÄ  &Å-- Æ̅-� 

S
S

S
S

 

0 0 0.3329 1.4867 0.8654  0.3523 1.5731 0.9179  0.3162 1.1671 0.8575 
1 0.2780 1.2416 0.7227  0.2942 1.3138 0.7666  0.2640 0.9747 0.7161 
2 0.2387 1.0659 0.6205  0.2526 1.1278 0.6581  0.2267 0.8367 0.6148 

1 0 0.3986 1.7801 1.0362  0.4219 1.8836 1.0991  0.3786 1.3974 1.0268 
1 0.3329 1.4867 0.8654  0.3523 1.5731 0.9179  0.3162 1.1671 0.8575 
2 0.2858 1.2763 0.7429  0.3025 1.3505 0.7880  0.2714 1.0019 0.7361 

2 0 0.4643 2.0736 1.2071  0.4914 2.1941 1.2803  0.4410 1.6278 1.1960 
1 0.3878 1.7318 1.0081  0.4104 1.8324 1.0693  0.3683 1.3595 0.9989 
2 0.3329 1.4867 0.8654  0.3523 1.5731 0.9179  0.3162 1.1671 0.8575 

C
C

C
C

 

0 0 0.1766 0.6637 1.1529  0.1869 0.7017 1.2229  0.1682 0.5052 1.1424 
1 0.1114 0.4134 0.7553  0.1178 0.4371 0.8012  0.1061 0.3139 0.7484 
2 0.0813 0.3001 0.5616  0.0861 0.3173 0.5957  0.0775 0.2276 0.5565 

1 0 0.2115 0.7947 1.3805  0.2238 0.8403 1.4643  0.2014 0.6049 1.3679 
1 0.1333 0.4950 0.9044  0.1411 0.5234 0.9593  0.1270 0.3759 0.8961 
2 0.0974 0.3593 0.6725  0.1030 0.3799 0.7133  0.0928 0.2725 0.6663 

2 0 0.2463 0.9257 1.6081  0.2607 0.9788 1.7057  0.2346 0.7046 1.5934 
1 0.1553 0.5766 1.0535  0.1644 0.6096 1.1174  0.1479 0.4378 1.0439 
2 0.1134 0.4186 0.7833  0.1200 0.4425 0.8309  0.1080 0.3174 0.7762 

C
S

C
S

 

0 0 0.2056 0.8125 1.2731  0.2175 0.8593 1.3504  0.1956 0.6245 1.2611 
1 0.1407 0.5541 0.8706  0.1489 0.5860 0.9235  0.1339 0.4256 0.8625 
2 0.1069 0.4202 0.6615  0.1132 0.4444 0.7017  0.1018 0.3226 0.6553 

1 0 0.2461 0.9729 1.5244  0.2605 1.0290 1.6169  0.2342 0.7477 1.5100 
1 0.1684 0.6634 1.0425  0.1782 0.7016 1.1058  0.1603 0.5096 1.0327 
2 0.1280 0.5031 0.7921  0.1355 0.5321 0.8402  0.1218 0.3863 0.7847 

2 0 0.2867 1.1333 1.7757  0.3034 1.1986 1.8835  0.2728 0.8710 1.7590 
1 0.1962 0.7728 1.2143  0.2076 0.8173 1.2880  0.1867 0.5936 1.2029 
2 0.1491 0.5860 0.9227  0.1578 0.6198 0.9787  0.1419 0.4499 0.9141 

C
C

S
S

 

0 0 0.0675 0.2705 0.3460  0.0714 0.2861 0.3670  0.0642 0.2084 0.3428 
1 0.0454 0.1795 0.2463  0.0480 0.1898 0.2613  0.0432 0.1380 0.2440 
2 0.0342 0.1342 0.1912  0.0362 0.1420 0.2028  0.0325 0.1031 0.1895 

1 0 0.0808 0.3239 0.4143  0.0855 0.3426 0.4394  0.0768 0.2496 0.4105 
1 0.0543 0.2149 0.2949  0.0575 0.2273 0.3128  0.0517 0.1652 0.2922 
2 0.0409 0.1607 0.2290  0.0433 0.1700 0.2428  0.0390 0.1234 0.2269 

2 0 0.0941 0.3773 0.4826  0.0996 0.3990 0.5119  0.0895 0.2907 0.4782 
1 0.0633 0.2504 0.3435  0.0670 0.2648 0.3644  0.0602 0.1925 0.3404 
2 0.0477 0.1872 0.2667  0.0505 0.1980 0.2829  0.0454 0.1437 0.2643 

Similar theories of the five- (5SDT) and seven-order (7SDT) shear deformation are given by Nguyen-Xuan et al. [55] and Nguyen 

et al. [56], respectively. The 5SDT [55] is considered by setting Ψ(�) = »º � − ��� �	 + ��W �V while the 7SDT [56] is considered by setting Ψ(�) = � − º»���� �	 + �r¼���W �V + �	ºV�Ê �». Both theories are used in this research to evaluate the accuracy and reliability of the proposed 

theory. 
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Fig. 2. Variation of Young’s modulus through FG sandwich plate thickness. 

Table 1 illustrates the effects of volume fraction index on the dimensionless deflection, dimensionless axial stress, and 
dimensionless shear stress of P-FGSP for different sandwich schemes by using different higher-order shear deformation theories. 
Clearly, the present theory is in close agreement with those generated by Zenkour [3], and particularly the third-order shear 
deformation theory.  

In Tables 2 and 3, we present the effects of nonlocal and length scale parameters on the dimensionless deflection, dimensionless 
axial stress, and dimensionless shear stress of square P-FGSP and S-FGSP under various boundary conditions. The impact of volume 
fraction �, elastic foundation parameters, and various boundary conditions on the dimensionless deflection of P-FGSP and S-FGSP 
sandwich plates (1-1-1) is presented in Table 4 for nonlocal and length scale parameters ? = > = 1 and side to thickness 7/ℎ = 10. 

Table 3. Effects of nonlocal and length scale parameters on dimensionless deflection, dimensionless axial stress and dimensionless shear stress of 
S-FGSP sandwich nanoplates. 

BC μ λ 
1-1-1 

 
2-1-2 

 
2-2-1 

IÄ  &Å-- Æ̅-� IÄ  &Å-- Æ̅-� IÄ  &Å-- Æ̅-� 

S
S

S
S

 

0 0 0.3006 1.3348 0.8247  0.3187 1.4196 0.8498  0.2880 1.0929 0.8200 
1 0.2511 1.1148 0.6888  0.2662 1.1855 0.7097  0.2405 0.9128 0.6848 
2 0.2155 0.9570 0.5913  0.2285 1.0178 0.6092  0.2065 0.7836 0.5879 

1 0 0.3600 1.5983 0.9875  0.3816 1.6998 1.0175  0.3448 1.3087 0.9819 
1 0.3006 1.3348 0.8247  0.3187 1.4196 0.8498  0.2880 1.0929 0.8200 
2 0.2581 1.1459 0.7080  0.2736 1.2187 0.7295  0.2472 0.9383 0.7040 

2 0 0.4193 1.8618 1.1503  0.4445 1.9800 1.1852  0.4016 1.5244 1.1438 
1 0.3502 1.5549 0.9607  0.3713 1.6536 0.9898  0.3354 1.2731 0.9552 
2 0.3006 1.3348 0.8247  0.3187 1.4196 0.8498  0.2880 1.0929 0.8200 

C
C

C
C

 

0 0 0.1601 0.5917 1.0987  0.1694 0.6316 1.1321  0.1536 0.4713 1.0925 
1 0.1009 0.3684 0.7198  0.1068 0.3933 0.7417  0.0969 0.2927 0.7157 
2 0.0737 0.2673 0.5352  0.0780 0.2855 0.5515  0.0708 0.2122 0.5322 

1 0 0.1916 0.7085 1.3156  0.2028 0.7563 1.3556  0.1840 0.5643 1.3081 
1 0.1209 0.4411 0.8619  0.1279 0.4710 0.8880  0.1161 0.3505 0.8570 
2 0.0883 0.3201 0.6408  0.0934 0.3419 0.6603  0.0848 0.2541 0.6372 

2 0 0.2232 0.8253 1.5325  0.2362 0.8810 1.5790  0.2143 0.6573 1.5238 
1 0.1408 0.5138 1.0039  0.1490 0.5486 1.0344  0.1352 0.4083 0.9982 
2 0.1028 0.3729 0.7465  0.1088 0.3982 0.7692  0.0987 0.2960 0.7423 

C
S

C
S

 

0 0 0.1861 0.7260 1.2127  0.1970 0.7741 1.2498  0.1785 0.5833 1.2056 
1 0.1274 0.4950 0.8294  0.1348 0.5278 0.8548  0.1222 0.3975 0.8245 
2 0.0968 0.3753 0.6302  0.1025 0.4003 0.6495  0.0929 0.3013 0.6266 

1 0 0.2228 0.8693 1.4521  0.2359 0.9269 1.4966  0.2138 0.6984 1.4435 
1 0.1525 0.5927 0.9931  0.1615 0.6320 1.0235  0.1463  0.4759 0.9873 
2 

0.1159 0.4494 0.7546 
 

0.1227 0.4793 0.7777 
 

0.1112 0.3607 0.7502 
2 0 0.2596 1.0126 1.6915  0.2748 1.0797 1.7433  0.2490 0.8135 1.6815 

1 0.1776 0.6904 1.1569  0.1881 0.7362 1.1922  0.1704 0.5544 1.1501 
2 0.1350 0.5235 0.8790  0.1430 0.5583 0.9059  0.1296 0.4202 0.8739 

C
C

S
S

 

0 0 0.0611 0.2418 0.3297  0.0646 0.2578 0.3397  0.0586 0.1948 0.3278 
1 0.0411 0.1604 0.2347  0.0435 0.1710 0.2418  0.0394 0.1289 0.2334 
2 

0.0310 0.1199 0.1822 
 

0.0328 0.1279 0.1878 
 

0.0297 0.0962 0.1812 
1 0 0.0731 0.2896 0.3948  0.0774 0.3087 0.4068  0.0701 0.2332 0.3926 

1 0.0492 0.1921 0.2810  0.0521 0.2048 0.2896  0.0472 0.1543 0.2795 
2 

0.0371 0.1436 0.2182 
 

0.0392 0.1531 0.2248 
 

0.0356 0.1152 0.2169 
2 0 0.0852 0.3373 0.4599  0.0902 0.3595 0.4739  0.0817 0.2717 0.4573 

1 0.0573 0.2237 0.3274  0.0607 0.2385 0.3373  0.0550 0.1798 0.3255 
2 0.0432 0.1673 0.2542  0.0457 0.1784 0.2619  0.0414 0.1342 0.2527 
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Table 4. Effects of elastic foundation parameters and various boundary conditions on dimensionless deflection of FGSP sandwich nanoplate (1-1-1). 

  

BC � 
�D = 0 

 
�D = 50 

 
�D = 100 

�� = 0 �� = 50 �� = 100 �� = 0 �� = 50 �� = 100 �� = 0 �� = 50 �� = 100 

P
-F

G
S

P
  

SSSS 0 0.1961 0.0533 0.0309  0.1727 0.0514 0.0302  0.1542 0.0497 0.0296 
1 0.2920 0.0586 0.0326  0.2429 0.0563 0.0318  0.2080 0.0542 0.0312 
2 0.3329 0.0601 0.0330  0.2706 0.0577 0.0323  0.2280 0.0554 0.0316 
5 0.3714 0.0612 0.0333  0.2955 0.0587 0.0326  0.2454 0.0564 0.0319 

CCCC 0 0.0807 0.0393 0.0260  0.0781 0.0387 0.0257  0.0757 0.0381 0.0254 
1 0.1176 0.0464 0.0289  0.1122 0.0455 0.0286  0.1073 0.0447 0.0282 

2 0.1333 0.0487 0.0298  0.1264 0.0477 0.0294  0.1202 0.0468 0.0291 
5 0.1482 0.0505 0.0304  0.1397 0.0495 0.0301  0.1322 0.0485 0.0297 

CSCS 0 0.1011 0.0423 0.0267  0.0959 0.0413 0.0263  0.0913 0.0404 0.0260 
1 0.1483 0.0488 0.0292  0.1375 0.0475 0.0287  0.1281 0.0463 0.0283 

2 0.1684 0.0507 0.0299  0.1546 0.0494 0.0294  0.1428 0.0481 0.0290 
5 0.1875 0.0523 0.0304  0.1704 0.0509 0.0299  0.1563 0.0496 0.0295 

CCSS 0 0.0326 0.0141 0.0090  0.0314 0.0139 0.0089  0.0303 0.0137 0.0088 
1 0.0478 0.0164 0.0099  0.0453 0.0161 0.0098  0.0430 0.0158 0.0097 
2 0.0543 0.0171 0.0102  0.0510 0.0168 0.0100  0.0481 0.0164 0.0099 

5 0.0605 0.0177 0.0104  0.0564 0.0173 0.0102  0.0529 0.0170 0.0101 

S
-F

G
S

P
 

SSSS 0 0.2621 0.0573 0.0321  0.2219 0.0551 0.0314  0.1924 0.0531 0.0308 
1 0.2920 0.0586 0.0326  0.2429 0.0563 0.0318  0.2080 0.0542 0.0312 

2 0.3006 0.0589 0.0327  0.2489 0.0566 0.0319  0.2124 0.0545 0.0312 
5 0.3071 0.0592 0.0327  0.2533 0.0568 0.0320  0.2156 0.0547 0.0313 

CCCC 0 0.1065 0.0446 0.0282  0.1020 0.0438 0.0279  0.0979 0.0430 0.0275 
1 0.1176 0.0464 0.0289  0.1122 0.0455 0.0286  0.1073 0.0447 0.0282 
2 0.1209 0.0469 0.0291  0.1152 0.0460 0.0288  0.1100 0.0452 0.0284 
5 0.1233 0.0473 0.0292  0.1174 0.0464 0.0289  0.1120 0.0455 0.0285 

CSCS 0 0.1339 0.0471 0.0286  0.1250 0.0459 0.0281  0.1172 0.0448 0.0277 
1 0.1483 0.0488 0.0292  0.1375 0.0475 0.0287  0.1281 0.0463 0.0283 
2 0.1525 0.0492 0.0293  0.1410 0.0479 0.0289  0.1312 0.0467 0.0284 
5 0.1556 0.0495 0.0294  0.1437 0.0482 0.0290  0.1335 0.0470 0.0285 

CCSS 0 0.0432 0.0158 0.0097  0.0411 0.0155 0.0096  0.0392 0.0153 0.0095 
1 0.0478 0.0164 0.0099  0.0453 0.0161 0.0098  0.0430 0.0158 0.0097 

2 0.0492 0.0166 0.0100  0.0465 0.0162 0.0098  0.0440 0.0159 0.0097 
5 0.0502 0.0167 0.0100  0.0474 0.0164 0.0099  0.0449 0.0160 0.0098 

 
 

 

 

Fig. 3. Dimensionless center deflection of P-FGSP (1-1-1) with various boundary conditions (� = 1, 7 ℎ⁄ = 10). 
Figure 2 presents variation of volume fraction of P-FGSP and S-FGSP sandwich plates using the different schemes. From this 

figure, the volume fraction of P-FGSP sandwich plates have smooth variation in the interfaces just for the values of index � < 1. 
When the volume index decreases more, the quantity of ceramic increases. This can limit the performance of the sandwich 
structure. Therefore, we present another model of FG sandwich structure depending on the sigmoid capacity. As can be seen, the 
volume fraction of S-FGSPs for index � > 1 has an ideal distribution in the interfaces. Additionally, the ceramic has half of the 
volume of each FG layer while the remaining half is metal any place the volume part list is. 
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Fig. 4. Dimensionless center deflection of square FG sandwich plate (1-1-1) versus side to thickness and aspect ratio parameters (� = 2, > = ? = 1). 
 

      

Fig. 5. Dimensionless center deflection of square FG sandwich plate (1-1-1) versus two elastic foundation parameters (� = 2, 7/ℎ = 10, ? = > = 1). 

 

      

Fig. 6. Dimensionless center deflection of square FG sandwich plate (1-1-1) versus nonlocal parameter and length scale parameter (� = 2, 7/ℎ = 10). 
In figures 3, the dimensionless center deflection of P-FGSP under various boundary conditions is illustrated. The maximum 

deflections are for the simply supported SSSS nanoplates, and the minimum deflections are for the CSCS plates. 
The effect of side-to-thickness 7/ℎ and aspect ratio @/7 on the dimensionless deflection of P-FGSP and S-FGSP sandwich plates 

for various boundary conditions are presented in Figure 4. The dimensionless deflection increases as side to thickness and aspect 
ratio increases regardless of the boundary conditions and FGM type. The deflection of the simply supported SSSS sandwich 
nanoplates is found to be of the largest, while the CSCS sandwich nanoplates have the smallest deflections.  
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Fig. 7. Dimensionless axial stress through-the-thickness of square FG sandwich plate with various boundary conditions (� = 5, > = ? = 1). 

 

      

Fig. 8. Dimensionless shear stress through-the-thickness of square FG sandwich plate with various boundary conditions (� = 5, 7 ℎ⁄ = 10, > = ? = 1). 

      

Fig. 9. Dimensionless axial stress through-the-thickness of simply supported square FG sandwich plate (� = 2, 7 ℎ⁄ = 10). 

The impact of elastic foundation parameters �D  and ��  on the dimensionless central deflection of P-FGSP and S-FGSP is 
plotted in Figure 5. The increase of these parameters leads to decrement of transverse deflection IÄ . It can be seen that the Pasternak 
foundation parameter �� has more effect than the Winkler foundation �D parameter on increasing the nondimensional frequency. 

In Figure 6, we presented the influence of length scale parameter and nonlocal parameter on the dimensionless center 
deflection of square FG sandwich nanoplate with various boundary conditions. It can be observed that the increase of length scale 
parameter ? lead to decrement of transverse displacement, while transverse displacement increases by increasing of nonlocal 
parameter > wherever the sandwich type and boundary condition is. therefore, we can conclude that the inclusion of size effects 
reduces of the stiffness of the FG sandwich nanoplates. 
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Fig. 10. Dimensionless shear stress through-the-thickness of simply supported square FG sandwich plate (� = 2, 7 ℎ⁄ = 10). 

     

     

Fig. 11. Dimensionless axial stress through-the-thickness of FG sandwich plate. 

Figures 7 and 8 shows dimensionless axial stresses &Å-- and shear stresses Æ̅-- distributions through the nanoplate thickness, 
respectively, using various boundary conditions. The maximum values of axial stresses &Å--  are for the simply supported SSSS 
nanoplates, and the minimum values are for the CSCS plates, while, for the shear stresses Æ̅-- case, The maximum values are for 
the CCSS nanoplates and the minimum values are for CSCS nanoplates. 

To have a better understanding of the nonlocal and length scale parameters effect, variations of dimensionless axial stresses &Å-- and shear stresses Æ̅-- across the thickness direction of simply supported P-FGSP and S-FGSP have been plotted in figures 9 
and 10 respectively. As can be seen, the dimensionless axial stresses &Å-- and shear stresses Æ̅-- increase by increasing of nonlocal 
parameter > or decreasing of length scale parameters ?. The dimensional axial stress thought the sandwich nanoplate thickness 
with simply supported boundary condition and for different value of index � is presented in Figure 11. The stresses are tensile at 
the top surface and compressive at the bottom surface. The FG nanoplate for � = 5 yields the maximum compressive (tensile) 
stress at the bottom (top) surface. In Figure 12, the dimensional shear stress thought the sandwich nanoplate thickness for different 
value of index � is illustrated. The maximum value occurs at a point on the mid-plane of the sandwich nanoplate. In the case of 
P-FGSPs, the largest magnitude is obtained for � = 5. However, for S-FGSPs, the largest magnitude is for � = 0.5. It is found that the 
dimensionless shear stress is continuous and smooth through the S-FGSP thickness regardless of the volume fraction index. 

Figure 13 shows the variation of the dimensionless deflection with the volume fraction exponent �  for the for different 
sandwich nanoplate schemes. The dimensionless deflection of S-FGSPs is larger than of P-FGSPs for index � ≤ 1, and smaller for � ≥ 1. In general, the dimensionless deflection increases as � rises and as the core thickness, with respect to the total thickness of 
the nanoplate, decreases. 
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Fig. 12. Dimensionless shear stress through-the-thickness of FG sandwich plate. 
 
 

 

Fig. 13. Dimensionless deflection as a function of the volume fraction index. 

7. Conclusions 

In this study, an analytical solution for bending of new form functionally graded sandwich nanoplates resting on elastic 
foundation is presented. The method is based on a new higher-order shear deformation and nonlocal strain gradient theory 
considering various boundary conditions. Material properties of FG face layers are assumed to vary continuously through-the-
thickness according to a simple power-law distribution or sigmoid function distribution in terms of the volume fractions of the 
constituents. The governing equations of FG nanoplates have been derived based on higher-order deformation theory. Analytical 
solutions for FG sandwich nanoplates are developed for different boundary conditions. As a result, the dimensionless deflection 
increases as the side-to-thickness ratio rises. The inhomogeneity parameter plays a significant role in determining the response of 
the FG nanoplates. A fair agreement is obtained between the present results and those given from the literature. Pasternak 
foundation parameter has more effect on increasing dimensionless deflection than the Winkler parameter. Furthermore, the 
increase of nonlocality and strain gradient size-dependency leads to decrement and increment the stiffness of the FG sandwich 
nanoplate, respectively. It means that the axial and shear stresses amplified by increasing nonlocal parameter while the length 
scale parameter decreased the stresses. In addition to its excellent material properties, S-FGSPs predict good results for mechanical 
bending response. 
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