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Abstract. This numerical study is conducted to scrutinize the dual solutions and stability analysis of the flow of Casson nanofluid 
past a permeable extending/contracting wedge and stagnation point. Momentum, heat and mass transfer behaviors of the Casson 
nanofluid have been modeled with the use of the Buongiorno nanofluid model. Suitable self-similarity variables are employed to 
convert the fluid transport equations into ordinary differential equations and the bvp4c MATLAB solver is used to solve the 
equations. The impacts of active parameters on fluid transport properties are illustrated graphically. The outcomes of the present 
analysis reveal that the influence of Casson fluid parameter on velocity and temperature distributions obtained from the first and 
second solutions exhibit the opposite natures. From the stability analysis, it is found that the thermophoresis and Brownian 
motion effects acquire the same critical point value on Nusselt number. The temperature distribution of the Casson nanofluid is 
higher over the wedge than stagnation point. The two solutions are found for the limited range of extending/contracting 
parameter. The detailed stability test is carried out to determine which of the two solutions is physically realizable and stable. 

Keywords: Casson nanofluid, Dual solutions, Stability test, Falkner-Skan flow, Wedge/stagnation point. 

1. Introduction 

Non-Newtonian fluids are the fluids which have viscosity shear-dependence along with shear-thinning/shear-thickening 
characteristics. These fluids have numerous industrial applications, like petroleum production, chemical process industries, 
plastic polymers, food preservation techniques, cosmetic products, and manufacture of optical fibers. The non-Newtonian fluids 
have complex rheological characteristics, so the flow properties of such fluids cannot be elucidated by the Navier-Stokes 
equations. As a result, Casson fluid, Maxwell fluid, Williamson fluid, Cross fluid, Walter’s B-fluid and Carreau fluid models have 
been proposed by various researchers. Transport characteristics of various non-Newtonian fluid models were investigated by 
several researchers [1-5]. Casson fluid is one of the subclasses of non-Newtonian fluids which was coined by Casson [6]. It is seen 
that this fluid model has a high viscosity and low viscosity when β  (Casson fluid parameter) 0→  and ,β→∞ respectively. It is 

also noticed that this model is expressing the shear-thinning behavior in nature which manifests liquid characteristics when 
shear stress is higher than the yield stress while it can express the solid characteristics when shear stress is lower than the yield 
stress. The Casson fluid model has received notable attention due to its significance in characterizing the rheological behavior of 
human blood, jelly, honey, and tomato sauce. Mythili and Sivaraj [7] have scrutinized the time-dependent Casson fluid flow over 
two different geometries by means of uneven energy gain/loss and have found that Casson fluid parameter uplifts the fluid 
velocity. Raju et al. [8] have employed Runge-Kutta method to explore the heat and mass transfer characteristics of Casson 
nanofluid by considering suction/injection and have noticed that higher values of Casson fluid parameter tend to decline the fluid 
temperature. Hamid et al. [9] have addressed the stability and dual solutions of Casson fluid in an expanding/contracting sheet 
with linear radiation and have observed that higher values of expanding/contracting parameter cause to enhance the skin friction 
of Casson fluid for the first solution. Some recent studies on Casson fluid are shown in Refs. [10-12]. 

One of the prime issues in electronic equipment, power generation, automobile industries and industrial processes is to 
enhance the heat transfer rate. The poor thermal properties of regular heat dissipation fluids are not sufficient for today's needs. 
Choi et al. [13] have proposed a technique to increase the heat transfer rate in fluids by suspending one to hundred nanometers 
sized metal oxide/carbon/metal particles in regular fluids and the fluids obtained in this way are called nanofluids. The 
nanofluids have massive use in numerous fields like solar energy [14], biomedical [15], drug targeting, cancer treatment, cooling 
the engine radiators [16], food technology [17], biomass and geothermal. To investigate the characteristics of nanofluids, 
researchers have presented various nanofluid models like single-phase and two-phase models. In the single-phase model, 
researchers are examining the fluid transport characteristics of nanofluid using the base fluid and nanoparticles thermophysical 
properties. Abbasi et al. [18] have illustrated the entropy generation and heat transfer behavior of water-based copper nanofluid 
flow in the presence of Hall current and Joule heating and have seen that the total entropy generation rises by increasing 
nanoparticle volume fraction. Abbasi et al. [19] have utilized the homotopy perturbation method to examine the peristaltic 
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transport of water-based copper nanofluid in a symmetric channel with the effects of variable viscosity and Hall current and have 
noted that fluid temperature decline with an increment in viscosity parameter.  The Buongiorno (two phase) model is one of the 
notable models in nanofluid which is utilized by several researchers to explore the transport characteristics of nanofluid. In 
Buongiorno [20] model, the fluid transport characteristics are investigated by means of thermophoretic diffusivity and Brownian 
movement. Basha et al. [21] have performed a numerical study on the free convection flow of nanofluid over two different 
geometries with the influence of slip mechanisms (thermophoresis and Brownian motion) and have reported that the slip 
mechanisms augment the nanofluid temperature. Abbasi et al. [22] have scrutinized the influences of Hall current and Joule 
heating on peristaltic nanofluid flow by utilizing Buongiorno nanofluid model and have noted that fluid concentration upsurges 
with the increment of thermophoresis.  Waqas et al. [23] have employed a Buongiorno nanofluid model to analyze the radiation 
impact on hydromagnetic Jeffrey nanofluid flow and have found that the higher thermophoresis and Brownian motion enhance 
the Jeffrey fluid the temperature. Riaz et al. [24] have utilized a Buongiorno nanofluid model to investigate the entropy generation 
and fluid transport properties of peristaltic viscoelastic nanofluid flow over a two asymmetric annuli and have observed that the 
Grashof number elevates the pumping rate. Basha et al. [25] numerically explored the variable fluid properties of Williamson 
nanofluid flow over three different geometries by means of thermophoresis and Brownian motion. Some recent investigations on 
the two-phase nanofluid model have shown in references [26-30]. 

In recent time, researchers and engineers are interested in scrutinizing the fluid flow over a stretching/shrinking sheet owing 
to its notable utilization in various industrial processes like nuclear reactor cooling, wire drawing, glass–fiber production, plastic 
films drawing, extraction of polymer, crystal growing, hot rolling and aerodynamics. Bachok et al. [31] have reported on the dual 
natures of viscous fluids over a melting expanding/contracting sheet with Lorentz force and have shown that the Lorentz force 
diminishes the fluid velocity and temperature for the upper solution. Alam et al. [32] have explained the impacts of variable 
viscosity, Prandtl number and Schmidt number on time-dependent viscous fluid flow over a permeable expanding/contracting 
wedge. Pop et al. [33] have performed a numerical study with the aim to express the heat transfer characteristics of three different 
nanoparticles namely Cu, Al2O3 and TiO2 and have shown that Cu nanoparticles have higher heat transfer rate than the other two 
nanoparticles. Dogonchi and Ganji [34] have utilized the Duan–Rach Approach to explore the fluid transport characteristics of 
Cu/water nanofluid in a stretching/shrinking channel. Hamid et al. [35] have employed the Williamson fluid model to investigate 
the heat transfer characteristics over a permeable expanding/contracting sheet and have found that both solutions lessen the 
Williamson fluid velocity for larger values of Weissenberg number. Hashim et al. [36] have presented an in-depth investigation on 
unsteady Carreau nanofluid flow over an expanding/contracting disk in the presence of non-linear radiation and have concluded 
that the upper and lower solutions have an opposite natures in Carreau nanofluid velocity for uplifting the suction/injection 
parameter. Usman et al. [37] have carried out a numerical study to determine the stability test and dual natures of Cu-water based 
nanofluid with velocity and thermal slips and have pointed out that the first solution is stable but the second solution is not 
stable. Several researchers have explored the two solutions and stability test in the presence of extending/contracting surface 
over different geometries [38-40]. 

The prime intention of the present model is to exhibit the dual solutions and stability analysis of Casson nanofluid flow over 
two different geometries in the presence of slip mechanisms. The non-homogeneous equilibrium model is employed to model the 
present problem. The self-similarity variables have been obtained to consider the value of Prandtl number for any fluid. It is 
observed from a significant analysis of the current literature that no effort has been made to explore the dual natures and 
stability analysis of the forced convective flow of Casson nanofluid over two different geometries in the presence of 
thermophoresis and Brownian motion. According to the consequence of this kind of problems, the current effort aims to address 
the following research questions:  

I. How many solutions occur when extending/contracting two geometries? 
II. In the obtained solutions, which solution is physically realizable and stable? 

III. What is the variation in the heat transfer rate of Casson nanofluid flow over two different geometries? 
IV. What are the impacts of thermophoresis and Brownian motion effects on the heat and mass transfer rates? 

The system of fluid transport equations is solved numerically by using bvp4c collocation formula in MATLAB. It is noticed that 
two solutions exist for expanding/contracting wedge as well as stagnation point. A stability test is performed to verify the stability 
of two solutions. The impacts of the active parameters are illustrated via 2-dimensional plots and contour plots. 

2. Mathematical Formulation 

The schematic view of two different geometries is manifested in Fig. 1. mu bx∞ =  is the free stream velocity where b  is the 

constant. The Hartree pressure gradient m  can be expressed as 11 / [(2 ) 1]β − . The values 0.5 and 1 of 1β  represent the Casson 

nanofluid flow over the wedge and stagnation point, respectively. The constant temperature ( )wT  and concentration ( )wC  of the 

wall is presumed to be greater than the ambient temperature ( )T∞  and ambient concentration ( )wC , respectively. The Falkner-

Skan, incompressible, time-independent, forced convective, laminar flow of Casson nanofluid is considered. The governing 

equations are expressed by employing a two-phase nanofluid model. The wedge and stagnation point surface are permeable and 

experience the extending/contracting behavior. Based on these assumptions, the flow of Casson nanofluid is governed by the 

following equations [7, 8, 21, 25 and 35]: 

 

Fig. 1. Physical configuration of the flow geometry 
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The boundary conditions are [8, 25 and 35]: 
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where u  and v  represent the velocity components along the x  and y -directions, f = f / f is the kinematic viscosity, f is 

the dynamic viscosity, f is the density of fluid, T is the Casson fluid parameter, * = kf / (Cp)f is the thermal diffusivity, kf is the 

fluid thermal conductivity, Cp is the specific heat capacity,  = (Cp)p/(Cp)f is the ratio between particle and base fluid, T  is the 

fluid temperature, DB is the Brownian diffusion, DT is the thermophoretic diffusion and C is the concentration. 

Suitable self-similarity variables are expressed as follows 
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where wf  is the suction/injection parameter, *Pr /fν α=  is the Prandtl number,  ( ) /B B w fN D C Cτ ν∞= −  is the Brownian 

movement parameter ( ) /T T w fN D T T Tτ ν∞ ∞= −  is the thermophoresis parameter and / BfSc Dν=  is the Schmidt number. Lin and 

Lin [41] have introduced a parameter Reλ δ=  which can fit for the value of any fluid Prandtl number ( )Pr , 1Re u xν−∞= is 

Reynolds number, ( )1 Pr Pr ,
n

δ
−

= + 1 / 6n =  for plate ( )1 0β = , wedge ( )1 0.5β = , and stagnation of flat plate ( )1 1β = . 

At the wall, the dimensionless forms of skin friction factor *( )fC , heat transfer rate *( )Nu  and mass transfer rate *( )Sh  are 

expressed as follows: 
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3. Stability Test 

    The stability test is carried out by following the study of Makinde [38 and 42] and results manifest that the second solutions 
are unstable, whereas the first solutions are stable. To perform a stability test, we have proposed a dimensionless time-dependent 
variable *τ  to model the problem. Thus we have 
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and the new self-similarity variables are as follows: 
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By applying new self-similarity variable, Eqns. (12)-(14) can be expressed as 
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The stability test is performed by using the following perturbation expressions for the fluid transport equations 

( ) ( ) ( )0 0 0, andf f η θ θ η χ χ η= = =  with below conditions 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

*

*

*

*
0

*
0

*
0

, ,

, ,

, .

f f e F

e S

e P

γτ

γτ

γτ

η τ η η

θ η τ θ η η

χ η τ χ η η

−

−

−

= + = + 
= + 

 (20) 
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Solving the eigenvalue problem numerically for specific values of Pr 1.2,= 3,Tβ = 1,wf = 3,Sc = 0.1,TN =  and 0.1BN = , we 

have receive an infinite set 1 2 3( ........)γ γ γ< < <  of eigenvalues. If γ  is positive, then the solution is stable, whereas if γ  is 

negative, then the solution is unstable. Harris et al. [43] have stated that normalization of a suitable boundary condition on 

( ) ( ) ( ), orF S Pη η η is essential to find out the eigenvalues. In the present model, the condition ( ) 0 asF η η′ → →∞  is 
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4. Numerical Solution 

    Set of non-linear dimensionless Eqns. (7)-(9) with the corresponding boundary conditions Eqn. (10) are solved using bvp4c 
collocation formula in MATLAB and 10-6 is the level of error tolerance. Bvp4c is a MATLAB package that provides the solution using 
the 3-stage Lobatto IIIa formula and the finite difference scheme. Besides, suitable initial guesses are required to obtain a better 
solution. The procedures of this solver are clearly expressed in Shampine et al. [44]. To employ this method, it is important to 
convert higher-order ODEs into the first-order ODEs. For such a conversion, the following processes are utilized. 
below mentioned a new set of variables are employed for computation: 
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applying Eq. (25) in Eqns. (7)-(10), then the reduced ODE equations are: 
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with conditions are 
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(27) 

The first solution obtained on *Nu  for various Casson fluid parameter values are compared with Maple (dsolve incorporated by 
the midpoint) which is illustrated in Table 1. It is seen that the present results and the Maple results are in good agreement. 

5. Results and Discussion 

   The main objective of this section is to provide a graphical description of velocity, temperature, and concentration 

distribution with the impacts of active parameters in two different geometry cases. The dimensionless flow equations with 

suitable boundary conditions have been computed via bvp4c. It is noteworthy to mention that the transport properties are 

analyzed over a wedge ( 1β = 0.5) and stagnation point ( 1β = 1.0). Two solutions are obtained with the expanding/contracting 

wedge and stagnation point surfaces. Hence the prime intention is to find out the critical points corresponding to the emerging 

parameters in the two solutions. A stability test is carried out to check which of the two solutions is stable. Red and blue colors 

represent the Casson nanofluid characteristics over a permeable wedge and stagnation point cases, respectively. Further, the solid 

and dashed lines show the first and second solutions. 
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Fig. 2. Impacts of Tλ and Tβ on *
fC    Fig. 3. Impacts of Tλ and wf on *

fC  

  

Fig. 4. Impacts of Tλ and TN on *Nu  Fig. 5. Impacts of Tλ and BN on *Nu  

 

 

Fig. 6. Impacts of Tλ and BN on *Sh  
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Fig. 7. (a,b) Plot of smallest eigenvalues for uplifting Tλ for ( )a 1 0.5=β ( )b 1 1=β . 

  

Fig. 8. (a,b) Plot of f ′ for uplifting Tβ  for ( )a 1 0.5=β ( )b 1 1=β . 

  

Fig. 9. (a,b) Plot of θ for uplifting Tβ  for ( )a 1 0.5=β ( )b 1 1=β . 
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Fig. 10. (a,b) Plot of χ for uplifting Tβ  for ( )a 1 0.5=β ( )b 1 1=β . 

 

  

Fig. 11. (a,b) Plot of f ′ for uplifting Tλ  for ( )a 1 0.5=β ( )b 1 1=β . 

  

Fig. 12. (a,b) Plot of θ for uplifting Tλ  for ( )a 1 0.5=β ( )b 1 1=β . 
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Figures 2-6 elucidate the dual natures of Casson nanofluid for various values of Tλ  over two different geometry cases. It is 

observed from these figures that first and second solutions exist for T cλ λ> unique solution exists for T cλ λ=  and there is no 

solution for T cλ λ< , where lower script c expresses the critical value. Figure 2 discloses the impact of Tλ  and Tβ  on *
fC  for two 

different geometry cases, respectively. It is observed from this figure that there are two solutions for 0c Tλ λ< <  where the 

critical values of are 1.296, 1.319, 1.322T cλ λ ≈− − −  for wedge case and 1.626, 1.655, 1.672cλ ≈− − −  for stagnation point case. 

Further, it noticed that the first solution enhances the skin friction at the surface whereas the reverse trend is seen for the second 

solution. Figure 3 accords the behavior of variation of *
fC  versus Tλ  for higher values of wf . In this figure, we have found that 

two solutions exist for a fixed value of Tλ  when T cλ λ≤ . The critical values of Tλ  are 1.319, 1.404, 1.495cλ ≈− − − over the wedge 

and 1.655, 1.758, 1.870cλ ≈− − −  over the stagnation point for 1,1.2,1.4wf = , respectively. Moreover, the first solution uplifts *
fC  

by enhancing wf  whereas the second solution lessens the *
fC  at the surface. 

Figure 4 manifests the influence of TN  and Tλ  on *.Nu  This graph reveals that the first solution tends to decline *Nu  and 

the second solution tends to inflate *.Nu  The critical values of Tλ  in order remain at 1.319cλ ≈  and 1.655cλ ≈−  for the 

wedge and stagnation point with an upsurge value of TN . Figure 5 exhibits the changes in *Nu   for several values of BN  and Tλ . 

It is evident from this figure that two solutions exist at the same critical value 1.319cλ ≈  and 1.655cλ ≈−  of Tλ  in wedge and 

stagnation point cases, respectively.  

Changes in *Sh  due to BN  with Tλ  are plotted in Fig. 6. It is important to note that this figure has the same critical points, 

1.319cλ ≈  and 1.655cλ ≈− , in cases of wedge and stagnation point for the given values of BN . In addition, it is observed that 

both the solution augments *Sh . Figure 7(a,b) is plotted to illustrate the positive and negative values of 1γ  for the first and 

second solutions. It is revealed that the first solution over two different geometries is stable while another solution is unstable. 

The influence of varying Tβ , on , andf θ χ′  is plotted in Figs. 8(a,b)-10(a,b) for 1 0.5β = and 1 1β =  cases. Figure 8(a,b) 

illustrates that the uplifting values of Tβ  elevate f ′ . In permeable case, the buoyancy force controls the viscous force which 

tends to increase the velocity. Through Figs. 9(a,b) and 10(a,b), the changes in andθ χ are reported for higher values of Tβ . Due to 

the influence of buoyancy force, the viscosity of the Casson nanofluid dissipates and manifests a decreasing behavior in 

temperature and concentration distributions for the first solution. The variation of Tλ  on f ′  and θ  are displayed in Figs. 

11(a,b) and 12(a,b). Figure 11(a,b) portrays how Tλ  affects f ′ . It is clear from this figure that the f ′  shows an increasing nature 

by improving the values of Tλ  in the stable solution (first solution). In contrast, in the second solution, Casson nanofluid velocity 

expresses a decreasing behavior. Further, it is noticed that the momentum related boundary thickness is higher for the first 

solution compared with the second solution. Figure 12(a,b) depicts the effect of Tλ  on θ . It is evident from the stable solution 

that the thermal related boundary layer thickness is inflating with the enhancing Tλ  values while the opposite trend is observed 

for the second solution. 

Figures 13(a,b) -15(a,b) are sketched to explore the influence of wf  on , and .f θ χ′  Figure 13(a,b) discloses the influence of 

wf  on f ′ . For the stable solution, it is observed that the Casson nanofluid velocity increases when injecting the fluid into the 

surface. Physically, enhancing the fluid injection used to increase the momentum related boundary layer thickness which 

augments the fluid flow near the surface but the opposite nature is observed for the second solution. Impact of wf  on θ  is 

demonstrated in Fig. 14(a,b). It is clear that the higher values of wf  augment the Casson nanofluid temperature for the stable 

solution case and reduce the temperature for the second solution case. Further, it is to be noted that injecting the fluid at the 

surface leads to reduce the thermal related boundary layer thickness. As a result, the Casson nanofluid temperature decreases. 

Effect of wf  on χ  is plotted in Fig. 15(a,b). Physically, when injecting fluid at the surface tends to diminish the mass related 

boundary layer thickness, hence χ  declines. Figure 16(a,b) demonstrate the effect of TN on θ . In the phenomenon of 

thermophoresis, the heated particles are pushed from the hot surfaces to the cold area, as a result, the thermal related boundary 

layer rises with an increase in TN  for both the solutions. The effect of BN  on Casson nanofluid temperature is exhibited in Fig. 

17(a,b). From this figure, it is clear that the first and second solutions manifest an uplifting nature for elevating the Brownian 

movement. As the Brownian motion increases, the random motion of the fluid particles enhances which causes to generate more 

heat and hence the fluid temperature rises. Figures 18 and 19 are sketched to disclose the impact of *Nu  on Tλ  against BN  

over the wedge and stagnation point cases, respectively. These figures are plotted with 40×40 meshes of Tλ  and BN . In addition, 

over the wedge, Tλ  has the same critical value 1.319cλ ≈−  and over the stagnation point the critical value is 1.655cλ ≈− . It is 

manifested that the first and second solutions have a reverse behavior on *Nu  for both 1 0.5β = and 1 1β = . 

6. Conclusion 

    This study aimed at exploring the dual natures and stability performance of Casson nanofluid over an extending/contracting 
wedge and stagnation point. Governing equations have been modeled by utilizing Buongiorno nanofluid model. The surface is 
permeable and suction/injection is considered. Two solutions are detected in a certain region when the wedge and stagnation 
point surface are extended/contracted. A depth stability test is performed which helps to examine the stability of the obtained 
solutions. The two-dimensional plot, three-dimensional surface plot and contour plot are used to exhibit the outcomes. The main 
findings of the current study are listed below. 

 The first and second solutions have an opposite nature on the fluid velocity due to the impact of Casson fluid parameter. 
 The Casson nanofluid temperature enhances with an increment in thermophoresis and Brownian motion for both the 

solutions. 
 Skin friction factor augments at the surface for higher values of Casson fluid parameter and suction/injection in case of the 

first solution. 
 Brownian motion has the same critical point on the rates of heat and mass transfer. 
 The stagnation point case has higher rates of heat and mass transfer than wedge. 
 From this model, it is evident that the first solution is stable and physically realizable. 



Stability Analysis of Casson Nanofluid Flow over an Extending/Contracting Wedge and Stagnation Point  
 

  Journal of Applied and Computational Mechanics, Vol. 8, No. 2, (2022), 566-579 

575 

  

Fig. 13. (a,b) Plot of f ′ for uplifting wf  for ( )a 1 0.5=β ( )b 1 1=β . 

  

Fig. 14. (a,b) Plot of θ for uplifting wf  for ( )a 1 0.5=β ( )b 1 1=β . 

  

Fig. 15. (a,b) Plot of χ for uplifting wf  for ( )a 1 0.5=β ( )b 1 1=β . 
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Fig. 16. (a,b) Plot of θ for uplifting TN  for ( )a 1 0.5=β ( )b 1 1=β . 

  

Fig. 17. (a,b) Plot of θ for uplifting BN  for ( )a 1 0.5=β ( )b 1 1=β . 

 

  

Fig. 18. Surface and contour plots with the effects of BN and Tλ on *Nu for two solutions when 1 0.5.=β  
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Table 1. Comparison of the values of Tβ on *Nu with Maple (dsolve) for first solution 

 

 

Parameter 

*Nu  

First solution 

wedge Stagnation point 

Tβ  
bvp4c 

MATLAB 

dsolve 

Maple 

bvp4c 

MATLAB 

dsolve 

Maple 

2 0.157390 0.157395 0.647996 0.647990 

3 0.231779 0.231771 0.686871 0.686869 

4 0.266488 0.266492 0.707541 0.707543 

5 0.286966 0.286969 0.720396 0.720400 

6 0.300534 0.300539 0.729172 0.729176 

 

 

  

Fig. 19. Surface and contour plots with the effects of BN and Tλ on *Nu for two solutions when 1 1.0.=β  
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