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Abstract. In this study, a radial basis function collocation method (RBFCM) is proposed for the numerical treatment of inverse 
space-wise dependent heat source problems. Multiquadric radial basis function is applied for spatial discretization whereas for 
temporal discretization Runge-Kutta method of order four is employed. Numerical experiments for one, two and three-
dimensional cases are included to test the efficiency and accuracy of the suggested method. Both non-rectangular and 
rectangular geometries with uniform and non-uniform points are taken into consideration and the obtained results are compared 
with the exact as well as with the techniques presented in recent literature. 
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1. Introduction 

The inverse heat conduction problems (IHCP) with unknown space dependent heat source are mostly highlighted in the 
conduction, transportation, hydrology, and diffusion process in natural materials. Mathematically the inverse heat conduction 
problem with unknown space dependent heat source is defined as 

( ) ( )x, x , x , 0,nw w t f tt = ∆ + ∈ Ω ⊂ >ℝ  (1) 

where ∆ is the Laplace operator, ( )x,w t  is the state variable and ( )xf  is the physical source term, which is the unknown space 
dependent heat source. Sad to say that the characteristics of ( )x,w t  and the sources term in actual problems are always 
unknown to the nature of these types of IHCP are known as ill-posed problems [1-3]. Generally, the recovery of heat source term 
with complete accuracy is impossible under the restricted boundary conditions. Such types of problems are unstable caused by or 
ascribable to the obtaining of unknown variables from the direct observations which contain some measurement errors. The 
construction of an accurate and stable numerical method is very difficult due to the ill-posedness and ill-conditioning of the 
discretized matrix. 

A verity of numerical techniques is used to investigate IHCP such as the iterative regularization technique [4], boundary 
element method [5], radial basis functions (RBFs) based method [6], method of fundamental solution (MFS) [7,8], Lie-group method 
(LGM) [9], meshless collocation procedures [10] and Haar wavelet collocation multi-resolution method [3]. 

As most practical problems in applied sciences and engineering are not limited to low dimensions but modeled in higher 
dimensions. Thus dealing such problems bring a lot of computational cost in terms of mesh generations using mesh-based 
methods, like finite difference method (FDM) [11], variation iteration method (VIM) [12], finite volume method (FVM) [13], variation 
iteration algorithms [14-17] and other numerical/analytical methods [18-20]. This computational cost is low in one dimension but 
increase as dimension increases. Moreover, complex or irregular problem geometries cannot be handled easily when moving 
discontinuities occur, such as propagation of cracks and flames. In such a case re-meshing and re-alignment of meshes are 
needed which itself is a tedious job. Thus RBFs methods become a viable option in such a scenario. As the only geometric 
property needed in RBFs approximation is their pairwise distance between data points. This can be done easily regardless of the 
problem geometry and dimension. Moreover, no prior mesh connectivity information is needed amongst the data points. 

Recently, the meshless methods got practical importance and broadly attention for the solution of different kind of partial 
differential equations (PDEs) arises in almost all disciplines of engineering. They do not require any prior information about mesh 
connectivity and have no sensitivity to mesh alignment. Other features are their achievement of spectral accuracy, low 
computational cost and their flexibility to complex shape domains. While in these procedures, the problem domain is 
represented by a set of scattered data nodes provided in the form of initial data. 

From the above mentioned characteristics, these methods distinguishable from FEM, FDM and FVMs and brings more 
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flexibility in applications perspective to problems of engineering and physical sciences. These methods became popular amongst 
the scientific community and now are a rich area of research need to be explored. In many computational challenging problems, 
the meshless methods delivered well and showed promising performance [21-23]. 

1.1 Formulation of the inverse heat source Problem 

Considering one-dimensional IHCP 

( ) ( ) ( ) ( )( )
2( , ) ( , )

, , , , 0, ,
2

w x t w x t
f x x t a b T

t x

∂ ∂
= + ∈

∂ ∂
 (2) 

with the following conditions 

( ) ( ),0 , ,w x x a x bϕ= ≤ ≤  (3) 

( ) ( ) ( ) ( ), , , , 0 ,1 2w a t g t w b t g t t T= = ≤ ≤  (4) 

( ) ( ), , ,w x T x a x bη= ≤ ≤  (5) 

where the functions ϕ , 1g , 2g  and η  are known and T  is the final time, whereas w  and f  are unknown functions to be 

calculated. 

2.  Global Meshless Scheme 

A real-valued function is called radial basis function if defined on norms of the input set of data points with the independent 

variable x , i.e., ( )( , , ) || ||,i ix x c x x cψΨ = − , where 1,2, , .ix N= ⋯  The shape of these radial basis functions which are one parameter 

curves is dependent on an unknown parameter which is called shape parameter c . In the current study, we utilize multiquadric 

RBF ( ) 2 2x r cψ = + , where || ||ir x x= − . We choose N  nodes ( , 1,2, , )ix i N= ⋯  in the domain. The approximate function ( ),w x t  is 

presented by ( )Nw x . The RBF approximation is of the form 

( ) ( )
1

NN Tw x x
i ii
λ ψ= = Ψ Λ∑

=
 (6) 

where ( ) ( ) ( ) ( ), , ,1 2

T
x x x xNψ ψ ψ Ψ =   

⋯ , , , .1 2

T

Nλ λ λ Λ =   
⋯ . 

Let us suppose ( )Nw x w
i i

= , then 

WΑΛ =  (7) 

where W , , ,1 2

T
w w wN
 =   

⋯  

( )

( )

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1 1 12

1 2 2 2 22

1 2

T x x x xN
T x x xx N

T x x xx N N N NN

ψ ψ ψ

ψ ψ ψ
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   Ψ   
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⋯

⋯

⋮ ⋮ ⋱ ⋮⋯

⋯

  

It follows from equation (6) and (7) that 

( ) ( ) ( )1W Ww
N Tx x x−= Ψ Α = ℕ  (8) 

where ( ) ( ) 1Tx x −= Ψ Αℕ . 

Here, we suppose a transformation ( ) ( ), ,u x t w x tt= . Hence, from equations (2)-(5), we get 

( ) ( )
,

2, ,
2

u x t u x t

t x

∂ ∂
=

∂ ∂
 (9) 

( ) ( )

( ) ( ) ( ) ( )

,0 0,

, , , .1 2

u x x

u a t g x u b t g x

ϕ= =

= =

ɺ

ɺ ɺ

 (10) 

By applying the RBFCM to equation (9), we get 

( )u, i=1,2, ,N
du

i xxx idt
= ℕ ⋯  (11a) 
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where 

( ) ( ) ( ) ( )

( )
( )

= , , , ,1 2

2

, 1,2, , .
2

x N x N x N xxx xx Nxxxxi i i i

N x
j i

N x j N
jxx i x

 
  

∂
= =

∂

ℕ ⋯

⋯

 (11b) 

Writing this system in vector form as 

U
U,

d
xxdt

= ℤ  (12) 

The corresponding initial and boundary conditions are 

( ) ( ) ( )
0 0 0

U(t )= , , ,10 2
u x u x u xN

 
 
 
  

⋯  (13) 

( ) ( ) ( ) ( ), ,1 1 2u t g t u t g tN= =ɺ ɺ  (14) 

To solve the system of ordinary differential equations (12)-(14), we use the following classical four order Runge-Kutta Scheme 

to get the numerical solution of ( , )u x t  as follows 

( )

( )

( )

2 21 41 2 3U U ,
6

U , U ,1 12 2

U , U .43 2 32

t K K K K
n n

tn nK F K F K

tn nK F K K F tK

∆ + + +
+ = +

 ∆ = = +   

 ∆ = + = + ∆  

 (15) 

Integrating ( )( , ) ,u x t w x tt=  with respect to t  from 0t  to t , the ( ),w x t  can be attained. The source term ( ),f x t , which is 

unknown can be obtained from equation (2) directly, as 

( ) ( )2, ,
( )

2
w x t w x T

f x
t xt T

∂ ∂
= −

∂ ∂=
 (16) 

( ) ( )( ) ,f x u x T xϕ′′= −  (17) 

3. Numerical Results and Discussion 

To implement the LRBFDM in the one-dimensional case, we introduce noisy data on the boundary, which is defined as 

ˆ (1 ),b bw w e rand= × + ×  (18) 

where rand  denotes the random number, ˆ bw is the noise data on the accessible boundary, e is the noise level, which is 
expressed as / 100e s= and s  is the percentage of noise. For verification purpose one dimensional (1D), two dimensional (2D) 
and three dimensional (3D) inverse source heat problems for high noise data as well as on both regular as well as irregular 
domains are considered and different error norms like the absolute ( )absL , relative root mean square ( )RES  and root mean 
square ( )RMS  are obtained for comparison purposes and applicability of the purposed method. The error norms which will be 
considered are defined as 

( )

( ) ( )

( ) ( )f f

(f )

(f) f ( )

(f ) , 1,2,...,

1 2
(f ) ,

1

2 2
/ ,

1 1

i iEx Nu

Labs

L iabs Nu

i NLabs

N
RMS

N i

N N
RES

i i

−= =

= ∑
=

= ∑ ∑
= =

 
(19) 

where fNu and fEw  represents numerical and exact values respectively. For w  the error norms L
abs

, RMS and RES  are 

calculated in a similar way. 

Test Problem 1. Considering one-dimensional case with the beneath exact solution ( , )w x t  and heat source ( )f x  

2 2( , ) sin(2 ) 2 , ( ) 4 sin(2 ) 2 2.w x t x x tx f x x xπ π π= + + = + −  (20) 

In Table 1 the error norms ( )fRMS  and ( )fRES  of the RBFCM in the computational domain [ ]0,1  are compared with the 

method given in [8]. In Fig. 1 we have shown the comparison of exact and numerical solutions of ( , )w x t and ( )f x  whereas Figure 

2 shows numerical results of heat source function for various noise levels, these results show that the RBFCM can handle this 

problem accurately even for a high noise level up to 10%s = . 
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Table 1. Numerical results at 0.1%, 10s c= =  and 51N =  for Test Problem 1. 

t 
RMS(f) 

RBFCM 

RMS(f) 

MFS [8] 

RMS(f) 

RBFCM 

RMS(f) 

MFS [8] 

1.5 9.8792 × 10-4 6.134 × 10-2 1.3834 × 10-4 2.279 × 10-3 

3 6.2879 × 10-4 5.181 × 10-3 8.8048 × 10-5 1.811 × 10-4 

5 7.4759 × 10-5 3.562 × 10-3 1.0468 × 10-5 1.290 × 10-4 

7 2.4000 × 10-3 7.080 × 10-4 3.3914 × 10-4 2.574 × 10-5 

10 1.1800 × 10-2 1.401 × 10-3 1.7000 × 10-3 5.079 × 10-5 
 

  

Fig. 1. Numerical solution of ( , )w x t  and ( )f x  using exact data using 7, 30c N= =  and 1t =  for Test Problem 1. 

  

Fig. 2. Numerical results for different noise levels using 7, 30c N= =  and 1t =  for Test Problem 1. 

Test Problem 2. Again considering the one-dimensional case with the following exact solution and heat source  

2 2( , ) ( 2)sin( ), ( ) 2 sin( ).tw x t e x f x xπ π π π−= − − =  (21) 

Numerical results obtained by the RBFCM are shown in Figure 3 using various noise levels and these results have been 
compared with Tikhonov regularization boundary element method (TRBEM) [5], Boundary element method (BEM) [4], Lie-group 
adaptive method (LGAM) [9], Lie-group numerical differential method (LGNDM) [9] and method of fundamental solutions (MFS) [7]. 
It can be observed from the figure that the RBFCM can handle this challenging problem with considerable good accuracy. It is also 
noted that in all the methods 32N >  is taken but the RBFCM gives better results even at 20N = . This problem has been 
considered in [5] as the most challenging case to capture the heat source accurately due to its ill-posedness. From the error 
profiles, one can see that the results are accurate and well satisfactory, even with the noise level up to 10%s = as shown in 
Figure 2. 

Test Problem 3. Considering two-dimensional case [1] in which exact solution 

4( , , ) (cos(2 ) cos(2 ))(1 ),tw x y t x y e−= + −  (22) 

and exact source term 

( , ) 4(cos(2 ) cos(2 )).f x y x y= +  (23) 

Fig. 5 shows the error for heat source utilizing exact data for the Least-squares method (LSM) and Tikhonov regularization 

method (TRM) [1] and the RBFCM whereas for noise data ( 1%s =  and 2%s = ) the results are shown in Fig. 6. From these figures, 

it is cleared that the accuracy of the RBFCM is more accurate than the methods given in [1] for both exact and noise data. 
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TRBEM [5] BEM [4] 

  

LGAM [9] LGNDM [9] 

 
 

MFS [7] RBFCM 

  

Fig. 3. Comparison of different methods (TRBEM [5], BEM [4], LGAM [9], LGNDM [9], MFS [7]) with the RBFCM using c=8 and N=20 for Test Problem 2. 

Test Problem 4. Considering two-dimensional case [7] in which exact solution 

3 3( , , ) cos( 2 ) ,x tw x y t e y x y−= − −  (24) 

and exact source term 

( , ) 6 6 .f x y x y= +  (25) 

In Fig. 7 different types of non-rectangular domains are shown whereas Fig. 8 shows the comparison of the proposed method 
with MFS [7] on domain 1, which shows that the accuracy of the RBFCM is more accurate than the method given in [7]. In Fig. 9 
the error on domain 1 for the heat source ( , )f x y  is shown for 0.1%, 10%s = . The error on domain 2 for exact data and 10%s =  
is shown in Fig. 10. The heat source ( , )f x y  is shown in Fig. 11 on domain 3. Figs. 12 - 13 show that the suggested method gives 
more accurate results on domain 3 using uniform points as well as Halton points. 
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Fig. 4. Error Comparison of ( )f x  at different noise levels using 8, 20c N= =  and 1t =  for Test Problem 2. 

 

TRM [1] LSM [1] 

  

RBFCM 

 

 

Figure 5. Error comparison for ( , )f x y  of the proposed method with the methods given in [1] using exact data at 0.3c =  and 225N =  for Test 

Problem 3. 
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TRM [1] RBFCM 

  

TRM [1] RBFCM 

  

 

Fig. 6. Error comparison for ( , )f x y  of the proposed method with the methods given in [1] at noise data 1%s = (1st row) and 2%s =  (2nd row) 

using 0.3c =  and 225N =  for Test Problem 3. 

 
 

  

Domain 1 Domain 2 

Fig. 7. The configuration of non-rectangular domains. 
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Domain 3 

Fig. 7. The configuration of non-rectangular domains. 

 
Fig. 8. Numerical results at various amounts of noise using 0.2c =  and 400N =  for Test Problem 4. 

  

Exact data S = 10% 

Fig. 9. The Labs error norm of ( , )f x y  on domain 1 using 0.2c =  and 402N =  for Test Problem 4. 
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Exact data S = 10% 

Fig. 10. The Labs error norm of ( , )f x y  on domain 2 using 0.2c =  and 331N =  for Test Problem 4. 

 

Fig. 11. Numerical results of heat source ( , )f x y  on domain 3 using exact data at 0.068c =  and 150N =  for Test Problem 4. 

 
 

Fig. 12. The Labs error norm of ( , )f x y  on domain 3 with uniform points using exact data (left) and 5%s =  (right) at 0.068c = and 150N =  

for Test Problem 4. 
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Fig. 13. The Labs error norm of ( , )f x y  on domain 3 with Halton points using exact data (left) and 5%s =  (right) at 0.09c =  and 150N =  for 

Test Problem 4. 

s = 1% RBFCM s = 1% TRM [1] 

  

s = 2% RBFCM s = 2% TRM [1] 

  

 
Fig. 14. Comparison of exact ( ̶̶̶ ) and numerical (...) heat source at various noise levels using 0.2c =  and 402N =  for Test Problem 5. 

 
Test Problem 5. Considering the two-dimensional IHCP [1] with the exact solution 

( , , ) ( ) ,
2

t
w x y t x y= +  (26) 

and exact source term 
1

( , ) ( ).
2

f x y x y= +  (27) 

Fig. 14 shows the results of heat source obtained employing the RBFCM for noise data and 1%s =  2%s = . In this figure, we 

have compared our results with exact as well as with the results given in [1]. One can observe that the RBFCM produced bettered 
results as compared to the results given in [1]. 
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RBFCM MFS [1] 

  
 

Fig. 15. The RBFCM versus the MFS [1] using 0.9c = and 125N = for Test Problem 6. 

 

 
 

 

Fig. 16. Computational domain (left) and numerical results (right) using 0.3c = and 2046N =  for Test Problem 6. 

 

 
 

 

Fig. 17. Computational domain (left) and numerical results (right) using 0.02c =  and 935N =  for Test Problem 6. 
 
Test Problem 6. Considering the three-dimensional case [1] in which the exact solution is 

4( , , , ) (cos(2 ) cos(2 ) cos(2 ))(1 ), 1 2,tw x y z t x y z e t−= + + − ≤ ≤  (28) 

and exact source term 

( , , ) 4(cos(2 ) cos(2 ) cos(2 )).f x y z x y z= + +  (29) 

In Fig. 15 the results obtained of the suggested technique the RBFCM for Test Problem 6 are compared with the results given 
[1]. It can be perceived from the figure that the RBFCM produced better results in this case as well. In Figs. 16-17 again validates 
stable computations and efficiency of the RBFCM, and show that the proposed method produces better results in irregular 
domains. 
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4. Conclusion 

In this study, we have mainly focused on the applicability and performance of the radial basis function collocation method to 
a class of space-wise dependent heat source problems. The numerical results of the method are comparatively accurate and 
efficient than the existing techniques in recent literature and we have observed high accuracy, effectiveness, robustness and less 
computational cost by conducting various numerical experiments. For verification purpose 1D, 2D and 3D inverse source heat 
problems for high noise data by considering both regular as well as irregular domains excellent accurate solutions have been 
obtained. To better understand the physical phenomena of these models, we have also used numerical simulation technology to 
give some graphics of the results obtained, which revealed that the RBFCM is reliable to solve the space-wise dependent heat 
source problem. The discussion of the results and graphically illustrated solutions revealed that our proposed approach is an 
efficient and reliable tool for the solution of inverse problems. 
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